A remark on Martin's maximum

Hiroshi Sakai Kobe University

1 Introduction

In this paper we prove that MM, Martin's maximum, implies the partial square principle at ω_1 . First we recall the partial square principle:

Definition 1.1. Let κ be an uncountable cardinal. For $S \subseteq \text{Lim}(\kappa^+)$ let

$$\square_{\kappa}(S) \equiv \textit{There exists a sequence } \langle c_{\alpha} \mid \alpha \in S \rangle \textit{ such that }$$

- (i) c_{α} is a club of α with $\text{o.t.}(c_{\alpha}) \leq \kappa$ for each $\alpha \in S$,
- (ii) if $\alpha \in S$ and $\beta \in \text{Lim}(c_{\alpha})$, then $\beta \in S$ and $c_{\beta} = c_{\alpha} \cap \beta$.

A sequence $\langle c_{\alpha} \mid \alpha \in S \rangle$ satisfying (i) and (ii) is called a $\square_{\kappa}(S)$ -sequence.

In the above

$$Lim(A) := \{ \alpha \in A \mid \sup(A \cap \alpha) = \alpha \},$$

o.t.(A) := the order type of A,

for a set A of ordinals.

Note that $\Box_{\kappa}(\operatorname{Lim}(\kappa^{+}))$ is equivalent to Jensen's \Box_{κ} introduced in [2]. Hence $\Box_{\kappa}(\operatorname{Lim}(\kappa^{+}))$ holds for every uncountable cardinal κ in L. It is not hard to see that if S is a nonstationary subset of κ^{+} , then $\Box_{\kappa}(S)$ holds. Moreover it is shown by Shelah [3] that if μ and κ are regular cardinals with $\mu < \kappa$, then there exists $S \subseteq \operatorname{Lim}(\kappa^{+})$ such that the set $\{\alpha \in S \mid \operatorname{cf}(\alpha) = \mu\}$ is stationary and $\Box_{\kappa}(S)$ holds.

On the other hand it is known that if κ is a regular uncountable cardinal and there exists a weakly compact cardinal above κ , then there exists a $< \kappa$ -closed forcing extension in which $\square_{\kappa}(S)$ fails for every $S \subseteq \text{Lim}(\kappa^+)$ such that the set $\{\alpha \in S \mid \text{cf}(\alpha) = \kappa\}$ is stationary. In particular it is independent of ZFC whether there exists $S \subseteq \text{Lim}(\omega_2)$ such that $\{\alpha \in S \mid \text{cf}(\alpha) = \omega_1\}$ is stationary and $\square_{\omega_1}(S)$ holds. In this paper we prove that MM implies the existence of such $S \subseteq \text{Lim}(\omega_2)$:

Theorem 1.5. Assume MM. Then there exists $S \subseteq \text{Lim}(\omega_2)$ such that the set $\{\alpha \in S \mid \text{cf}(\alpha) = \omega_1\}$ is stationary and $\square_{\omega_1}(S)$ holds.

Below we let $\square(S)$ denote $\square_{\omega_1}(S)$. Moreover we let

$$E_i^2 := \{ \alpha \in \omega_2 \mid \operatorname{cf}(\alpha) = \omega_i \}$$

for i = 0, 1.

2 Preliminaries

2.1 Facts on ω_1 -stationary preserving σ -Baire poset

A poset \mathbb{P} is said to be ω_1 -stationary preserving if every stationary subset of ω_1 remains to be stationary in every generic extension by \mathbb{P} . \mathbb{P} is said to be σ -Baire if the forcing extension by \mathbb{P} adds no new sequences of ordinals of length ω .

In the proof of Thm.1.5 we will construct an ω_1 -stationary preserving σ -Baire poset and apply MM to it. Here we present two facts on such poset.

The first one is a fact, essentially due to Woodin [4], on a consequence of MM applied to such poset:

Definition 2.1. Let \mathbb{P} be a poset and M be a set. g is called an (M, \mathbb{P}) -generic filter if g is a filter on $\mathbb{P} \cap M$ such that $g \cap A \cap M \neq \emptyset$ for every maximal antichain $A \in M$ in \mathbb{P} .

