A maximal forcing axiom compatible with weak club guessing

Tadatoshi MIYAMOTO

宮元 忠敏

南山大学 数理情報学部

17th September 2008

Abstract

We show there is no maximal forcing axiom compatible with tail club guessing. On the other hand, we may formulate a maximal forcing axiom compatible with a weak club guessing.

Introduction

We formulate a forcing axiom compatible with a tail club guessing in [M]. This note is a continuation to [M]. We show a maximal forcing axiom compatible with tail club guessing does not hold. On the other hand, we may force a maximal forcing axiom compatible with a weak club guessing. Namely, if a ladder system $\langle C_{\delta} \mid \delta \in A \rangle$ is weak club guessing and a supercompact cardinal exists, then there is a model of set theory where

- (1) $\langle C_{\delta} \mid \delta \in A \rangle$ remains weak club guessing. Namely, for any club D of ω_1 , there exists $\delta \in A$ such that $D \cap C_{\delta}$ is infinite.
- (2) Let P be any preorder such that P preserves every stationary subset of ω_1 and that for any $B \subseteq A$ such that the ladder system $\langle C_{\delta} \mid \delta \in B \rangle$ is weak club guessing, P also preserves the ladder system $\langle C_{\delta} \mid \delta \in B \rangle$ to be weak club guessing. Then every system $\langle D_i \mid i < \omega_1 \rangle$ of dense subsets of P has a filter which hits every D_i .

§1. No maximal forcing axioms are compatible with TCG

We set our notation.

- **1.1 Definition** A sequence $\langle C_{\delta} \mid \delta \in A \rangle$ is a *ladder system*, if
- $A \subseteq \{\delta \mid \delta < \omega_1, \delta \text{ is a limit ordinal}\}.$
- For every $\delta \in A$, C_{δ} is a cofinal subset of δ and is of order type ω .

A ladder system $\langle C_{\delta} \mid \delta \in A \rangle$ is tail club guessing, if for any club $D \subseteq \omega_1$, there exists $\delta \in A$ such that $C_{\delta} \setminus D$ is finite. A ladder system $\langle C_{\delta} \mid \delta \in A \rangle$ is weak club guessing, if for any club $D \subseteq \omega_1$, there exists $\delta \in A$ such that $C_{\delta} \cap D$ is infinite. Hence if $\langle C_{\delta} \mid \delta \in A \rangle$ is tail club guessing, then it is weak club guessing.

Fix a ladder system $\langle C_{\delta} \mid \delta \in A \rangle$. We write for small sets and positive sets as follows;

- $(TCG) = \{X \subseteq \omega_1 \mid \langle C_\delta \mid \delta \in A \cap X \rangle \text{ fails to be tail club guessing} \}.$
- $(TCG)^+ = \{X \subseteq \omega_1 \mid \langle C_\delta \mid \delta \in A \cap X \rangle \text{ is tail club guessing} \}.$

Similarly,

- $(WCG) = \{X \subseteq \omega_1 \mid \langle C_\delta \mid \delta \in A \cap X \rangle \text{ fails to be weak club guessing} \}.$
- $(WCG)^+ = \{X \subseteq \omega_1 \mid \langle C_\delta \mid \delta \in A \cap X \rangle \text{ is weak club guessing} \}.$

We know of a forcing axiom which is compatible with tail club guessing.

Theorem. ([M]) Let $\langle C_{\delta} \mid \delta \in A \rangle$ be tail club guessing. Then we may force the following, assuming that a supercompact cardinal exists.

- (1) $\langle C_{\delta} \mid \delta \in A \rangle$ remains tail club guessing.
- (2) Forcing axiom⁺ holds for the class of partially ordered sets P which are semiproper and $\langle C_{\delta} \mid \delta \in A \rangle$ - ω -semiproper,

On the other hand,

- 1.2 Proposition. Let $\langle C_{\delta} \mid \delta \in A \rangle$ be a ladder system. Let $n_* < \omega$. Then there exists a partially ordered set P and a P-name \dot{D} such that
- (1) P is proper and $(TCG)^+$ -preserving.
- (2) \Vdash_P " \dot{D} is a club in ω_1 such that for all $\delta \in A$, $|C_\delta \setminus \dot{D}| \ge n_*$ ".

We make use of this P in two ways. First, we observe TCG-sequences may get killed at limit stages of iterated forcing.

- 1.3 Corollary. Let $\langle C_{\delta} \mid \delta \in A \rangle$ be a ladder system. Then there exists an iterated forcing $\langle P_n \mid n < \omega \rangle$ such that
 - If $\langle C_{\delta} \mid \delta \in A \rangle$ is tail club guessing, then for all $n < \omega$, $||-P_n (\langle C_{\delta} \mid \delta \in A) \rangle$ remains tail club guessing.
 - If P_{ω} is any limit of the P_n 's, then $\|-P_{\omega}\| \langle C_{\delta} | \delta \in A \rangle$ must fail to be tail club guessing".

Second, we put above in terms of forcing axiom. Suppose $\langle C_{\delta} \mid \delta \in A \rangle$ is tail club guessing. Then no maximal forcing axioms hold for the class of partially ordered sets P which preserve all stationary subsets of ω_1 and all elements of $(TCG)^+$ (i.e. for any $X \subseteq \omega_1$, if $\langle C_{\delta} \mid \delta \in A \cap X \rangle$ is tail club guessing, then it remains so in the generic extensions of P).

1.4 Corollary. Let $\langle C_{\delta} \mid \delta \in A \rangle$ be tail club guessing. Let forcing axiom hold for the class of partially ordered sets P such that P are proper and that for any $B \subseteq A$ such that $\langle C_{\delta} \mid \delta \in B \rangle$ is tail club guessing, then $\Vdash_{P} ``\langle C_{\delta} \mid \delta \in B \rangle$ remains to be tail club guessing". Then we have a contradiction.

 \Box

Proof of proposition 1.2. Let $p \in P$, if $p = (\alpha^p, D^p)$ such that

- (1) $\alpha^p < \omega_1$.
- (2) $D^p \subseteq \alpha^p + 1$, $\alpha^p \in D^p$ and D^p is closed.
- (3) For all $\delta \in A$ with $\delta \leq \alpha^p$, $|C_\delta \setminus D^p| \geq n_*$.

For $p, q \in P$, let $q \leq p$, if

- (4) $\alpha^p \leq \alpha^q$.
- (5) $D^p = D^q \cap (\alpha^p + 1)$.

Claim. (Dense) For any $p \in P$ and any η with $\alpha^p < \eta < \omega_1$, there exists $q \leq p$ such that $\alpha^q = \eta$. Proof. Let $\alpha^q = \eta$ and $D^q = D^p \cup \{\eta\}$. Then this $q = (\alpha^q, D^q)$ works.

Claim. P is proper and σ -Baire.

Proof. Let θ be a sufficiently large regular cardinal. Let N be a countable elementary substructure of H_{θ} with $P \in N$. Let $p \in N \cap P$. We want $q \leq p$ such that q is (P, N)-generic. Let $\delta = N \cap \omega_1$. We construct a (P, N)-generic sequence $\langle p_n \mid n < \omega \rangle$ such that $p_0 \leq p$ and that $|(\alpha^{p_0} \cap C_{\delta}) \setminus D^{p_0}| \geq n_*$. Let $\alpha^q = \delta$ and $D^q = \bigcup \{D^{p_n} \mid n < \omega\} \cup \{\delta\}$. Then this $q = (\alpha^q, D^q)$ works.

ш

Claim. If $X \subseteq \omega_1$ such that $\langle C_\delta \mid \delta \in A \cap X \rangle$ is tail club guessing, then $\Vdash_P ``\langle C_\delta \mid \delta \in A \cap X \rangle$ remains to be tail club guessing".

Proof. Suppose $p \Vdash_P$ " \dot{C} is a club in ω_1 ". Want $q \leq p$ and $\delta \in A \cap X$ such that $q \Vdash_P$ " $C_\delta \setminus \dot{C}$ is finite". To this end, take an \in -chain $\langle N_i \mid i < \omega_1 \rangle$ in H_θ , where θ is sufficiently large. Since $\langle C_\delta \mid \delta \in A \cap X \rangle$ is tail club guessing, there exists $\delta \in A \cap X$ such that $C_\delta \setminus \{N_i \cap \omega_1 \mid i < \omega_1\}$ is finite. By renaming, we have an \in -chain $\langle N_n \mid n < \omega \rangle$ in H_θ such that $\{N_n \cap \omega_1 \mid n < \omega\}$ is an end-segment of C_δ . We may assure that $P, p, \dot{C} \in N_0$ and $|C_\delta \cap (\alpha^p, N_0 \cap \omega_1)| \geq n_*$. We construct a descending sequence $\langle q_n \mid n < \omega \rangle$ of conditions such that

- $q_0 \leq p$.
- $|(\alpha^{q_0} \cap C_{\delta}) \setminus D^{q_0}| \geq n_*$.
- $q_n \in N_{n+1} \cap P$ is (P, N_n) -generic.

Let $\alpha^q = \delta$ and $D^q = \bigcup \{D^{q_n} \mid n < \omega\} \cup \{\delta\}$. Then $q \Vdash_P N_n \cap \omega_1 \in C$ for all $n < \omega$. Hence this q works.

Claim. Let G be P-generic over V. Let $\dot{D} = \bigcup \{D^p \mid p \in G\}$. Then \dot{D} is a club in ω_1 and for all $\delta \in A$, $|C_{\delta} \setminus \dot{D}| \geq n_*$.

