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Abstract

We show there is no maximal forcing axiom compatible with tail club guessing. On the other hand, we
may formulate a maximal forcing axiom compatible with a weak club guessing.

Introduction

We formulate a forcing axiom compatible with a tail club guessing in [M]. This note is a continuation
to [M]. We show a maximal forcing axiom compatible with tail club guessing does not hold. On the other
hand, we may force a maximal forcing axiom compatible with a weak club guessing. Namely, if a ladder
system (Cs | § € A) is weak club guessing and a supercompact cardinal exists, then there is a model of set
theory where

(1) (Cs | & € A) remains weak club guessing. Namely, for any club D of w,, there exists § € A such that
D n Cs is infinite.

(2) Let P be any preorder such that P preserves every stationary subset of w; and that for any B C A
such that the ladder system (Cs | § € B) is weak club guessing, I’ also preserves the ladder system
(Cs | 6 € B) to be weak club guessing. Then every system (D; | ¢+ < w) of dense subsets of P has a
filter which hits every D;.

§1. No maximal forcing axioms are compatible with TCG

We set our notation.
1.1 Definition A sequence (Cs | 6 € A) is a ladder system, if

o AC {46 <w,disa limit ordinal}.
e For every § € A, Cs is a cofinal subset of § and is of order type w.

A ladder system (Cs | 6 € A) is tail club guessing, if for any club D C wy, there exists & € A such that
Cs \ D is finite. A ladder system (Cs | § € A) is weak club guessing, if for any club D C w,, there exists
d € A such that Cs N D is infinite. Hence if (Cs | § € A) is tail club guessing, then it is weak club guessing.

Fix a ladder system (Cs | § € A). We write for small sets and positive scts as follows;

o (TCG)={X Cw |{Cs|de AN X) fails to be tail club guessing}.

o (TCOY* ={X Cw | (Cs|8€ AN X) is tail club guessing}.
Similarly,

o (WCG)={X Cw;|{(Cs|de AN X) fails to be weak club guessing}.

o (WCG)* ={X Cw1|(Cs|de AnX) is weak club guessing}.

We know of a forcing axiom which is compatible with tail club guessing.

Theorem. (|M]) Let (Cs | 6 € A) be tail club guessing. Then we may force the following, assuming
that a supercompact cardinal exists.

(1) (Cs | 8 € A) remains tail club guessing.

(2) Forcing axiom™ holds for the class of partially ordered sets P which are semiproper and (Cs | § € A)-
w-semiproper,
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On the other hand,

1.2 Proposition. Let (Cs | 6 € A) be a ladder system. Let n. < w. Then there exists a partially
ordered set P and a P-name D such that
(1) P is proper and (TCG)*-preserving.
(2) |-p“D is a club in w; such that for all 6 € A, | Cs \ D|>n..
]

We make use of this P in two ways. First, we observe TCG-sequences may get killed at limit stages of
iterated forcing.
1.3 Corollary. Let (Cs | § € A) be a ladder system. Then there exists an iterated forcing (P, | n < w)
such that
e If (Cs | 6 € A) is tail club guessing, then for all n < w, |-p, “(Cs | § € A) remains tail club guessing”.
e If P, is any limit of the P,’s, then ||-p_ “(Cs | § € A) must fail to be tail club guessing”.
Second, we put above in terms of forcing axiom. Suppose (Cs | 6 € A) is tail club guessing. Then no
maximal forcing axioms hold for the class of partially ordered sets P> which preserve all stationary subsets

of wy and all elements of (TCG)* (i.e. for any X C wy, if (Cs | § € AN X) is tail club guessing, then it
remains so in the generic extensions of P).

1.4 Corollary. Let (Cs5 | § € A) be tail club guessing. Let forcing axiom hold for the class of partially
ordered sets P such that P are proper and that for any B C A such that (Cs | § € B) is tail club guessing,
then |- p(Cs | 8 € B) remains to be tail club guessing”. Then we have a contradiction.