Fact 2.2. Assume MM. Suppose that \mathbb{P} is an ω_1 -stationary preserving σ -Baire poset and that θ is a sufficiently large regular cardinal with $\theta^{\omega} = \theta$. Then the set of all $M \in [\mathcal{H}_{\theta}]^{\omega_1}$ such that

- (i) M is internally approachable of length ω_1 ,
- (ii) there exists an (M, \mathbb{P}) -generic filter,

is stationary in $[\mathcal{H}_{\theta}]^{\omega_1}$.

The second one is a sufficient condition for a poset to be ω_1 -stationary preserving and σ -Baire:

Definition 2.3. Let W be a set with $\omega_1 \subseteq W$. $X \subseteq [W]^{\omega}$ is said to be projectively stationary if the set $\{x \in X \mid x \cap \omega_1 \in H\}$ is stationary in $[W]^{\omega}$ for every stationary $H \subseteq \omega_1$.

Definition 2.4. Let \mathbb{P} be a poset and M be a set. $p \in \mathbb{P}$ is called a strongly (M, \mathbb{P}) -generic condition if for every maximal antichain $A \in M$ in \mathbb{P} there exists $q \in A \cap M$ with q > p.

Fact 2.5. Let \mathbb{P} be a poset. Suppose that the following holds:

(*) For every sufficiently large regular cardinal θ and every $q \in \mathbb{P}$ the set $\{M \in [\mathcal{H}_{\theta}]^{\omega} \mid a \text{ strongly } (M, \mathbb{P})\text{-generic condition below } q \text{ exists.}\}$ is projectively stationary.

Then \mathbb{P} is ω_1 -stationary preserving and σ -Baire.

2.2 A variant of the diamond principle in $[\omega_2]^{\omega}$

In the proof of Thm.1.5 we use a certain diamond principle in $[\omega_2]^{\omega}$. Here we prove that MM implies it. Recall that MM implies $2^{\omega_1} = \omega_2$. (See Foreman-Magidor-Shelah [1].) In fact we prove that $2^{\omega_1} = \omega_2$ implies it:

Lemma 2.6. Assume that $2^{\omega_1} = \omega_2$. Let S be a stationary subset of E_0^2 . Then there are $X \subseteq [\omega_2]^{\omega}$ and a sequence $\langle \mathcal{B}_x \mid x \in X \rangle$ with the following properties:

- (i) $\sup x \notin x$ for each $x \in X$, $\{\sup x \mid x \in X\} = S$, and $\sup X$ is injective. (" $\sup X$ is injective" means that $\sup x \neq \sup y$ for all $x, y \in X$ with $x \neq y$.)
- (ii) \mathcal{B}_x is a countable family of subsets of x for each $x \in X$.
- (iii) For every sufficiently large regular cardinal θ , the set of all $M \in [\mathcal{H}_{\theta}]^{\omega}$ such that
 - $M \cap \omega_2 \in X$,
 - $\mathcal{B}_{M\cap\omega_2} = \{B\cap M \mid B\in\mathcal{P}(\omega_2)\cap M\},\$

is projectively stationary.

Corollary 2.7. Assume MM. Then for every stationary $S \subseteq E_0^2$ there are $X \subseteq [\omega_2]^{\omega}$ and a sequence $\langle \mathcal{B}_x \mid x \in X \rangle$ satisfying the properties (i)-(iii) in Lem.2.6.

To prove Lem.2.6 we use the following fact, due to Shelah:

Fact 2.8 (Shelah). If $2^{\omega_1} = \omega_2$, then $\diamondsuit_{\omega_2}(S)$ holds for every stationary $S \subseteq E_0^2$.