Proof of corollary 1.3. Iteratively force clubs D_n in ω_1 so that for all $\delta \in A$ and all $n < \omega$, $|C_{\delta} \setminus D_n| \ge n$. Then let $D = \bigcap \{D_n \mid n < \omega\}$. If ω_1 gets preserved, then D is a club in ω_1 such that for all $\delta \in A$, $C_{\delta} \setminus D$ is infinite. Hence $\langle C_{\delta} \mid \delta \in A \rangle$ fails to be tail club guessing. If ω_1 gets collapsed, then this entails the same conclusion.

Proof of corollary 1.4 is the same. Argue in V and get a sequence $\langle D_n \mid n < \omega \rangle$ of clubs in ω_1 .

§2. A maximal forcing axiom is compatible with WCG

We have seen that there is no maximal forcing axiom compatible with tail club guessing (TCG). But a weak club guessing (WCG) admits maximal one.

2.1 Definition. Let $\langle C_{\delta} \mid \delta \in A \rangle$ be a ladder system. Let \mathcal{F} denote the set of all cofinal subsequences of C_{δ} (viewed as sequences of length ω) for all $\delta \in A$. Let $Seq^{\omega}(\omega_1)$ denote the set of all sequences $\langle a_n \mid n < \omega \rangle$ such that each a_n is a countable subset of ω_1 . Hence we have $\mathcal{F} \subseteq Seq^{\omega}(\omega_1)$. Let P be a preorder, we say P is \mathcal{F} -limsup-semiproper, if for all sufficiently large regular cardinals θ and all \in -chains $\langle N_n \mid n < \omega \rangle$ in H_{θ} with $P, \langle C_{\delta} \mid \delta \in A \rangle \in N_0$, if $\langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$, then for any $p \in N_0 \cap P$, there exists $q \leq p$ such that for infinitely many $n < \omega$, q is (P, N_n) -semi-generic.

Similarly, we say P is \mathcal{F} -liminf-semiproper, if q is (P, N_n) -semi-generic for all but finitely many $n < \omega$. Lastly, we say P is \mathcal{F} -generic-limsup-semiproper, if $q \Vdash_p {}^n N_n[G] \cap \omega_1^V = N_n \cap \omega_1^V$ for infinitely many $n < \omega^n$.

Hence we are looking at the set $\{n < \omega \mid N[G] \cap \omega_1^V = N \cap \omega_1^V\}$ in V[G] which might be infinite and may or may not be in V.

For the notion of ω -stationary sets $S \subseteq Seq^{\omega}(K) = \{\langle a_n \mid n < \omega \rangle \mid a_n \in [K]^{\omega} \text{ for all } n < \omega \}$, may see [M]. They are analogously formulated as the stationary sets in $[K]^{\omega}$.

2.2 Proposition. Let P be a preorder.

- If P is ω_1 -closed, then P is ω -semiproper.
- If P is ω -semiproper, then P is \mathcal{F} -liminf-semiproper.
- If P is \mathcal{F} -liminf-semiproper, then P is \mathcal{F} -limsup-semiproper.
- If P is \mathcal{F} -limsup-semiproper, then P is \mathcal{F} -generic-limsup-semiproper.
- If \mathcal{F} is ω -stationary and P is \mathcal{F} -generic-limsup-semiproper, then P preserves ω_1 .

- **2.3 Definition.** Let $\langle C_{\delta} \mid \delta \in A \rangle$ be a ladder system. We formulate $(proper, \langle C_{\delta} \mid \delta \in A)$ -limsup-semiproper, full) -Reflection Principle (abusively, \mathcal{F} -RP) as follows; Given any (K, S, θ, a) such that
 - K is a set with $K \supseteq \omega_1$.
 - $S \subseteq Seq^{\omega}(K)$.
 - θ is a regular cardinal with $K \in H_{|\operatorname{TC}(K)|^+} \in H_{(2^{|\operatorname{TC}(K)|})^+} \in H_{\theta}$.
 - $a \in H_{\theta}$.

There exists $(D, \langle N_i \mid i < \omega_1 \rangle)$ such that

- D is a club in ω_1 .
- $\langle N_i \mid i < \omega_1 \rangle$ is an \in -chain in H_θ with $a \in N_0$.
- For any $\delta \in Y^*(D) = \{\delta \in A \mid |C_\delta \cap D| = \omega\}$, let $\langle C_\delta(k_\delta(m)) \mid m < \omega \rangle$ enumerate $\{C_\delta(k) \mid C_\delta(k) \in D\}$. Then there exists $n_\delta < \omega$ such that we have either (1) or (2).
- (1) $\langle N_{C_{\delta}(k_{\delta}(m))} \cap K \mid n_{\delta} \leq m < \omega \rangle \in S$.
- (2) For any strictly increasing sequence $\langle m_l \mid l < \omega \rangle$ of natural numbers with $n_{\delta} \leq m_0$ and for any \in -chain $\langle M_l \mid l < \omega \rangle$ with $\langle M_l \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{C_{\delta}(k_{\delta}(m_l))} \mid l < \omega \rangle$, we have $\langle M_l \cap K \mid l < \omega \rangle \notin S$.

We might call $i_{\delta} = C_{\delta}(k_{\delta}(n_{\delta}))$ a critical point of C_{δ} with respect to D for each $\delta \in Y^{*}(D)$. Hence we are looking at $\langle N_{i} \mid i_{\delta} \leq i \in C_{\delta} \cap D \rangle$.

- **2.4 Theorem.** Let $\mathcal{F}^V \subseteq Seq^{\omega}(\omega_1)$ be defined by $\langle C_{\delta} \mid \delta \in A \rangle$. Then $\mathcal{F}^{V[G_{\alpha}]}$ -generic-limsup-semiproper combined with semiproper iterates under the simple iteration. (The $\mathcal{F}^{V[G_{\alpha}]}$ are uniformly defined from the ladder system $\langle C_{\delta} \mid \delta \in A \rangle$ in each intermediate universe $V[G_{\alpha}]$. The exact value of $\mathcal{F}^{V[G_{\alpha}]}$ increasingly changes as α gets bigger.)
- **2.5 Corollary.** Let $\langle C_{\delta} \mid \delta \in A \rangle$ be weak club guessing so that \mathcal{F} defined from $\langle C_{\delta} \mid \delta \in A \rangle$ is ω -stationary. Let us recall $\mathcal{F} = \{\langle C_{\delta}(k(m)) \mid m < \omega \rangle \mid \delta \in A, \langle k(m) \mid m < \omega \rangle \text{ is a sequence of strictly increasing natural numbers}\}. We may force the following, if there exists a supercompact cardinal.$
- (1) If $\langle C_{\delta} \mid \delta \in A \rangle$ is weak club guessing in the ground model, then it remains to be so in the extensions.
- (2) Forcing axiom⁺ holds for the class of partially ordered sets P such that P is semiproper and that P is \mathcal{F} -generic-limsup-semiproper.
- **2.6 Lemma.** Let $\langle C_{\delta} \mid \delta \in A \rangle$ be a ladder system. Let $\mathcal{F} \subseteq Seq^{\omega}(\omega_1)$ be defined from the system. Let \mathcal{F} -Reflection Principle hold. Let us consider $(WCG)^+$ with repect to the system. Let P be a preorder. Then the following are equivalent on P.
- (1) P is $(WCG)^+$ -preserving.
- (2) P is \mathcal{F} -generic-limsup-semiproper.

The \mathcal{F} -RP gets forced by a little better notion of forcing than semiproper + \mathcal{F} -generic-limsup-semiproper partially ordered set.

- **2.7 Lemma.** Let $\mathcal{F} \subseteq Seq^{\omega}(\omega_1)$ be as above. Let forcing axiom hold for the class of preordered sets P such that P is proper and that P is \mathcal{F} -limsup-semiproper. Then \mathcal{F} -Reflection Principle holds.
 - 2.8 Corollary. The following is consistent, if there exists a supercompact cardinal.
- (1) $\langle C_{\delta} \mid \delta \in A \rangle$ is weak club guessing.
- (2) The forcing axiom⁺ holds for the class of preordered sets P such that P preserves every stationary subset of ω_1 and that P preserves every member of $(WCG)^+$ with respect to $\langle C_{\delta} \mid \delta \in A \rangle$.

Proof of lemma 2.6. (2) implies (1): No use of \mathcal{F} -RP made in this direction. Let $X\subseteq\omega_1$ such that $\langle C_\delta\mid\delta\in X\cap A\rangle$ is weak club guessing. Suppose $p\models_P``\dot{C}\subseteq\omega_1$ is a club". Want $q\le p$ and $\delta\in X\cap A$ such that $q\models_P``\mid C_\delta\cap\dot{C}\mid=\omega$ ". To this end, let θ be a sufficiently large regular cardinal. Since $\langle C_\delta\mid\delta\in X\cap A\rangle$ is weak club guessing, we may take an \in -chain $\langle N_n\mid n<\omega\rangle$ in H_θ such that $\{N_n\cap\omega_1\mid n<\omega\}$ is a cofinal subset of C_δ , where $\delta=N_\omega\cap\omega_1$ and $N_\omega=\cup\{N_n\mid n<\omega\}$. We may assume $P,\langle C_\delta\mid\delta\in A\rangle, p,\dot{C}\in N_0$. Since P is \mathcal{F} -generic-limsup-semiproper and $\langle N_n\cap\omega_1\mid n<\omega\rangle\in\mathcal{F}$, we have q such that $q\le p$ and $q\models_P``N_n[G]\cap\omega_1=N_n\cap\omega_1$ for infinitely many $n<\omega$ ". Hence $q\models_P``N_n[G]\cap\omega_1=N_n\cap\omega_1\in\dot{C}\cap C_\delta$ for infinitely many $n<\omega$ " and so $q\models_P``ln_1^{\omega}\subset C_\delta\cap\dot{C}=\omega$ ".