1

Proof of proposition 1.2. Let p € P, if p = («”, DP) such that
(1) o < wy.
(2) DF C aP + 1, aP € DP and DP is closed.
(3) For alld € A with é < aP, |Cs\ DP| > n,.
For p,q € P,let g < p, if
1) o® < ad.
5) D? = DY {a” + 1).
Claim. (Dense) For any p € P and any 7 with a? < 7 < w, there exists ¢ < p such that a? = 7.
Proof. Let % = n and D7 = DP U {n}. Then this ¢ = (a9, DY) works.

Claim. P is proper and o-Baire.

Proof. Let 6 be a sufficiently large regular cardinal. Let N be a countable elementary substructure of

Hy with P € N. Let pe NN P. We want ¢ < p such that ¢ is (P, NV)-generic. Let § = NNw;. We construct

a (P, N)-generic sequence (p, | n < w) such that po < p and that | (™ N Cs) \ D™ | > n,. Let o = § and
DY = |J{DP" | n < w} U{8}. Then this ¢ = (a9, D?) works.

a

Claim. If X C w; such that (Cs | § € AN X) is tail club guessing, then |-p“(Cs | § € AN X) remains
to be tail club guessing”.
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Proof. Suppose p |-p “C'is a club in wy”. Want ¢ < p and 6 € AN X such that q|—p“Cs \ C is finite”.
To this end, take an €-chain (N; | i < w1) in Hy, where 8 is sufficiently large. Since (C5 | 6 € AN X) is
tail club guessing, there exists § € AN X such that Cs \ {N; Nw; | i < w;} is finite. By renaming, we have
an €-chain (N, | n < w) in Hp such that {N, Nwy | n < w} is an end-segment of Cs. We may assme that
P.p.C e Nyand |Cs N (P, NoNwy)| > n,. We construct a descending sequence (g, | n < w) of conditions
such that

® g0 <p
o [(a®NCs)\ D%} > n..
® g, € Nop1 NP is (P, N,)-generic.

Let a¢ = 6 and D7 = J{D% | n < w} U{ 8}. Then qll-p“Ny, Nw, € C” for all n < w. Hence this ¢
works.

Claim. Let G be P-generic over V. Let D =J{DP | p e G}. Then D is a clubin w; and for all § € A,
[Cs\ D} 2 ns.

[m]

Proof of corollary 1.3. Iteratively force clubs D, in wy sothat forall§ € Aand alln < w, |Cs\ D, | 2> n.
Then let D = ({Dn | n < w}. If w; gets preserved, then D is a club in w; such that for all § € A, Cs\ D
is infinite. Hence (Cs | § € A) fails to be tail club guessing. If w; gets collapsed, then this entails the same
conclusion.

Proof of corollary 1.4 is the same. Argue in V and get a sequence (D, | n < w) of clubs in w;.

§2. A maximal forcing axiom is compatible with WCG

We have seen that there is no maximal forcing axiom compatible with tail club guessing (TCG). But a
weak club guessing (WCG) admits maximal one. :

2.1 Definition. Let (Cs | § € A) be a ladder system. Let F denote the set of all cofinal subsequences of
Cs (viewed as sequences of length w) for all § € A. Let Seq“(w) denote the set of all sequences (an | n < w)
such that each a, is a countable subset of w;. Hence we have F C Seq¥(w1). Let P be a preorder, we say
P is F-limsup-semiproper, if for all sufficiently large regular cardinals § and all €-chains (N, | n < w) in Hy
with P,(Cs | § € A) € No, if (N, Nwy | n <w) € F, then for any p € No N P, there exists ¢ < p such that
for infinitely many n < w, ¢ is (P, N, )-semi-generic.

Similary, we say P is F-liminf-semiproper, if q is (P, Ny,)-semi-generic for all but finitey many n < w.

Lastly, we say P is F-generic-limsup-semiproper, it q|l=,“Ny[G] Nw} = N, Nw} for infinitely many
n<w'.

Hence we are looking at the set {n < w | N[G] Nw! = N Nw}'} in V[G] which might be infinite and
may or may not be in V.