First we prove the following lemma:

Lemma 2.9. Assume that $2^{\omega_1} = \omega_2$. Let S be a stationary subset of E_0^2 . Then there exist $X \subseteq [\omega_2]^{\omega}$ and a sequence $\langle b_x \mid x \in X \rangle$ such that

- (i') $\sup x \notin x$ for each $x \in X$, $\{\sup x \mid x \in X\} = S$, and $\sup X$ is injective,
- (ii') $b_x \subseteq x$ for each $x \in X$
- (iii') for every $B \subseteq \omega_2$ the set $\{x \in X \mid b_x = B \cap x\}$ is projectively stationary.

Proof. We may assume that $S \subseteq E_0^2 \setminus \omega_1$.

By Fact 2.8, $\diamondsuit_{\omega_2}(S)$ holds. Hence there exists a sequence $\langle H_{\alpha}, f_{\alpha}, b'_{\alpha} \mid \alpha \in S \rangle$ such that

- (I) H_{α} is a stationary subset of ω_1 , f_{α} is a function from $\alpha^{<\omega}$ to α , and $b'_{\alpha} \subseteq \alpha$.
- (II) If H is a stationary subset of ω_1 , F is a function from $\omega_2^{<\omega}$ to ω_2 , and $B \subseteq \omega_2$, then there exists $\alpha \in S$ such that $H_{\alpha} = H$, $f_{\alpha} = F \upharpoonright \alpha^{<\omega}$ and $b'_{\alpha} = B \cap \alpha$.

For each $\alpha \in S$, take $x_{\alpha} \in [\alpha]^{\omega}$ such that $\sup x = \alpha$, $x_{\alpha} \cap \omega_1 \in H_{\alpha}$ and x_{α} is closed under f_{α} . We can take such x_{α} because $\alpha \in E_0^2 \setminus \omega_1$ and H_{α} is stationary. Let $X := \{x_{\alpha} \mid \alpha \in S\}$. Moreover let $b_x := b'_{\sup x} \cap x$ for each $x \in X$. (Hence $b_{x_{\alpha}} = b'_{\alpha} \cap x_{\alpha}$ for each $\alpha \in S$.)

We show that these X and $\langle b_x \mid x \in X \rangle$ witness the lemma. Clearly they satisfy (i') and (ii'). We check (iii').

Fix $B \subseteq \omega_2$. It suffices to show that for every stationary $H \subseteq \omega_1$ and every function $F: \omega_2^{<\omega} \to \omega$ there exists $x \in X$ such that $x \cap \omega_1 \in H$, x is closed under f and $b_x = B \cap x$.

Take an arbitrary stationary $H \subseteq \omega_1$ and an arbitrary function $F: \omega_2^{<\omega} \to \omega_2$. Then there exists $\alpha \in S$ with $H_{\alpha} = H$, $f_{\alpha} = F \upharpoonright \alpha^{<\omega}$ and $b'_{\alpha} = B \cap \alpha$. Then $x_{\alpha} \in X$. Moreover by the choice of x_{α} , $x_{\alpha} \cap \omega_1 \in H$, x_{α} is closed under F and $b_{x_{\alpha}} = b'_{\alpha} \cap x_{\alpha} = B \cap x_{\alpha}$. Hence x_{α} is what we seek.

This completes the proof.

Now we prove Lem.2.6:

Proof of Lem.2.6. For each $D \subseteq \text{On} \times \text{On}$ and $\gamma \in \text{On}$, let $D[\gamma]$ denote the set $\{\beta \in \text{On} \mid \langle \gamma, \beta \rangle \in D\}$. By Lem.2.9 there exist $X \subseteq [\omega_2]^{\omega}$ and a sequence $\langle d_x \mid x \in X \rangle$ such that

- (i") $\sup x \notin x$ for each $x \in X$, $\{\sup x \mid x \in X\} = S$, and $\sup X$ is injective.
- (ii") $d_x \subseteq x \times x$,
- (iii") for every $D \subseteq \omega_2 \times \omega_2$ the set $\{x \in X \mid d_x = D \cap (x \times x)\}$ is projectively stationary.

For each $x \in X$ let $\mathcal{B}_x = \{d_x[\gamma] \mid \gamma \in x\}.$

We show that X and $\langle \mathcal{B}_x \mid x \in X \rangle$ witness Lem.2.6. Clearly (i) and (ii) hold. We check (iii).