(1) implies (2): Suppose P is $(WCG)^+$ -preserving. Want to show P is \mathcal{F} -generic-limsup-semiproper. It suffices to show the following. There exists a club $C \subseteq [H_{\theta_0}]^\omega$, where $\theta_0 = |\operatorname{TC}(P)|^+ (\geq \omega_2)$, such that for any \in -chain $\langle N_n \mid n < \omega \rangle$ in H_{θ_0} through C (i.e. for all $n < \omega$, $N_n \in C$), if $\langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$, then for any $p \in N_0 \cap P$, there exists q such that $q \leq p$ and $q \models_P N_n[G] \cap \omega_1 = N_n \cap \omega_1$ for infinitely many $n < \omega$. We show this by contradiction. Suppose not. Let $S = \{\langle N_n \mid n < \omega \rangle \mid \langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$ and there is $p \in N_0 \cap P$ such that for all q with $q \leq p$, $\neg (q \models_P N_n[G] \cap \omega_1 = N_n \cap \omega_1$ for infinitely many $n < \omega$). Then this S is ω -stationary. Namely, for any club C in $[H_{\theta_0}]^\omega$, there exists $\langle N_n \mid n < \omega \rangle \in S$ through C. By Fodor's Lemma for ω -stationary sets (may see [M]), we may assume that there exists $p_0 \in P$ such that $S \subseteq \{\langle N_n \mid n < \omega \rangle \mid \langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$, $p_0 \in N_0 \cap P$ and for all q with $q \leq p_0$, $\neg (q \models_P N_n[G] \cap \omega_1 = N_n \cap \omega_1$ for infinitely many $n < \omega$).

Let S^* denote the set of the end-segments of the elements of S. Apply $\mathcal{F}\text{-RP}$ to $(H_{\theta_0}, S^*, \lambda, (P, p_0))$, where λ is sufficiently large. Get a club D in ω_1 and an \in -chain $\langle M_i \mid i < \omega_1 \rangle$ in H_{λ} as in $\mathcal{F}\text{-RF}$.

Claim. $B = \{ \delta \in Y^*(D) \mid \delta \models \text{``(1) in } \mathcal{F}\text{-}RP\text{'''} \} \in (WCG)^+$

Proof. Let E be a club in ω_1 . Want $\delta \in B$ with $|C_{\delta} \cap E| = \omega$. Since S is ω -stationary in $Seq^{\omega}(H_{\theta_0})$, we may take an \in -chain $\langle N_n^* \mid n < \omega \rangle$ in H_{λ} such that $D, \langle M_i \mid i < \omega_1 \rangle, E \in N_0^*$ and that $\langle N_n^* \cap H_{\theta_0} \mid n < \omega \rangle \in S$. Let $N_{\omega}^* = \bigcup \{N_n^* \mid n < \omega\}$ and $\delta = N_{\omega}^* \cap \omega_1$. Then $\langle N_n^* \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$ and is through $D \cap E$. In particular, $\delta \in Y^*(D)$ and $|C_{\delta} \cap E| = \omega$. Let $\{N_n^* \cap \omega_1 \mid n < \omega\} \subseteq C_{\delta} \cap D = \{C_{\delta}(k_{\delta}(m)) \mid m < \omega\}$. By considering an end-segment, we may assume $\langle N_n^* \cap H_{\theta_0} \mid n < \omega \rangle \in S^*$ with $C_{\delta}(k_{\delta}(n_{\delta})) < N_0^* \cap \omega_1$.

Want (1) holds at this δ so that $\delta \in B$. Since $N_n^* \supseteq_{\omega_1} M_{N_n^* \cap \omega_1}$ for all $n < \omega$ and $\langle N_n^* \cap H_{\theta_0} \mid n < \omega \rangle \in S^*$, (2) in \mathcal{F} -RP fails. Hence (1) must hold in \mathcal{F} -RP.

Since $\langle M_{C_{\delta}(k_{\delta}(m))} \cap H_{\theta_0} \mid n_{\delta} \leq m < \omega \rangle \in S^*$, there exists $\langle N_n \mid n < \omega \rangle \in S$ such that $\langle M_{C_{\delta}(k_{\delta}(m))} \cap H_{\theta_0} \mid n_{\delta} \leq m < \omega \rangle$ is an end-segment of $\langle N_n \mid n < \omega \rangle$. Since $\langle N_n \mid n < \omega \rangle \in S$, we have $\neg (q \Vdash_P "N_n[G] \cap \omega_1 = N_n \cap \omega_1$ for infinitely many $n < \omega$ "). However, $q \Vdash_P$ "if $C_{\delta}(k_{\delta}(m)) \in C_{\delta} \cap \dot{D}$ and $N_n = M_{C_{\delta}(k_{\delta}(m))} \cap H_{\theta_0}$, then $N_n[G] \cap \omega_1 = (M_{C_{\delta}(k_{\delta}(m))} \cap H_{\theta_0})[G] \cap \omega_1 = M_{C_{\delta}(k_{\delta}(m))}[G] \cap \omega_1 = M_{C_{\delta}(k_{\delta}(m))} \cap \omega_1 = N_n \cap \omega_1 = C_{\delta}(k_{\delta}(m))$ ". Hence $q \Vdash_P "N_n[G] \cap \omega_1 = N_n \cap \omega_1$ for infinitely many $n < \omega$ ". This is a contradiction.

Proof of lemma 2.7. Let (K, S, θ, a) be as in the hypothesis of \mathcal{F} -RF. We force D, $\langle N_i \mid i < \omega_1 \rangle$ and $\langle \dot{n}_{\delta} \mid \delta \in A \rangle$ by initial segments. Let $p \in P$, if $p = (\alpha^p, D^p, \langle N_i^p \mid i \leq \alpha^p \rangle, \langle n_{\delta}^p \mid \delta \in A \cap (\alpha^p + 1) \rangle)$ satisfies the following:

- (1) $\alpha^p < \omega_1$.
- (2) $D^p \subseteq \alpha^p + 1$, $\alpha^p \in D^p$ and D^p is closed.
- (3) $\langle N_i^p \mid i \leq \alpha^p \rangle$ is an \in -chain in H_θ with $a \in N_0^p$.
- (4) For each $\delta \in A \cap (\alpha^p + 1)$, $n_{\delta}^p < \omega$. If $|C_{\delta} \cap D^p| = \omega$, then let $\langle C_{\delta}(k) \mid k < \omega \rangle$ enumerate C_{δ} and let $\langle C_{\delta}(k_{\delta}^p(m)) \mid m < \omega \rangle$ enumerate $C_{\delta} \cap D^p$. And we demand either (i) or (ii);

- (i) $\langle N^p_{C_\delta(k^p_\delta(m))} \cap K \mid n^p_\delta \le m < \omega \rangle \in S$.
- (ii) For any strictly increasing sequence $\langle m_l \mid l < \omega \rangle$ of natural numbers with $n_{\delta}^p \leq m_0$ and any \in -chain $\langle M_l \mid l < \omega \rangle$ in H_{θ} such that $\langle M_l \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{C_{\delta}(k_l^p(m_l))}^p \mid l < \omega \rangle$, we have $\langle M_l \cap K \mid l < \omega \rangle \not\in S$.

For $p, q \in P$, we set $q \leq p$, if

- (5) $\alpha^p < \alpha^q$.
- (6) $D^p = D^q \cap (\alpha^p + 1)$.
- (7) For all $i \leq \alpha^p$, $N_i^p = N_i^q$.
- (8) For all $\delta \in A \cap (\alpha^p + 1)$, $n_{\delta}^p = n_{\delta}^q$.

Claim. (Dense, Extension by Escape) For any (p, η, x) such that $p \in P$, $\alpha^p < \eta < \omega_1$ and $x \in H_\theta$, there exists $q \in P$ such that $q \leq p$, $\alpha^q = \eta$ and $x \in N_n^q$.

Proof. Let $\alpha^q = \eta$, $D^q = D^p \cup \{\eta\}$ and $\langle N_i^q \mid i \leq \eta \rangle$ be any \in -chain which end-extends \in -chain $\langle N_i^p \mid i \leq \alpha^p \rangle$ and $x \in N_\eta^q$. Let $\langle n_\delta^q \mid \delta \in A \cap (\eta+1) \rangle$ be any sequence of natural numbers which end-extends $\langle n_\delta \mid \delta \in A \cap (\alpha^p+1) \rangle$. Since for any $\delta \in A \cap (\eta+1)$, $|C_\delta \cap D^q| = \omega$ iff $(\delta \leq \alpha^p \text{ and } |C_\delta \cap D^p| = \omega)$, this q works.