For the notion of w-stationary sets S C Seq“(K) = {{an | n < w) | an € [K]¥ for all n < w}, may see
[M]. They are analogously formulated as the stationary sets in [K].
2.2 Proposition. Let P be a preorder.

o If P is wj-closed, then P is w-semiproper.
e If P is w-semiproper, then P is F-liminf-semiproper.

If P is F-liminf-semiproper, then P is F-limsup-semiproper.

If P is F-limsup-semiproper, then P is F-generic-limsup-semiproper.

If F is w-stationary and P is F-generic-limsup-semiproper, then P preserves wi.
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2.3 Definition. Let (Cs | § € A) be a ladder system. We formulate (proper,(Cs | 6 € A)-limsup-
semiproper, full) - Reflection Principle (abusively. F-RP) as follows; Given any (K, S.6.a) such that
e K is aset with K D w;.
S C Seq¥(K).
e 0 is a regular cardinal with K € H|rc(k)|+ € Hpitew 1y+ € Hp.
e a € Hy.

There exists (D, (V; | i < wi)) such that

e Dis a clubin w;.

(N; | 7 < wy) is an €-chain in Hg with a € Ng.

Foranyd e Y*(D) = {6 € A||CsND| = w}, let (Cs(ks(m)) | m < w) enumerate {Cs(k) | Cs(k) € D}.

Then there exists 115 < w such that we have either (1) or (2).

(1) (Negiksim)y VK [ns<m<w)€eS.

(2) For any strictly increasing sequence {m; | [ < w) of natural numbers with ns < my and for any €-chain
(M |l <w) with (M} | I <w) 2w, (Nesksim)) |1 <w), we have (MiNK |l <w)¢S.

We might call is = Cs(ks(ns))) a critical point of Cs with respect to D for each § € Y*(D). Hence we
are looking at (N; | is < i€ Cs N D).

2.4 Theorem. Let F¥ C Seq“(w;) be defined by (Cs | § € A). Then FY Gl generic-limsup-semiproper
combined with semiproper iterates under the simple iteration. (The FVI[Gal are uniformly defined from the
ladder systemn (Cs | 8 € A) in each intermediate universe V[G,]. The exact value of FV[Gal increasingly
changes as « gets bigger.)

O

2.5 Corollary. Let (Cs | § € A) be weak club guessing so that F defined from (Cs | § € A) is w-
stationary. Let usrecall F = {{Cs(k(m)) [m < w) | € A, (k(m) ]| m < w) is a sequence of strictly increasing
natural numbers}. We may force the following. if there exists a supercompact cardinal.

(1) If (Cs | 6 € A) is weak club guessing in the ground model, then it remains to be so in the extensions.

(2) Forcing axiom™ holds for the class of partially ordered sets P such that /? is semiproper and that P is
F-generic-limsup-semiproper.

2.6 Lemma. Let (Cs | § € A) be a ladder system. Let F C Seq¥(w;) be defined from the system.
Let F-Reflection Principle hold. Let us consider (WCG)* with repect to the system. Let P be a preorder.
Then the following are equivalent on P.
(1) Pis (WCG)T-preserving.
(2) P is F-generic-limsup-semiproper.
o

The F-RP gets forced by a little better notion of forcing than semiproper + F-generic-limsup-semiproper
partially ordered set.

2.7 Lemma. Let F C Seq“(w;) be as above. Let forcing axiom hold for the class of preordered sets P
such that P is proper and that P is F-limsup-semiproper. Then F-Reflection Principle holds.

[m}

2.8 Corollary. The following is consistent, if there exists a supercompact cardinal.

(1) (Cs | 6 € A) is weak club guessing.
(2) The forcing axiom™ holds for the class of preordered sets P such that P prescrves every stationary
subset of w; and that P preserves every member of (WCG)* with respect to (Cs | § € A).
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Proof of lemma 2.6. (2) implies (1): No use of F/-RP made in this direction. Let X C w; such that
(Cs | 8 € XN A) is weak club guessing. Suppose pj~p“C C w; is a club”. Want ¢ < p and § € X N 4 such
that ¢ |-p % CsNC| = w”. To this end, let 8 be a sufficiently large regular cardinal. Since (Cs | § € X N A)
is weak club guessing, we may take an €-chain (N, | n < w) in Hp such that {V, Nw) | n < w} is a cofinal
subset of Cs, where § = N, Nw; and N, = U{N, | n < w}. We may assume P,(Cs | 6 € A),p,C € Np.
Since P is F-generic-limsup-semiproper and (N, Nwy | n < w) € F, we have ¢ such that ¢ < p and
q=p“NylG] Nw) = N, Nw for infinitely many n < w”. Hence ql-p “N,[G] Nwy = N, Nw; € CNCs for
infinitely many n < w” and so ¢|p“|CsNC | = w".