Let θ be a sufficiently large regular cardinal. Take an arbitrary stationary $H \subseteq \omega_1$ and an arbitrary function $F: \mathcal{H}_{\theta}^{<\omega} \to \mathcal{H}_{\theta}$. It suffices to find $M \in [\mathcal{H}_{\theta}]^{\omega}$ such that $M \cap \omega_1 \in H$, M is closed under F, $M \cap \omega_2 \in X$ and $\mathcal{B}_{M \cap \omega_2} = \{B \cap M \mid B \in \mathcal{P}(\omega_2) \cap M\}$

First take $N \subseteq \mathcal{H}_{\theta}$ such that $|N| = \omega_2 \subseteq N$, N is closed under F and $N \cap \mathcal{P}(\omega_2) \neq \emptyset$. Moreover take an enumeration $\langle B_{\gamma} \mid \gamma \in \omega_2 \rangle$ of $\mathcal{P}(\omega_2) \cap N$. For each $x \in X$ let

$$M_x := \operatorname{cl}_F(x \cup \{B_\gamma \mid \gamma \in x\}),$$

where $\operatorname{cl}_F(a)$ denotes the closure of a under F. Then let C be a set of all $x \in [\omega_2]^{\omega}$ such that $M_x \cap \omega_2 = x$ and $M_x \cap \mathcal{P}(\omega_2) = \{B_\gamma \mid \gamma \in x\}$. Finally let D be a subset of $\omega_2 \times \omega_2$ such that $D[\gamma] = B_\gamma$ for each $\gamma \in \omega_2$.

Note that C is a club in $[\omega_2]^{\omega}$. Hence, by (iii"), there exists $x \in X \cap C$ such that $x \cap \omega_1 \in H$ and $d_x = D \cap (x \times x)$. Then $M_x \in [\mathcal{H}_{\theta}]^{\omega}$, $M_x \cap \omega_1 = x \cap \omega_1 \in H$, and M_x is closed under F. Moreover

$$\mathcal{B}_{M_x \cap \omega_2} = \mathcal{B}_x = \{d_x[\gamma] \mid \gamma \in x\}$$

$$= \{D[\gamma] \cap x \mid \gamma \in x\} = \{B_\gamma \cap x \mid \gamma \in x\}$$

$$= \{B \cap M_x \mid B \in \mathcal{P}(\omega_2) \cap M_x\}.$$

Thus M_x is what we seek.

This completes the proof.

3 Proof of Thm.1.5

Before proving Thm.1.5 we present a poset to which we apply MM:

Definition 3.1. For $S \subseteq E_0^2$ and a $\square(S)$ -sequence $\vec{c} = \langle c_\alpha \mid \alpha \in S \rangle$ let $\mathbb{P}(\vec{c})$ be the following poset:

- The base set of $\mathbb{P}(\vec{c})$ is S.
- $\alpha \leq_{\mathbb{P}(\vec{c})} \beta$ if and only if $\beta \in \text{Lim}(c_{\alpha}) \cup \{\alpha\}$ for each $\alpha, \beta \in S$.

For a filter g on $\mathbb{P}(\vec{c})$ let

$$c_g := \bigcup_{\alpha \in g} c_{\alpha} .$$

The following is easy:

Lemma 3.2. Let S be a subset of E_0^2 and $\vec{c} = \langle c_\alpha \mid \alpha \in S \rangle$ be a $\square(S)$ -sequence.

- (1) If g is a filter on $\mathbb{P}(\vec{c})$, then c_g is a club in $\sup c_g$ of order type $\leq \omega_1$, $\operatorname{Lim}(c_g) \subseteq S$, and $c_\beta = c_g \cap \beta$ for each $\beta \in \operatorname{Lim}(c_g)$.
- (2) Suppose that the following (**) holds:
 - (**) $\mathbb{P}(\vec{c}) \setminus \gamma$ is dense in $\mathbb{P}(\vec{c})$ for every $\gamma < \omega_2$.