Claim. (Targeted-Extension) Let λ be a sufficiently large regular cardinal and M be a countable elementary substructure of H_{λ} with $P \in M$. Let $\delta_M = M \cap \omega_1$. Then for any (p, ξ, D) such that $p \in M \cap P$, $\xi < \delta_M$ and $D \in M$ is a dense subset of P, there exists $r \in M \cap D$ such that $r \leq p$, $\xi < \alpha^r$ and $C_{\delta_M} \cap D^r = C_{\delta_M} \cap D^p$.

Proof. We consider a family of maps indexed by $p \in P$. Let $p \in P$. Let q be such that $\alpha^p < \eta < \omega_1$. Let $r = f_p(\eta)$, where $r \in D, r \leq p, \eta < \alpha^r$ and $D^r \cap (\alpha^p, \eta] = \{\eta\}$. We may assume $\langle f_p \mid p \in P \rangle \in M$. Since $p \in M$. Let $C(f_p) = \{\beta < \omega_1 \mid \text{ for all } \eta \text{ with } \alpha^p < \eta < \beta, \alpha^{f_p(\eta)} < \beta\}$. Then $C(f_p)$ is a club in ω_1 and $C(f_p) \in M$. Take $\beta \in C(f_p) \cap M$ such that $\alpha^p, \xi < \beta$. Let η be such that $\alpha^p, \xi, \max(C_{\delta_M} \cap \beta) < \eta < \beta$. Then $f_p(\eta) \in M$ and so there exists $r \in M \cap D$ such that $r \leq p, \xi < \alpha^r$ and $C_{\delta_M} \cap D^r = C_{\delta_M} \cap D^p$.

Claim. (Proper) P is proper and σ -Baire.

Proof. Let λ be a sufficiently large regular cardinal and M be a countable elementary substructure of H_{λ} with $P \in M$. Let $p \in M \cap P$. Let $\delta_{M} = M \cap \omega_{1}$. Then by repeating above claim, we may construct a (P, M)-generic sequence $\langle p_{n} \mid n < \omega \rangle$ such that $C_{\delta_{M}} \cap D^{p_{n}} = C_{\delta_{M}} \cap D^{p}$ for all $n < \omega$. Let $\alpha^{q} = \delta_{M}$, $D^{q} = \bigcup \{D^{p_{n}} \mid n < \omega\} \cup \{\delta_{M}\}$, $\langle N_{i}^{q} \mid i \leq \delta_{M} \rangle = \bigcup \{\langle N_{i}^{p_{n}} \mid i \leq \alpha^{p_{n}} \rangle \mid n < \omega\} \cup \{\langle \delta_{M}, M \cap H_{\theta} \rangle\}$ and $\langle n_{\delta}^{q} \mid \delta \in A \cap (\delta_{M} + 1) \rangle$ be any end-extension of all of $\langle n_{\delta}^{p_{n}} \mid \delta \in A \cap (\alpha^{p_{n}} + 1) \rangle$. Notice that $C_{\delta_{M}} \cap D^{q} = C_{\delta_{M}} \cap D^{p}$ which is finite. Hence this q is a lower bound of the p_{n} 's.

Claim. P is \mathcal{F} -limsup-semiproper.

Proof. Let λ be a sufficiently large regular cardinal. Let $\langle N_n \mid n < \omega \rangle$ be an \in -chain in H_{λ} such that $K, \theta, P, \langle C_{\delta} \mid \delta \in A \rangle \in N_0$ and $\langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$. Let $N_{\omega} = \bigcup \{N_n \mid n < \omega\}$ and let $\delta^* = N_{\omega} \cap \omega_1$. Let $\langle C_{\delta^*}(k) \mid k < \omega \rangle$ enumerate C_{δ^*} and $\langle C_{\delta^*}(k_{\delta^*}(n)) \mid n < \omega \rangle$ enumerate $\{N_n \cap \omega_1 \mid n < \omega\}$.

Let $p \in N_0 \cap P$. We want q such that $q \leq p$ and q is (P, N_n) -semi-generic for infinitely many $n < \omega$. To this end, we argue in two cases.

Case 1. There exists a sequence $\langle n_l \mid l < \omega \rangle$ of strictly increasing natural numbers and an \in -chain $\langle M_l \mid l < \omega \rangle$ in H_{θ} such that $\langle M_l \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{n_l} \cap H_{\theta} \mid l < \omega \rangle$ and $\langle M_l \cap K \mid l < \omega \rangle \in S$:

Apply the Sequencial 3 H Lemma (see [M]) to get an \in -chain $\langle M_l^* \mid l < \omega \rangle$ in H_{λ} such that

• $\langle M_l^* \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{n_l} \mid l < \omega \rangle$.

• For all $l < \omega$, $M_l^* \cap H_{|\mathrm{TC}(K)|^+} = M_l \cap H_{|\mathrm{TC}(K)|^+}$. And so

• $\langle M_l^* \cap K \mid l < \omega \rangle = \langle M_l \cap K \mid l < \omega \rangle \in S$.

Notice $p \in N_0 \subseteq N_{n_0} \subseteq M_0^*$. It suffices to get q such that $q \leq p$ and for all $l < \omega$, q is (P, M_l^*) -generic and so (P, N_{n_l}) -semi-generic. Construct a descending sequence $(q_l \mid l < \omega)$ of conditions such that

- $p \ge q_l \in M_{l+1}^*$ and q_l is (P, M_l^*) -generic.
- $D^{q_l} \cap C_{\delta^*} = (D^p \cap C_{\delta^*}) \cup \{M_0^* \cap \omega_1, \cdots, M_l^* \cap \omega_1\}.$
- $\alpha^{q_l} = M_l^* \cap \omega_1$ and $N_{\alpha^{q_l}}^{q_l} = M_l^* \cap H_{\theta}$.

Let q be defined by

- $\alpha^q = \delta^* = M_\omega^* \cap \omega_1$, where $M_\omega^* = \bigcup \{M_l^* \mid l < \omega\}$.
- $D^q = \bigcup \{D^{q_l} \mid l < \omega\} \cup \{\delta^*\}.$
- $\langle N_i^q \mid i \leq \alpha^q \rangle = \bigcup \{ \langle N_i^{q_l} \mid i \leq \alpha^{q_l} \rangle \mid l < \omega \} \cup \{ (\delta^*, M_\omega^* \cap H_\theta) \}.$
- $\langle n_{\delta}^q \mid \delta \in A \cap (\alpha^q + 1) \rangle = \bigcup \{ \langle n_{\delta}^{q_l} \mid \delta \in A \cap (\alpha^{q_l} + 1) \rangle \mid l < \omega \} \cup \{ (\delta^*, n_{\delta^*}^q) \},$ where $n_{\delta^*}^q < \omega$ gets specified as follows;

Let $C_{\delta^*} \cap D^q = \{C_{\delta^*}(k_{\delta^*}^q(m)) \mid m < \omega\}$. Since $D^q \cap C_{\delta^*} = (D^p \cap C_{\delta^*}) \cup \{M_l^* \cap \omega_1 \mid l < \omega\}$, there exists $n_{\delta^*}^q < \omega$ such that

$$\{M_l^* \cap \omega_1 \mid l < \omega\} = \{C_{\delta^*}(k_{\delta^*}^q(m)) \mid n_{\delta^*}^q \le m < \omega\}.$$

And so

$$\langle N_{C_{\delta^*}(k^q_{**}(m)))}^q \cap K \mid n_{\delta^*}^q \leq m < \omega \rangle = \langle (M_l^* \cap H_\theta) \cap K \mid l < \omega \rangle = \langle M_l \cap K \mid l < \omega \rangle \in S.$$

Hence this q works.

Case 2. For all sequences $\langle n_l \mid l < \omega \rangle$ of strictly increasing natural numbers and all \in -chains $\langle M_l \mid l < \omega \rangle$ in H_{θ} with $\langle M_l \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{n_l} \cap H_{\theta} \mid l < \omega \rangle$, we have $\langle M_l \cap K \mid l < \omega \rangle \notin S$:

It suffices to get $q \in P$ such that $q \leq p$ and for all $n < \omega$, q is (P, N_n) -generic. To this end, we may construct a descending sequence $\langle q_n \mid n < \omega \rangle$ of conditions such that

- $p \ge q_n \in N_{n+1}$ and q_n is (P, N_n) -generic.
- $D^{q_n} \cap C_{\delta^*} = (D^p \cap C_{\delta^*}) \cup \{N_0 \cap \omega_1, \dots, N_n \cap \omega_1\}.$
- $\alpha^{q_n} = N_n \cap \omega_1$ and $N_{\alpha^{q_n}}^{q_n} = N_n \cap H_{\theta}$.