(1) implies (2): Suppose P is (WCG)*-preserving. Want to show P is F-generic-limsup-semiproper.
It suffices to show the following. There exists a club C' C [Hg,]*, where 6y = | TC(P)|* (= w2), such that
for any €-chain (N, | » < w) in Hyg, through C (i.e. foralln < w, N, € C), if (N, Nwy | n < w) € F,
then for any p € Ng N P, there exists g such that ¢ < p and g |l-p“N,[G] Nwi = N, Nw; for infinitely many
n < w”. We show this by contradiction. Suppose not. Let § = {{(N, | n < w) | (NpNw; | n <w) € F
and there is p € No N P such that for all ¢ with ¢ < p, (g p “Na[G] Nw1 = N, Nw; for infinitely many
n < w”)}. Then this S is w-stationary. Namely, for any club C in [Hpg,]¥, there exists (N, | n < w) € §
through C. By Fodor’s Lemma for w-stationary sets (may see [M]), we may assume that there exists
po € Psuchthat S C {(Ny | n<w) | (NnNwy | n<w)eF, p € NoN P and for all ¢ with ¢ < py,
-(g P "Np|G] Nw; = Np Nwy for infinitely many n < w”)}.

Let S* denote the set of the end-segments of the elements of S. Apply F-RP to (Hg,, S*, A, (P, po)),
where A is sufficiently large. Get a club D in w; and an €-chain (M; | 1 < wy) in H)y as in F-RF.

Claim. B={deY*(D) | d k= “(1)in F-RP"} € (WCG)*.

Proof. Let E be a club in w;. Want § € B with |CsNE| = w. Since S is w-stationary in Seq“(Hy, ), we
may take an €-chain (N} | n < w) in Hy such that D, (M, | i < wy), E € Nj and that (NyNHp, [n <w) € S.
Let Vo = UJ{N,; | n <w}and § = NJNwy. Then (V) Nw; | n < w) € F and is through DN E. In particular,
deY*(D)and |CsNE|=w. Let {NyNw; |n<w}CCsnD={Cs(ks(m)) | m < w}. By considering an
end-segment, we may assume (N N Hg, | n < w) € §* with Cs(ks(ns)) < Ng Nwr.

Want (1) holds at this § so that § € B. Since N} Do, Mn:no, foralln < wand (N;NHy, [ n <w) € 57,
(2) in F-RP fails. Hence (1) must hold in F-RP.

a

Since po |p“({Cs | § € B) remains to be weak club guessing”, po |-p “there exists § € B such that
1CsN D[ = w, where D = {i <wi | M;[G]Nwy = M;Nwy =1 € D} aclub in wy”. Take ¢ and § € B such
that ¢ < po and q|-p“ Cs N D| = w”. Since § € B, we have (1) in F-RP. Hence (Mc;(ksm)) N Ha, | ns <
m < w) € §*, where (Cs(k) | k < w) enumerates Cs and (Cs(ks(m)) | m < w) enumerates C5 N D.