Let θ be a sufficiently large regular cardinal and M be an elementary submodel of $(\mathcal{H}_{\theta}, \in, \vec{c})$. Suppose also that g is an $(M, \mathbb{P}(\vec{c}))$ -generic filter. Then $\sup c_g = \sup(M \cap \omega_2)$.

Now we prove Thm.1.5:

Proof of Thm.1.5. Assume MM. Our proof is composed of two steps. First we construct a $\Box(E_0^2)$ -sequence $\vec{c} = \langle c_\alpha \mid \alpha \in E_0^2 \rangle$ so that $\mathbb{P}(\vec{c})$ satisfies (*) in Fact 2.5 and (**) in Lem.3.2. Then, applying Fact 2.2 to $\mathbb{P}(\vec{c})$, we show that \vec{c} can be extended to $\Box(S)$ -sequence for some $S \subseteq \text{Lim}(\omega_2)$ with $S \cap E_1^2$ stationary.

(Step 1) Construction of \vec{c} .

First take a stationary partition $\langle T_{\beta} \mid \beta \in E_0^2 \rangle$ of E_0^2 . For each $\beta \in E_0^2$ we can take $X_{\beta} \subseteq [\omega_2]^{\omega}$ and a sequence $\langle \mathcal{B}_x^{\beta} \mid x \in X_{\beta} \rangle$ with the following properties by Cor.2.7:

- (i) $\sup x \notin X_{\beta}$ for each $x \in X_{\beta}$, $\{\sup x \mid x \in X_{\beta}\} = T_{\beta}$, and $\sup X_{\beta}$ is injective.
- (ii) \mathcal{B}_x^{β} is a countable family of subsets of x for each $x \in X_{\beta}$.

- (iii) For every sufficiently large regular cardinal θ the set of all $M \in [\mathcal{H}_{\theta}]^{\omega}$ such that
 - $M \cap \omega_2 \in X_\beta$,

•
$$\mathcal{B}_{M\cap\omega_2}^{\beta} = \{B\cap M \mid B\in\mathcal{P}(\omega_2)\cap M\},\$$

is projectively stationary.

By induction on $\alpha \in E_0^2$ we construct a $\square(E_0^2)$ -sequence $\vec{c} = \langle c_\alpha \mid \alpha \in E_0^2 \rangle$. First let $c_\omega = \omega$. Suppose that $\alpha \in E_0^2$ and that $\langle c_\beta \mid \beta \in E_0^2 \cap \alpha \rangle$ has been defined to be $\square(E_0^2 \cap \alpha)$ -sequence. Then take c_α as follows:

Let $\beta_{\alpha} \in E_0^2$ be such that $\alpha \in T_{\beta_{\alpha}}$, and let x_{α} be the unique element of $X_{\beta_{\alpha}}$ with $\sup x_{\alpha} = \alpha$. If $\beta_{\alpha} \notin x_{\alpha}$ or there exists $\beta \in E_0^2 \cap x_{\alpha}$ with $\lim(c_{\beta}) \not\subseteq x_{\alpha}$, then let c_{α} be an arbitrary unbounded subset of α of order type ω .

Suppose that $\beta_{\alpha} \in x_{\alpha}$ and that $\operatorname{Lim}(c_{\beta}) \subseteq x_{\alpha}$ for each $\beta \in E_0^2 \cap x_{\alpha}$. Then note that $\langle c_{\beta} \mid \beta \in E_0^2 \cap x_{\alpha} \rangle$ is a $\square(E_0^2 \cap x_{\alpha})$ -sequence. Let $\mathbb{P}_{\alpha} := \mathbb{P}(\langle c_{\beta} \mid \beta \in E_0^2 \cap x_{\alpha} \rangle)$. Note also that $\beta_{\alpha} \in \mathbb{P}_{\alpha} \subseteq x_{\alpha}$.