Let q be defined by

- $\alpha^q = \delta^* = N_\omega \cap \omega_1$.
- $\bullet \ D^q = \bigcup \{D^{q_n} \mid n < \omega\} \cup \{\delta^*\}.$
- $\langle N_i^q \mid i \leq \alpha^q \rangle = \bigcup \{ \langle N_i^{q_n} \mid i \leq \alpha^{q_n} \rangle \mid n < \omega \} \cup \{ (\delta^*, N_\omega \cap H_\theta) \}.$
- $\langle n_{\delta}^q \mid \delta \in A \cap (\alpha^q + 1) \rangle = \bigcup \{ \langle n_{\delta}^{q_n} \mid \delta \in A \cap (\alpha^{q_n} + 1) \rangle \mid n < \omega \} \cup \{ (\delta^*, n_{\delta^*}^q) \},$ where $n_{\delta^*}^q < \omega$ gets specified as follows;

Let $C_{\delta^*} \cap D^q = \{C_{\delta^*}(k_{\delta^*}^q(m)) \mid m < \omega\}$. Since $D^q \cap C_{\delta^*} = (D^p \cap C_{\delta^*}) \cup \{N_n \cap \omega_1 \mid n < \omega\}$, there exists $n_{\delta^*}^q < \omega$ such that

$$\{N_n \cap \omega_1 \mid n < \omega\} = \{C_{\delta^*}(k_{\delta^*}^q(m)) \mid n_{\delta^*}^q \le m < \omega\}.$$

And so

$$\langle N^q_{C_{\delta^*}(k^q_{\bullet^*}(m))} \mid n^q_{\delta^*} \leq m < \omega \rangle = \langle N^q_{N_n \cap \omega_1} \mid n < \omega \rangle = \langle N_n \cap H_\theta \mid n < \omega \rangle.$$

For all sequences $\langle m_l \mid l < \omega \rangle$ of strictly increasing natural numbers with $n_{\delta^*}^q \leq m_0$ and all \in -chains $\langle M_l \mid l < \omega \rangle$ in H_{θ} with $\langle M_l \mid l < \omega \rangle \supseteq_{\omega_1} \langle N_{C_{\delta^*}(m_l)}^q \mid l < \omega \rangle$ which is a subsequence of $\langle N_n \cap H_{\theta} \mid n < \omega \rangle$, we have $\langle M_l \cap K \mid l < \omega \rangle \notin S$.

Hence this q works.

Now apply forcing axiom to this P. We have a club D in ω_1 and an \in -chain $\langle N_i \mid i < \omega_1 \rangle$ which works for (K, S, θ, a) in \mathcal{F} -RP.

§3. Iteration theorem

We show $\mathcal{F}^{V[G_{\alpha}]}$ -generic-limsup-semiproper combined with semiproper iterates under the simple iterations. For an account on the simple iterations, see [M].

- **3.1 Theorem.** Let $I = (\langle P_{\alpha} \mid \alpha \leq \nu \rangle, \langle \dot{Q}_{\alpha} \mid \alpha < \nu \rangle)$ be a simple iteration such that
- For all $\alpha < \nu$, $\Vdash_{P_{\alpha}}$ " \dot{Q}_{α} is semiproper".
- For all $\alpha < \nu$, $\Vdash_{P_{\alpha}} "\dot{Q}_{\alpha}$ is $\mathcal{F}^{V[G_{\alpha}]}$ -generic-limsup-semiproper",

where $\mathcal{F}^{V[G_n]}$ is formed in $V[G_\alpha]$ as the set of cofinal subsequences of the $\langle C_\delta(n) \mid n < \omega \rangle$'s for all $\delta \in A$. Hence $\mathcal{F}^{V[G_{\alpha}]}$ may contain new cofinal subsequences than the original $\mathcal{F} = \mathcal{F}^{V}$.

Then for all $\alpha \leq \nu$, we have $\Vdash_{P_{\alpha}}$ "the tails $P_{\alpha\nu}$ are semiproper and $\mathcal{F}^{V[G_{\alpha}]}$ -generic-limsup-semiproper". In particular, P_{ν} is semiproper and \mathcal{F}^{V} -generic-limsup-semiproper.

3.2 Iteration Lemma. Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $I, \langle C_{\delta} \mid \delta \in A \rangle \in N$.

Let $(\alpha, \alpha^*, a, p, \langle M_n \mid n < \omega \rangle)$ be such that

- $\alpha < \alpha^* \le \nu$.
- $a \in P_{\alpha}$, $p \in P_{\alpha}$ and $a \leq p \lceil \alpha$.
- $a \Vdash_{P_{\alpha}} \text{``} \langle \dot{M}_n \mid n < \omega \rangle$ is an \in -chain in $H_{\theta}^{V[G_{\alpha}]}$ such that $N \cup \{G_{\alpha}, p\} \subseteq \dot{M}_0$ and that $\langle \dot{M}_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}^{V[G_{\alpha}]}$ ".

Then there exists $q \in P_{\alpha^*}$ such that

- $q \mid \alpha = a \text{ and } q \leq p$.
- $a \Vdash_{P_{ir}} q[[\alpha, \alpha^*) \Vdash_{P_{ir}} V[G_{\alpha}] M_n[G_{\alpha\alpha^*}] \cap \omega_1 = M_n \cap \omega_1$ for infinitely many $n < \omega$...

We extract sort of typical constructions involved as (Technical construction 1-3).

Lemma. (Technical construction 1) Let $(\alpha, \alpha^*, a, p, \langle \dot{\delta}_k^p \mid k < \omega \rangle, \dot{x})$ be such that

- $\alpha < \alpha^* \le \nu$ and α^* is limit.
- $a \in P_{\alpha}, p \in P_{\alpha}$ and $a \leq p \lceil \alpha$.
- $\langle \dot{\delta}_k^p \mid k < \omega \rangle$ are stages for p.

- $a^1 \Vdash_{P_{\alpha^*}} "\dot{\delta}_0^p = \alpha".$
- $a \Vdash_{P_{\alpha}} "\dot{x} \leq p \text{ and } \dot{x} \lceil \alpha \in G_{\alpha}".$

Then there exists $(\beta, b, x, \langle \dot{\delta}_k^x \mid k < \omega \rangle)$ such that

- $\alpha < \beta < \alpha^*$.
- $b \in P_{\beta}$, $b \lceil \alpha \le a, x \in P_{\alpha}$ and $b \le x \lceil \beta$.
- $b[\alpha \Vdash_{P_{\alpha}} "\dot{x} = x".$
- $\langle \dot{\delta}_k^x \mid k < \omega \rangle$ are stages for x and for all $k < \omega$, $\Vdash_{P_{\alpha^*}} "\dot{\delta}_{k+1}^p \leq \dot{\delta}_k^x "$ (a step ahead).
- $b^{-1} \Vdash_{P_{\alpha^*}} "\dot{\delta}_0^x = \beta$ ".

Lemma. (Technical construction 2) Let $(\alpha, \alpha^*, a, p, \langle \dot{\delta}_k^p \mid k < \omega \rangle, \dot{x})$ be as in technical construction 1. Then there exists $\langle (\beta_i, b_i, x_i, \langle \dot{\delta}_k^{x_i} \mid k < \omega \rangle) \mid i < \mu \rangle$ such that

- $\beta = \beta_i, b = b_i, x = x_i, \langle \dot{\delta}_k^x \mid k < \omega \rangle = \langle \dot{\delta}_k^{x_i} \mid k < \omega \rangle$ serve exactly as in technical construction 1.
- For $i, j < \mu$ such that $i \neq j$, we have that $b_i \lceil \alpha$ and $b_j \lceil \alpha$ are incompatible in P_{α} .
- $\{b_i \mid \alpha \mid i < \mu\}$ forms a maximal antichain below a in P_{α} .

Lemma. (Technical construction 3) Let $(\alpha, \alpha^*, a, p, \langle \dot{\delta}_k^p \mid k < \omega \rangle, \langle \dot{M}_n \mid n < \omega \rangle)$ be such that

- $\alpha < \alpha^* \le \nu$ and α^* is limit.
- $a \in P_{\alpha}, p \in P_{\alpha}$ and a .
- $\langle \delta_k^p \mid k < \omega \rangle$ are stages for p in P_{α^*} .
- $a^1 \Vdash_{P_{\alpha^*}} "\dot{\delta}_0^p = \alpha"$.
- $a \models_{P_{\alpha}} (\dot{M}_n \mid n < \omega)$ is an \in -chain in $H_{\theta}^{V[G_{\alpha}]}$ with $N \cup \{G_{\alpha}, p, \langle \dot{\delta}_k^p \mid k < \omega \rangle\} \subseteq \dot{M}_0$. Let T be a tree such that $T \subset {}^{<\omega}ON$ with $\{\emptyset\} = T_0$. For $\sigma = \emptyset$, let
- $\bullet \ \alpha^\emptyset = \alpha, \ a^\emptyset = a, \ p^\emptyset = p, \ \langle \dot{\delta}_k^\emptyset \mid k < \omega \rangle = \langle \dot{\delta}_k^p \mid k < \omega \rangle \ \text{and} \ \langle \dot{M}_n^\emptyset \mid n < \omega \rangle = \langle \dot{M}_n \mid n < \omega \rangle.$ For all $\sigma \in T$, we have $(\alpha^{\sigma}, a^{\sigma}, p^{\sigma}, \langle \dot{\delta}_{k}^{\sigma} \mid k < \omega \rangle, \langle \dot{M}_{n}^{\sigma} \mid n < \omega \rangle)$ such that
- $\alpha < \alpha^{\sigma} < \alpha^*$.
- $a^{\sigma} \in P_{\alpha^{\sigma}}, p^{\sigma} \in P_{\alpha^{*}}, a^{\sigma} [\alpha \leq a, p^{\sigma} \leq p \text{ and } a^{\sigma} \leq p^{\sigma} [\alpha^{\sigma}]$
- $\langle \dot{\delta}_k^{\sigma} \mid k < \omega \rangle$ are stages for p^{σ} in P_{α^*} .
- $a^{\sigma} \cap 1 \Vdash_{P_{\alpha}} "\dot{\delta}_0^{p^{\sigma}} = \alpha^{\sigma}".$
- $a^{\sigma} \models_{P_{\alpha}\sigma} (\dot{M}_n^{\sigma} \mid n < \omega)$ is an \in -chain in $H_{\theta}^{V[G_{\alpha}\sigma]}$ with $N \cup \{G_{\alpha}, p^{\sigma}, \langle \dot{\delta}_k^{\sigma} \mid k < \omega \rangle\} \subseteq \dot{M}_0^{\sigma}$. For all $\tau \in \operatorname{suc}_T(\sigma)$, we have $\langle \dot{m}(\tau, n) \mid n < \omega \rangle$ such that
- $\alpha^{\sigma} \leq \alpha^{\tau}$.
- $a^{\tau} [\alpha^{\sigma} \leq a^{\sigma}]$.
- $p^{\tau} \leq p^{\sigma}$ in P_{α^*} .
- $\langle \dot{\delta}_k^{\tau} \mid k < \omega \rangle$ are a step ahead of $\langle \dot{\delta}_k^{\sigma} \mid k < \omega \rangle$.
- $a^{\tau} [\alpha^{\sigma} \Vdash_{P_{\alpha^{\sigma}}} "p^{\tau} [[\alpha^{\sigma}, \alpha^{*}) \Vdash_{P_{\alpha^{\sigma}\alpha^{*}}} "\dot{M}_{0}^{\sigma} [G_{\alpha^{\sigma}\alpha^{*}}] \cap \omega_{1} = \dot{M}_{0}^{\sigma} \cap \omega_{1}"".$ $a^{\tau} \Vdash_{P_{\alpha^{\tau}}} "\langle \dot{m}(\tau, n) \mid n < \omega \rangle$ is a sequence of strictly increasing natural numbers".
- $\bullet \ a^{\tau} \Vdash_{P_{\alpha^{\tau}}} \mathring{M}_{n}^{\tau} = \mathring{M}_{m(\tau,n)}^{\sigma} [G_{\alpha^{\sigma}\alpha^{\tau}}]^{n}.$