Since (Meyksmy) N Hoy | s < m < w) € 8*, there exists (N, | n < w) € § such that (Mc;(ks(m)) N
Hg, | ns < m < w) is an end-segment of (N,, | n < w). Since (N, | n < w) € S, we have = (g |-p“Ny[G]Nw; =
N,,Nw; for infinitely many n < w"). However, g |-p “if Cs(ks(m)) € CsnD and N,, = Mcy (ks (my) N Hg,, then
Np|GlNwi = (Meyks(my) N Heo )Gl Nwi = Mcy ks (m) [GINwi = My (ks(my) Nw1 = Np Nwy = Cs(ks(m))”.
Hence g |-p“Nal[G] Nwy = N, Nw; for infinitely many n < w”. This is a contradiction.

u]

Proof of lemma 2.7. Let (K, S,6,a) be as in the hypothesis of #-RF. We force D, (N; | i < w;) and
(s | 6 € A) by initial segments. Let p € P, if p = (aP, D?, (NF | i < aP), (n} | 6 € AN (a® + 1))) satisfies
the following:
(1) af < wy.
(2) D?P C aP + 1, aP? € DP and DP is closed.
(3) (NP | i < aP)is an €-chain in Hy with a € N§.
(4) Foreach§d € AN (a?+1), nf <w. If |Cs N DP| = w, then let (Cs(k) | k < w) enumerate Cs and let
(Cs(kf(m)) | m < w) enumerate Cs N DP. And we demand either (i) or (ii);
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(i) (z’\f(”.ﬁ(kg(m)) NK|nf<m<w)€es.

(ii) For any strictly increasing sequence (1 | | < w) of natural numbers with nf < myo and any €-chain

(M, |l < w) in Hg such that (M, | | < w) D, <N£'5(k'.’(m,)) [l <w), wehave (MNK 1l <w)¢gS.

For p.ge P,weset g <p,if

9) af < af.

(5)
(6) DP = D9 (aP + 1).

(7) For alli < a?, N = N].

(8) Forall § € AN (a? + 1), n§ =ni.

Claim. (Dense, Extension by Escape) For any (p, 7, z) such that p € P, a” < n < w; and x € Hy, there
exists ¢ € I? such that ¢ < p, o? =7 and z € NJ.

Proof. Let o = n, D? = DP U {n} and (N/ | i < n) be any €-chain which end-extends €-chain
(NP li<aP)and z € NJ. Let (n] | 6 € AN(n+1)) be any sequence of natural numbers which end-extends
(ns|éde An{aP +1)). Since foranyd € AN(n+1), |CsND? | =wiff (§ <a” and {CsN DP| = w), this g
works.

Claim. (Targeted-Extension) Let A be a sufficiently large regular cardinal and M be a countable
clementary substructure of H with P € M. Let 65 = M Nw,. Then for any (p,&, D) such that pe MNP,
£ < bxy and D € M is a dense subset of P, there exists 7 € M N D such that » < p, £ < a" and
Cs,, N D" = Cs,, N DP.

Proof. We consider a family of maps indexed by p € P. Let p € P. Let n be such that o < 1 < w;.
Let r = f,(n), where r € D,r < p,n < a” and D" N (a?,n] = {n}. We may assume (f, | p € P) € M. Since
pe M. f,e M. Let C(f,) = {3 <w; | for all n with a”? < n < 3, a/r(" < B}. Then C(fp) is a club in w;
and C(f,) € M. Take 3 € C(fp) " M such that a?, & < 3. Let n be such that o, . maxz(Cs,, NB) <n < B.
Then f,(n) € M and so there exists r € A N D such that » < p, £ < a” and Cs,, N D" = Cs,, N DP.

Claim. (Proper) P is proper and o-Baire.

Proof. Let A be a sufficiently large regular cardinal and M be a countable elementary substructure
of Hy with P ¢ M. Let p € M N P. Let dpy = M Nw;. Then by repeating above claim, we may
construct a (P, M)-generic sequence {p, | n < w) such that Cs,, N DP» = Cs,, N D? for all n < w. Let
a¥ =8y, D7 = J{DP | n < w}U{nm}, (N7 | i <Op) =U{(NP* | i< aP) | n <w}U{(0rr, MNHp)} and
(n]6 € AN(dp +1)) be any end-extension of all of (n5" | § € AN(aP"+1)). Notice that Cs,,NDY = Cs,,NDP
which is finite. Hence this ¢ is a lower bound of the p,’s.

" Claim. Pis F-limsup-semiproper.