Recall that $\mathcal{B}_{x_{\alpha}}^{\beta}$ is a countable family of subsets of x_{α} . Hence we can take a filter g_{α} on \mathbb{P}_{α} such that

- $\beta_{\alpha} \in g_{\alpha}$,
- $g_{\alpha} \cap b \neq \emptyset$ for every $b \in \mathcal{B}_{x_{\alpha}}^{\beta}$ which is a maximal antichain in \mathbb{P}_{α} .

If $\sup c_{g_{\alpha}} = \alpha$ then let $c_{\alpha} := c_{g_{\alpha}}$. Otherwise, take an unbounded $c \subseteq \alpha$ such that $o.t.(c) = \omega$ and $\beta_{\alpha} = \min c$, and let $c_{\alpha} := c_{\beta_{\alpha}} \cup c$.

This completes the choice of c_{α} . Using Lem.3.2 (1), it is easy to check that $\langle c_{\beta} \mid \beta \in E_0^2 \cap \alpha + 1 \rangle$ is $\square(E_0^2 \cap \alpha + 1)$ -sequence.

Now we have constructed a $\Box(E_0^2)$ -sequence $\vec{c} = \langle c_\alpha \mid \alpha \in E_0^2 \rangle$. We show that $\mathbb{P}(\vec{c})$ satisfies (*) and (**):

Claim 1. $\mathbb{P}(\vec{c})$ satisfies (**) in Lem. 3.2.

Proof of Claim 1. Take an arbitrary $\beta^* \in E_0^2$ and an arbitrary $\gamma < \omega_2$. We must find $\alpha^* \in E_0^2 \setminus \gamma$ with $\alpha^* \leq_{\mathbf{P}(\vec{c})} \beta^*$.

Let θ be a sufficiently large regular cardinal. Because X_{β^*} is stationary in $[\omega_2]^{\omega}$, we can take $M \prec \langle \mathcal{H}_{\theta}, \in, \vec{c} \rangle$ such that $\beta^*, \gamma \in M$ and $M \cap \omega_2 \in X_{\beta^*}$. Let $\alpha^* := \sup(M \cap \omega_2)$. Clearly $\alpha^* \in E_0^2 \setminus \gamma$.

Note that $\beta_{\alpha^*} = \beta^*$ and $x_{\alpha^*} = M \cap \omega_2$. Hence $\beta_{\alpha^*} \in x_{\alpha^*}$ by the choice of M. Moreover $\text{Lim}(c_{\beta}) \subseteq x_{\alpha^*}$ for every $\beta \in x_{\alpha^*}$ because $M \prec \langle \mathcal{H}_{\theta}, \in, \vec{c} \rangle$ and each c_{β} is a countable set. Then $\beta^* = \beta_{\alpha^*} \in \text{Lim}(c_{\alpha^*})$ by the choice of c_{α^*} . \blacksquare (Claim 1)

Claim 2. $\mathbb{P}(\vec{c})$ satisfies (*) in Fact 2.5.

Proof of Claim 2. Suppose that θ is a sufficiently large regular cardinal and that $\beta^* \in E_0^2 = \mathbb{P}(\vec{c})$. We prove that there are projectively stationary many $M \in [\mathcal{H}_{\theta}]^{\omega}$ for which a strongly $(M, \mathbb{P}(\vec{c}))$ -generic condition below β^* exists.

Let X^* be the set of all $M \in [\mathcal{H}_{\theta}]^{\omega}$ such that

•
$$\beta^*, \vec{c} \in M \prec \langle \mathcal{H}_{\theta}, \in \rangle$$
,

- $M \cap \omega_2 \in X_{\beta^*}$
- $\mathcal{B}_{M\cap\omega_2}^{\beta^*} = \{B\cap M \mid B\in\mathcal{P}(\omega_2)\cap M\}.$

Then X^* is projectively stationary by the choice of X_{β^*} and $\langle \mathcal{B}_x^{\beta^*} \mid x \in X_{\beta^*} \rangle$. It suffices to show that $\sup(M \cap \omega_2)$ is a strongly $(M, \mathbb{P}(\vec{c}))$ -condition below β^* for each $M \in X^*$.