• $a^{\tau} \Vdash_{P_{\alpha^{\tau}}}$ "for all $n < \omega$, $\dot{M}_n^{\tau} \cap \omega_1 = \dot{M}_{\dot{m}(\tau,n)}^{\sigma} \cap \omega_1$ ". Let q < p be a fusion of a^{σ} 's in $P_{\alpha^{\star}}$.

Then there exists a sequence $\langle \dot{n}_k \mid k < \omega \rangle$ of P_{α^*} -names such that

- $q \Vdash_{P_{\alpha}}$ " $\langle \dot{n}_k \mid k < \omega \rangle$ is a sequence of strictly increasing natural numbers".
- For all $k < \omega$, we have $q \Vdash_{P_{\alpha^*}} \mathring{M}_{n_k} \cap \omega_1 = \mathring{M}_{n_k}[G_{\alpha\alpha^*}] \cap \omega_1$ ".

More specifically, we may calculate $\langle i_k \mid k < \omega \rangle$, $\langle a_k \mid k < \omega \rangle$, $\langle \alpha_k \mid k < \omega \rangle$, $\langle p_k \mid k < \omega \rangle$ and $\langle m(k,n) \mid k,n < \omega \rangle$ in $V[G_{\alpha^*}]$ such that, where $M =_{\omega_1} N$ abbreviates $M \cap \omega_1 = N \cap \omega_1$,

- $M_0[G_{\alpha_0\alpha^*}] \subseteq M_0^{\emptyset}[G_{\alpha_0\alpha^*}] =_{\omega_1} M_0^{\emptyset} = M_0.$
- $\bullet \ M_{m(0,0)}[G_{\alpha_0\alpha^{\bullet}}] \subseteq M_{m(0,0)}^{\emptyset}[G_{\alpha_0\alpha_1}][G_{\alpha_1\alpha^{\bullet}}] = M_0^{\langle i_0 \rangle}[G_{\alpha_1\alpha^{\bullet}}] =_{\omega_1} M_0^{\langle i_0 \rangle} =_{\omega_1} M_{m(0,0)}^{\emptyset} = M_{m(0,0)}.$
- $M_{m(0,m(1,0))}[G_{\alpha\alpha^*}] \subseteq M_{m(0,m(1,0))}^{\emptyset}[G_{\alpha_0\alpha_1}][G_{\alpha_1\alpha_2}][G_{\alpha_2\alpha^*}] = M_{m(1,0)}^{\langle i_0 \rangle}[G_{\alpha_1\alpha_2}][G_{\alpha_2\alpha^*}] = M_0^{\langle i_0,i_1 \rangle}[G_{\alpha_2\alpha^*}] = M_0^{\langle i_0,i_1 \rangle}[G_{\alpha_2\alpha^*}] = M_0^{\langle i_0,i_1 \rangle}[G_{\alpha_2\alpha^*}] = M_0^{\langle i_0,i_1 \rangle}[G_{\alpha_2\alpha^*}] = M_0^{\langle i_0,i_1 \rangle}[G_{\alpha_2\alpha^*}]$

In general,

$$a^{\emptyset} = a = a_{0}.$$

$$a^{\langle i_{0}, \cdots, i_{k} \rangle} = a_{k+1}.$$

$$\alpha_{k} = l(a_{k}).$$

$$M_{n}^{\emptyset} = M_{n}.$$

$$M_{n}^{\langle i_{0} \rangle} = M_{m(0,n)}[G_{\alpha_{0}\alpha_{1}}].$$

$$M_{n}^{\langle i_{0} \rangle} = \omega_{1} M_{m(0,n)}.$$

$$M_{n}^{\langle i_{0}, \cdots, i_{k}, i_{k+1} \rangle} = M_{m(k+1,n)}^{\langle i_{0}, \cdots, i_{k} \rangle}[G_{\alpha_{k+1}\alpha_{k+2}}].$$

$$M_{n}^{\langle i_{0}, \cdots, i_{k}, i_{k+1} \rangle} = \omega_{1} M_{m(k+1,n)}^{\langle i_{0}, \cdots, i_{k} \rangle}.$$

$$M_{0}^{\emptyset}[G_{\alpha_{0}\alpha^{*}}] = \omega_{1} M_{0}^{\emptyset}.$$

$$M_{0}^{\langle i_{0}, \cdots, i_{k} \rangle}[G_{\alpha_{k+1}\alpha^{*}}] = \omega_{1} M_{0}^{\langle i_{0}, \cdots, i_{k} \rangle}.$$

And so

$$M_0[G_{\alpha_0\alpha^*}] =_{\omega_1} M_0.$$

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha_0\alpha^*}] =_{\omega_1} M_{m(0,m(1,\cdots,m(k,0)\cdots))}.$$

Where m(k, n) abbreviates $m(\langle i_0, \dots, i_k \rangle, n)$.

We give a proof of iteration lemma 3.2.

3.2 Lemma. (Iteration Lemma) Let θ be a sufficiently large regular cardinal. Let N be a countable elementary substructure of H_{θ} with $I, \langle C_{\delta} \mid \delta \in A \rangle \in N$.

Let $(\alpha, \alpha^*, a, p, \langle M_n \mid n < \omega \rangle)$ satisfy

- $\alpha < \alpha^* \leq \nu$.
- $a \in P_{\alpha}$, $p \in P_{\alpha}$ and $a \le p[\alpha]$.
- $a \Vdash_{P_{\alpha}} N \cup \{\dot{G}_{\alpha}, p\} \subseteq \dot{M}_{0}, \langle \dot{M}_{n} \mid n < \omega \rangle$ is an \in -chain in $H_{\theta}^{V[\dot{G}_{\alpha}]}$ and $\langle \dot{M}_{n} \cap \omega_{1} \mid n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\alpha}]}$. Then there exists $(q, \langle \dot{m}(n) \mid n < \omega \rangle)$ such that

- $q \in P_{\alpha^*}$ and $q \leq p$.
- $q \lceil \alpha = a$.
- $q \Vdash_{P_{\alpha^*}}$ " $\dot{m}(n)$ are strictly increasing natural numbers and $\dot{M}_{\dot{m}(n)}[\dot{G}_{\alpha^*}[[\alpha,\alpha^*)] \cap \omega_1 = \dot{M}_{\dot{m}(n)} \cap \omega_1$ ". Notational Remark. Let $\alpha < \beta$ and G_{β} be P_{β} -generic over V. Then
- G_{α} denotes $G_{\beta}[\alpha = \{r[\alpha \mid r \in G_{\beta}\} \text{ which is } P_{\alpha}\text{-generic over } V.$
- H_{α} denotes $\{r(\alpha)[G_{\alpha}] \mid r \in G_{\beta}\}$ which is $Q_{\alpha} = \dot{Q}_{\alpha}[G_{\alpha}]$ -generic over $V[G_{\alpha}]$.

If \dot{x} is a P_{α} -name, then we may view $\dot{x}[G_{\alpha}]$ as a term $\dot{x}[\dot{G}_{\beta}[\check{\alpha}]$ being interpreted by G_{β} in $V[G_{\beta}]$. We simply denote this by x for easier notation. For sequences $s = \langle \dot{x}_n \mid n < \omega \rangle$ of P_{α} -names, we abbreviate as follows:

• $x_n = \dot{x}_n[G_{\alpha}]$ (the *n*-th value of the interpretation of a term $\langle \check{s}(n)[\dot{G}_{\alpha}] \mid n < \check{\omega} \rangle$ by G_{α} in $V[G_{\alpha}]$) $= \dot{x}_n[G_{\beta}[\alpha]]$ (the *n*-th value of the interpretation of a term $\langle \check{s}(n)[\dot{G}_{\beta}[\check{\alpha}] \mid n < \check{\omega} \rangle$ by G_{β} in $V[G_{\beta}]$) for each $n < \omega$.