Proof. Let A be a sufficiently large regular cardinal. Let (N, | n < w) be an €-chain in H) such that
K.0.P{(Cs]6e€ Ay € Ngand (N, Nw, | n<w) € F. Let N, = J{Nn | » < w} and let §* = N, Nw;. Let
(Cs+(K) | k < w) enumerate Cs- and (Cs- (ks (n)) | n < w) enumerate {N, Nwy | n < w}.

Let p € Ny N P. We want ¢ such that ¢ < p and ¢ is (P, NV, )-semi-generic for infinitely many n < w. To
this end, we argue in two cases.

Case 1. There exists a sequence (n; | | < w) of strictly increasing natural numbers and an €-chain
(M; |l <w)in Hg such that (M; |l <w) Dy, (Nn, NHg |l <w)and (MNK |l<w)esS:

Apply the Sequencial 3 H Lemma (see [M]) to get an €-chain (M | | < w) in H such that
o (M7 1< w) Doy (Na, | 1< w).
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e Forall | <w, M NH| TC(K) |+ = My YVH rok) |+ -
And so
o (M!)NK|l<wy=MnNK|l<w) €S
Notice p € No € Np, € M. It suffices to get ¢ such that ¢ < p and for all | < w, g is (P, M}*)-generic
and so (P, Np,)-semi-generic. Construct a descending sequence (¢; | | < w) of conditions such that
® p>q € M}, and q is (P, M;")-generic.
o DN (Cs = (DPNCs)U {Iﬂg Nwy, -, M ﬂwl}.
o o¥ = M Nw; and NY, = M} n Hj.
Let g be defined by
e o =8* = M} Nw, where M} = | {M} |l <w}.
e DY = }{D¥" |l <w}u{s*}.
o (N7 1i<a%) = UNS | i <a%) | L<w}U{(6, M50 Ho)l
e (ni|deAn(a?+1))=U{(nd |6d€ An(a® +1)) [l <w}U{(6*,ni)},
where ni. < w gets specified as follows; :
Let Cs. N D9 = {Cs-(kl.(m)) | m < w}. Since DINCs. = (DP N Cs-) U{M Nwy | | <w}, there exists

ny. < w such that
(M nwy | <w} = {Cs-(ki.(m)) | ni. <m < w}.

And so
<Ng~5.(w (my 1 K nj,<m<w) =(M'NHy) "K |l<w)=(MNK|l<w)€ES.
4, =

Hence this ¢ works.

Case 2. For all sequences (n; | | < w) of strictly increasing natural numbers and all €-chains (M) || < w)
in Hg with (M; |l < w) D, (Np, NHp |l <w), wehave (MiNK |l <w) &S

It suffices to get ¢ € I such that ¢ < p and for all n < w, ¢ is (P, N, )-generic. To this end, we may
construct a descending sequence (¢, | 7 < w) of conditions such that

® p > gy € Nyyp and g, is (P, N, )-generic.

e DI ﬂCm = (DPDC§*)U {Noﬂwl,-‘-,Nn ﬂwl}.

e o' = NpNw; and NJi, = N, N Hp.
Let g be defined by

o o =6* =N, Nwy.

o D= J{D" | n<w}U{s*}

o (NJ |i<a?) =U{(N|i<a™)|n<w}uU{(6* N,NHy}.

e (nfléeAn(a?+ 1) =U{nr" 16 An(a™ +1)) | n <w}U{(6*,nd.)},
where ni. < w gets specified as follows;

Let Cs- N D7 == {Cs+ (k3. (m)) | m < w}. Since D' NCs = (DPNCs-) U{NyNwy | n < w}, there exists
nd. < w such that
{NnNwy | n<w} = {Cs (ki.(m)) | nl. <m < w}.
And so

(Ng,ﬁ‘(k.ﬁ,~(m)) |nd. Sm<w) = (N{ A, | n<w)=(NaNHs|n<w).
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For all sequences (m; | | < w) of strictly increasing natural numbers with n¥, < mg and all €-chains

(M |1 < w) in Hg with (M) |l < w) 2u, (N (k9. (myyy | { < w) which is a subsequence of (No N Hp | n < w),
o= (k. (m
we have (MiNK |l<w) & S.

Hence this g works.