Fix $M \in X^*$ and let $\alpha^* := \sup(M \cap \omega_2)$. Note that $\beta_{\alpha^*} = \beta^*$ and $x_{\alpha^*} = M \cap \omega_2$. Hence $\beta_{\alpha^*} \in x_{\alpha^*}$, and $\lim(c_\beta) \subseteq x_{\alpha^*}$ for each $\beta \in E_0^2 \cap x_{\alpha^*}$.

Here note that $\mathbb{P}_{\alpha^*} = \mathbb{P}(\vec{c}) \cap M$ and that g_{α^*} is an $(M, \mathbb{P}(\vec{c}))$ -generic filter containing β^* by the choice of M and g_{α^*} . Then note also that $\sup c_{g_{\alpha^*}} = \sup(M \cap \omega_2) = \alpha^*$ by Lem.3.2 (2) and Claim 1. Hence $c_{\alpha^*} = c_{g_{\alpha^*}}$. Then α^* extends each element of g_{α^*} , which is an $(M, \mathbb{P}(\vec{c}))$ -generic filter containing β^* . Therefore α^* is a strongly $(M, \mathbb{P}(\vec{c}))$ -generic condition below β^* . \blacksquare (Claim 2)

Now we have constructed a $\Box(E_0^2)$ -sequence $\vec{c} = \langle c_\alpha \mid \alpha \in E_0^2 \rangle$ satisfying (*) and (**).

(Step 2) Extension of \vec{c} .

Let θ be a sufficiently large regular cardinal with $\theta^{\omega} = \theta$, and let Z be the set of all $N \in [\mathcal{H}_{\theta}]^{\omega_1}$ such that

- (i) $N \prec \langle \mathcal{H}_{\theta}, \in, \vec{c} \rangle$,
- (ii) N is internally approachable of length ω_1 ,
- (iii) there exists an $(N, \mathbb{P}(\vec{c}))$ -generic filter.

By Claim 2 and Fact 2.5, $\mathbb{P}(\vec{c})$ is ω_1 -stationary preserving and σ -Baire. Hence Z is stationary in $[\mathcal{H}_{\theta}]^{\omega_1}$ by MM and Fact 2.2.

Note that $\sup(N \cap \omega_2) \in E_1^2$ for each $N \in Z$ because N is internally approachable of length ω_1 . Hence $S' := \{\sup(N \cap \omega_2) \mid N \in Z\}$ is a stationary subset of E_1^2 .

For each $\alpha \in S'$ choose $N_{\alpha} \in Z$ with $\sup(N_{\alpha} \cap \omega_2) \in S'$ and an $(N_{\alpha}, \mathbb{P}(\vec{c}))$ -generic filter g_{α} . Moreover let $c_{\alpha} := c_{g_{\alpha}}$ for each $\alpha \in S'$. Note that $\sup c_{\alpha} = \alpha$ by Claim 1 and Lem.3.2 (2). Then, by Lem.3.2 (1), c_{α} is a club of α of order type ω_1 , $\operatorname{Lim}(c_{\alpha}) \subseteq E_0^2$, and $c_{\beta} = c_{\alpha} \cap \beta$ for each $\beta \in \operatorname{Lim}(c_{\alpha})$.

Now let $S := E_0^2 \cup S'$. Then $\langle c_\alpha \mid \alpha \in S \rangle$ is a $\square(S)$ -sequence. \blacksquare (Step 2)

We have found $S \subseteq \text{Lim}(\omega_2)$ such that $S \cap E_1^2$ is stationary and $\square(S)$ holds. This completes the proof of Thm.1.5.

References

[1] M. Foreman, M. Magidor and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters I, Ann. of Math. (2) 127 (1988), no.1, 1-47.

- [2] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
- [3] S. Shelah, Reflecting stationary sets and successors of singular cardinals, Arch. Math. Logic 31 (1991), no.1, 25-53.
- [4] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, De Gruyter Series in Logic and its Applications; 1, Walter de Gruyter, Berlin, New York, 1999.