Proof. By induction on α^* for all $(\alpha, a, p, \langle \dot{M}_n \mid n < \omega \rangle)$.

Case 1. (Successor Steps Essential) Let $(\alpha, \alpha + 1, a, p, \langle \dot{M}_n \mid n < \omega \rangle)$ be as in the hypothesis. Since $\Vdash_{P_{\alpha}}$ " \dot{Q}_{α} is $\mathcal{F}^{V[\dot{G}_{\alpha}]}$ -generic-limsup-semiproper" and $a \models_{P_{\alpha}}$ " $p(\alpha) \in \dot{Q}_{\alpha} \cap \dot{M}_{0}$, $\langle \dot{M}_n \mid n < \omega \rangle$ is an \in -chain in $H_{\theta}^{V[\dot{G}_{\alpha}]}$ and $\langle \dot{M}_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\alpha}]}$ ", we have $a \models_{P_{\alpha}}$ "there exists $\pi \leq p(\alpha)$ in \dot{Q}_{α} such that $\pi \models_{\dot{Q}_{\alpha}}^{V[\dot{G}_{\alpha}]}$ " $\{n < \omega \mid M_n[H_{\alpha}] \cap \omega_1 = M_n \cap \omega_1\}$ is infinite"". Let $q \in P_{\alpha+1}$ such that $q[\alpha = a \text{ and } a \models_{P_{\alpha}}$ " $q(\alpha) = \pi$ ". Then $q \leq p$ in $P_{\alpha+1}$ and $q \models_{P_{\alpha+1}}$ " $\dot{M}_n[G_{\alpha\alpha+1}] \cap \omega_1 = \dot{M}_n[H_{\alpha}] \cap \omega_1 = \dot{M}_n \cap \omega_1$ for infinitely many $n < \omega$ ".

Case 2. (Successor Steps General) Let $(\alpha, \beta + 1, a, p, \langle \dot{M}_n \mid n < \omega \rangle)$ be as in the hypothesis. We may assume $\alpha < \beta$. Apply the hypothesis of induction to $(\alpha, \beta, a, p \lceil \beta, \langle \dot{M}_n \mid n < \omega \rangle)$. We have $(q', \langle \dot{m}(n) \mid n < \omega \rangle)$ such that

- $q' \in P_{\beta}$, $a = q' \lceil \alpha \text{ and } q' \leq p \lceil \beta$.
- $q' \Vdash_{P_{\beta}}$ " $\dot{m}(n)$ are strictly increasing natural numbers and $M_{\dot{m}(n)}[G_{\alpha\beta}] \cap \omega_1 = M_{\dot{m}(n)} \cap \omega_1$ for all $n < \omega$ ". Hence $q' \Vdash_{P_{\beta}}$ " $\langle M_{\dot{m}(n)}[G_{\alpha\beta}] \mid n < \omega \rangle$ is an \in -chain in $H_{\theta}^{V[\dot{G}_{\beta}]}$ such that $N \cup \{\dot{G}_{\beta}, p\} \subseteq M_{\dot{m}(0)}[G_{\alpha\beta}]$ and $\langle M_{\dot{m}(n)}[G_{\alpha\beta}] \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\beta}]}$ ". Now we are in case 1 with $(\beta, \beta + 1, q', p, \langle M_{\dot{m}(n)}[G_{\alpha\beta}] \mid n < \omega \rangle$. Hence we have $q \in P_{\beta+1}$ such that $q\lceil \beta = q', q \leq p$ and $q \Vdash_{P_{\beta+1}}$ " $M_{\dot{m}(n)}[G_{\alpha\beta}][G_{\beta\beta+1}] \cap \omega_1 = M_{\dot{m}(n)}[G_{\alpha\beta}] \cap \omega_1$ for infinitely many $n < \omega$ ". And so $q\lceil \alpha = a$ and $q \Vdash_{P_{\beta+1}}$ " $M_m[G_{\alpha\beta+1}] \cap \omega_1 = M_m \cap \omega_1$ for infinitely many $m < \omega$ ".

Case 3. (Limit) Let $(\alpha, \alpha^*, a, p, \langle \dot{M}_n \mid n < \omega \rangle)$ be as in the hypothesis. We assume α^* is limit. Construct a tree representation T and a map $\langle \sigma \mapsto (\alpha^{\sigma}, a^{\sigma}, p^{\sigma}, \langle \dot{\delta}_n^{\sigma} \mid n < \omega \rangle, \langle \dot{M}_n^{\sigma} \mid n < \omega \rangle) \mid \sigma \in T \rangle$ such that

For $\langle \rangle = \emptyset \in T_0$, we set

(0) $\alpha^{\langle \rangle} = \alpha, a^{\langle \rangle} = a, p^{\langle \rangle} = p, \ \langle \dot{\delta}_k^{\langle \rangle} \mid k < \omega \rangle$ be any stages for p such that $\dot{\delta}_0^{\langle \rangle} = \check{\alpha}$ and that $a \Vdash_{P_\alpha} (\dot{\delta}_k^{\langle \rangle} \mid k < \omega) \in \dot{M}_0$ and $\dot{M}_n^{\langle \rangle} \mid n < \omega \rangle = \langle \dot{M}_n \mid n < \omega \rangle$.

In general, for $\sigma = \langle i_0, \dots, i_{k-1} \rangle \in T_k$, we demand

- (1) $\alpha \leq \alpha^{\sigma} < \alpha^*$.
- (2) $a^{\sigma} \in P_{\alpha^{\sigma}}$ and $a^{\sigma} \lceil \alpha \leq a$.
- (3) $p^{\sigma} \in P_{\alpha^*}$ and $p^{\sigma} \leq p$.
- (4) $a^{\sigma} \leq p^{\sigma} \lceil \alpha^{\sigma}$.
- (5) $\langle \dot{\delta}_n^{\sigma} \mid n < \omega \rangle$ are stages for p^{σ} .
- (6) $p^{\sigma} \lceil \alpha^{\sigma} \rceil \rceil \Vdash_{P_{\alpha^*}} "\dot{\delta}_0^{\sigma} = \alpha^{\sigma}"$ (0th-stage self-decisive condition).

(7) $\langle \dot{M}_{n}^{\sigma} \mid n < \omega \rangle$ is a sequence of $P_{\alpha^{\sigma}}$ -names such that $a^{\sigma} \models_{P_{\alpha^{\sigma}}} N \cup \{\dot{G}_{\alpha^{\sigma}}, p^{\sigma}, \langle \dot{\delta}_{k}^{\sigma} \mid k < \omega \rangle\} \subseteq \dot{M}_{0}^{\sigma}, \langle \dot{M}_{n}^{\sigma} \mid n < \omega \rangle$ is an \in -chain in $H_{\theta}^{V[\dot{G}_{\alpha^{\sigma}}]}$ and $\langle \dot{M}_{n}^{\sigma} \cap \omega_{1} \mid n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\alpha^{\sigma}}]}$ ".

For $\tau = \sigma^{\smallfrown} \langle i \rangle = \langle i_0, \dots, i_{k-1}, i_k \rangle \in T_{k+1}$, there exists a sequence $\langle \dot{m}(\tau, n) \mid n < \omega \rangle$ of $P_{\alpha^{\tau}}$ -names and we demand

- (8) $\alpha^{\sigma} \leq \alpha^{\tau}$.
- (9) $a^{\tau} [\alpha^{\sigma} \leq a^{\sigma}]$
- $(10) p^{\tau} \leq p^{\sigma}.$
- (11) $a^{\tau} [\alpha^{\sigma} \Vdash_{P_{\alpha}\sigma} p^{\tau}, \langle \dot{\delta}_{n}^{\tau} \mid n < \omega \rangle \in \dot{M}_{1}^{\sigma} \text{ and } p^{\tau} [\alpha^{\sigma}, \alpha^{*}] \text{ is } (P_{\alpha^{\sigma}\alpha^{*}}, \dot{M}_{0}^{\sigma})\text{-semi-generic}$.
- (12) For all $n < \omega$, $\|-P_{\alpha} \cdot \mathring{\delta}_{n+1}^{\sigma} \le \mathring{\delta}_{n}^{\tau}$ (a step ahead).
- (13) $p^{\tau} [\alpha^{\tau}] \Vdash_{P_{\alpha}} "\dot{\delta}_0^{\tau} = \alpha^{\tau}"$ (0th-stage self-decisive condition).
- (14) $a^{\tau} \Vdash_{P_{\alpha^{\tau}}}$ " $\langle \dot{m}(\tau, n) \mid n < \omega \rangle$ is a sequence of strictly increasing natural numbers and for all $n < \omega$, $\dot{m}(\tau, n) \geq 1$, $\dot{M}_{\dot{m}(\tau, n)}^{\sigma}[G_{\alpha^{\sigma}\alpha^{\tau}}] = \dot{M}_{n}^{\tau}$ and $\dot{M}_{\dot{m}(\tau, n)}^{\sigma} \cap \omega_{1} = \dot{M}_{n}^{\tau} \cap \omega_{1}$ ".

The contruction is by recursion on $k < \omega$. For k = 0, we set $T_0 = \{\emptyset\}$ and set α^{\emptyset} , a^{\emptyset} , p^{\emptyset} , $\langle \dot{\delta}_n^{\emptyset} \mid n < \omega \rangle$ and $\langle \dot{M}_n^{\emptyset} \mid n < \omega \rangle$ as specified. This is possible as $a \models_{P_{\alpha}} N \cup \{\dot{G}_{\alpha}, p\} \subseteq \dot{M}_0$. Then it is easy to see that all the assumptions (1) through (7) for $\sigma = \emptyset$ are satisfied.

Suppose we have constructed T_k and α^{σ} , a^{σ} , p^{σ} , $\langle \delta_n^{\sigma} \mid n < \omega \rangle$ and $\langle \dot{M}_n^{\sigma} \mid n < \omega \rangle$ for each $\sigma \in T_k$ such that (1) through (7) are satisfied. Let $\gamma = \alpha^{\sigma}$, $w = a^{\sigma}$, $x = p^{\sigma}$, $\langle \delta_n \mid n < \omega \rangle = \langle \dot{\delta}_n^{\sigma} \mid n < \omega \rangle$ and $\langle \dot{N}_n \mid n < \omega \rangle = \langle \dot{M}_n^{\sigma} \mid n < \omega \rangle$ for shorter notation. Then $w \in P_{\gamma}$ forces that

• $N \cup \{\dot{G}_{\gamma}, x, \langle \dot{\delta}_n \mid n < \omega \rangle\} \subseteq \dot{N}_0$ and $x[\gamma \in \dot{G}_{\gamma}]$.

Hence by the iteration lemma for semiproperness and lemmas on stages (please see [M] for an account), there exists $(\beta, y, \langle \dot{\delta}_n^y \mid n < \omega \rangle)$ in $V[\dot{G}_{\gamma}]$ such that

- $\gamma < \beta < \alpha^*$.
- $y \le x$ in P_{α} .
- $\langle \dot{\delta}_n^y \mid n < \omega \rangle$ are stages for y.
- $y[\beta^{-}1] \vdash_{P_{n+}} "\dot{\delta}_{0}^{y} = \beta$ ".
- For all $n < \omega$, $\Vdash_{P_{\alpha}}$, " $\dot{\delta}_{n+1} \leq \dot{\delta}_n^y$ " (a step ahead).
- $y[\gamma \in G_{\gamma}]$.
- $y[[\gamma, \alpha^*]]$ is $(P_{\gamma\alpha^*}, \dot{N}_0)$ -semi-generic
- $(\beta, y, \langle \dot{\delta}_n^y \mid n < \omega \rangle) \in \dot{N}_1$.

Then for any $d \leq w$ in P_{γ} such that d decides the values of β, y and $\langle \dot{\delta}_n^y \mid n < \omega \rangle$, we may consider $(\gamma, \beta, d, y \mid \beta, \langle \dot{N}_n \mid 1 \leq n < \omega \rangle)$ satisfying

- $\gamma < \beta < \alpha^*$.
- $d \in P_{\gamma}$, $y \lceil \beta \in P_{\beta}$ and $d \leq (y \lceil \beta) \lceil \gamma$.
- $d \models_{P_{\gamma}} "N \cup \{\dot{G}_{\gamma}, y \lceil \beta\} \subseteq \dot{N}_1 \text{ and } \langle \dot{N}_n \mid 1 \leq n < \omega \rangle \text{ is an } \in \text{-chain in } H^{V[\dot{G}_{\gamma}]}_{\theta} \text{ and } \langle \dot{N}_n \cap \omega_1 \mid 1 \leq n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\gamma}]}$ ".

Now we apply the hypothesis of induction at β . Hence there exists $(b, \langle \dot{m}(n) \mid n < \omega \rangle)$ such that

- $b \in P_{\beta}$. $b \lceil \gamma = d \text{ and } b \leq y \lceil \beta$.
- $b \Vdash_{P_{\beta}} "\langle \dot{m}(n) \mid n < \omega \rangle$ is a sequence of strictly increasing natural numbers such that $1 \leq \dot{m}(n)$ and $\dot{N}_{\dot{m}(n)}[G_{\gamma\beta}] \cap \omega_1 = \dot{N}_{\dot{m}(n)} \cap \omega_1$ ".

And so

• $b \Vdash_{P_{\beta}} "N \cup \{\dot{G}_{\beta}, y, \langle \dot{\delta}_{n}^{y} \mid n < \omega \rangle\} \subseteq \dot{N}_{\dot{m}(0)}[G_{\gamma\beta}], \langle \dot{N}_{\dot{m}(n)}[G_{\gamma\beta}] \mid n < \omega \rangle \text{ is an } \in \text{-chain in } H_{\theta}^{V[\dot{G}_{\beta}]} \text{ and } \langle \dot{N}_{\dot{m}(n)}[G_{\gamma\beta}] \cap \omega_{1} \mid n < \omega \rangle \in \mathcal{F}^{V[\dot{G}_{\beta}]}".$

Since there exists d as above predense many below w, we may construct T_{k+1} and

$$\langle \tau \mapsto \left(\alpha^{\tau}, a^{\tau}, p^{\tau}, \langle \dot{\delta}_{n}^{\tau} \mid n < \omega \rangle, \langle \dot{M}_{n}^{\tau} \mid n < \omega \rangle, \langle \dot{m}(\tau, n) \mid n < \omega \rangle \right) \mid \tau \in T_{k+1} \rangle,$$

where the correspondences are $\alpha^{\tau} = \beta, a^{\tau} = b, p^{\tau} = y, \langle \dot{\delta}_{n}^{\tau} \mid n < \omega \rangle = \langle \dot{\delta}_{n}^{y} \mid n < \omega \rangle, \langle \dot{m}(\tau, n) \mid n < \omega \rangle = \langle \dot{m}(n) \mid n < \omega \rangle$ and $\langle \dot{M}_{n}^{\tau} \mid n < \omega \rangle = \langle \dot{N}_{\dot{m}(n)}[G_{\gamma\beta}] \mid n < \omega \rangle$. This completes the construction.

Let q be a fusion of the tree representation T. Let G_{α}^{*} be $P_{\alpha^{*}}$ -generic over V with $q \in G_{\alpha^{*}}$. Let us calculate $\langle i_{n} \mid n < \omega \rangle$ from the generic cofinal path through T so that for all $k < \omega$, $\langle i_{n} \mid n < k \rangle \in T_{k}$ and $a^{\langle i_{n} \mid n < k \rangle} \in G_{\alpha^{\langle i_{n} \mid n < k \rangle}}$.

Let

$$M_{n} = \dot{M}_{n}[G_{\alpha}],$$

$$\alpha^{k} = \alpha^{\langle i_{n} \mid n < k \rangle}, \ \alpha^{k} = \alpha^{\langle i_{n} \mid n < k \rangle}, \ p^{k} = p^{\langle i_{n} \mid n < k \rangle},$$

$$\dot{\delta}_{m}^{k} = \dot{\delta}_{m}^{\langle i_{n} \mid n < k \rangle}, \ \dot{M}_{m}^{k} = \dot{M}_{m}^{\langle i_{n} \mid n < k \rangle}, \ M_{m}^{k} = \dot{M}_{m}^{k}[G_{\alpha^{k}}], \ m(k, n) = \dot{m}(\langle i_{0}, \dots, i_{k} \rangle, n)[G_{\alpha^{k+1}}].$$

Then

$$a^{k} \in G_{\alpha^{k}}, \ p^{k} \in G_{\alpha^{*}}.$$

$$M_{0} =_{\omega_{1}} M_{0}[G_{\alpha\alpha^{*}}],$$

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^{0}\alpha^{1}}] \cdots [G_{\alpha^{k}\alpha^{k+1}}] = M_{0}^{k+1},$$

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^{0}\alpha^{1}}] \cdots [G_{\alpha^{k}\alpha^{k+1}}][G_{\alpha^{k+1}\alpha^{*}}] = M_{0}^{k+1}[G_{\alpha^{k+1}\alpha^{*}}],$$

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^{0}\alpha^{*}}] \subseteq M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^{0}\alpha^{1}}] \cdots [G_{\alpha^{k}\alpha^{k+1}}][G_{\alpha^{k+1}\alpha^{*}}].$$

Hence

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^0\alpha^*}] \subseteq M_0^{k+1}[G_{\alpha^{k+1}\alpha^*}] \supseteq_{\omega_1} M_0^{k+1} \supseteq_{\omega_1} M_{m(0,m(1,\cdots,m(k,0)\cdots))}.$$

So

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^0\alpha^*}]\cap\omega_1\leq M_0^{k+1}[G_{\alpha^{k+1}\alpha^*}]\cap\omega_1=M_0^{k+1}\cap\omega_1=M_{m(0,m(1,\cdots,m(k,0)\cdots))}\cap\omega_1.$$

So

$$M_{m(0,m(1,\cdots,m(k,0)\cdots))}\subseteq \omega_1 M_{m(0,m(1,\cdots,m(k,0)\cdots))}[G_{\alpha^0\alpha^*}].$$

Note that $m(0, m(1, \dots, m(k, 0) \dots))$ strictly increase.

References

[M] T. Miyamoto, A weak reflection compatible with tail club guessing via semiproper iteration, RIMS, Kyoto University, vol. 1530, pp. 49-81, Feb 2007.

miyamoto@nanzan-u.ac.jp Division of Mathematics Nanzan University 27 Seirei-cho, Seto, Aichi 489-0863 JAPAN