Now apply forcing axiom to this P. We have a club D in w; and an €-chain (N, | 1 < w;) which works
for (K. S,6.a) in F-RP.

§3. Iteration theorem
We show FVICol generic-limsup-semiproper combined with semiproper iterates under the simple itera-
tions. For an account on the simple iterations, see [M].
3.1 Theorem. Let I = ((Py | a <), Qo | o < v)) be a simple iteration such that
e Forall a < v, |-p, “Qq is semiproper”.
e Forall a < v, |Fp, “Qq is FYIC>l_generic-limsup-semiproper”,

where FVIGal is formed in V[G,] as the set of cofinal subsequences of the (Cs(n) | n < w)’s for all
d € A. Hence FVI%! may contain new cofinal subsequences than the original = FV.

Then for all o < v, we have ||-p, “the tails I?,, are semiproper and F" % l.generic-limsup-semiproper”.

In particular, P, is semiproper and F" -generic-limsup-semiproper.

3.2 Iteration Lemma. Let 6 be a sufficiently large regular cardinal and N be a countable elementary
substructure of Hg with I,(Cs | § € A) e N.
Let (a.a*,a,p, (M, | n < w)) be such that

e <o <.

e a€ P,.p€ P, and a < pla.

e al-p,“(M, | n < w) is an €-chain in H‘;/[G“] such that N U {Gn.p} C My and that (M, Nw; | n <
w) € FVIGal»,
Then there exists ¢ € P,- such that

¢ gl =a and g <p.

e all-p, " qfla, ) ”‘y)(.c;,,] “Mn(Gaa+] Nwy = M, Nw, for infnitely many n < w”".

We extract sort of typical constructions involved as (Technical construction 1--3).
Lemma. (Technical construction 1) Let (o, a*, a.p. (5,’: | k < w).t) be such that

o a < a® <wvand o is limit.
e € P,.p€ Py and a < pla.
. (5,’(’ | k < w) are stages for p.
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0~ 1l-p.. 6 = a”.
all-p,“c < pand z[a € G,".
Then there exists (3, b, =, (5; | & < w)) such that
o< 8 <ar.
be P3, bl <a, € P, and b < 2[3.
bla|b-p, “ =27,
(8f | k < w) are stages for z and for all k < w, -p,. “6F., < 8F" (a step ahead).
b~ 1lp,. “65 = .

Lemma. (Technical construction 2) Let (a, o, a,p, (5}: | K < w),z) be as in technical construction 1.

Then there exists ((8;, b;, x4, (S,f" | k <w)) | i< u)such that

B=PBb=b,xz=1;, (| k<w)= (6,’;’ | k < w) serve exactly as in technical construction 1.
For i, j < p such that i # j, we have that b;[« and b;[a are incompatible in P,.
{bia | i < u} forms a maximal antichain below a in P,.

Lemma. (Technical construction 3) Let (a, a*, a,p, (5,’3 | k < w), (M, | n < w)) be such that
a < a* <vand o is limit.

a € Py, pe P,. and a < pla.

(87 | k < w) are stages for p in P,..

a”~1|p,. “68 = a”

alp, “(M, | n< w) is an €-chain in H, VIGal with N U {Garp, B2 | k < w)} C My,

Let T be a tree such that T'C <“ON with {#} = Ty. For o0 = 0, let

”:a.am:a,paxp,(r;gIk<w)=(5£|k<w)and{]\;12|n<w>:(1t}[n|n<w>.

!
For all o € T, we have (a%,a%,p%, (87 | k < w) (M7 | n < w)) such that
a<a” <a*.
a? € Pyo,p® € Pav.a%fa < a, p” < pand a? < p°la’.
(5,‘: | k < w) are stages for p° in P,..
1lp,. “53’" =",

a” |p,. “AMZ | n < w) is an €-chain in H;"!G"”} with N U {Gar,p%, (67 | k < w)} C ME”.
For all 7 € sucr (o), we have (rh(r,n) | n < w) such that
a” <a’.
a’ja” < a’.
pT < p?in Py-.
(6] | k < w) are a step ahead of (67 | k < w).

a7 [07 |lp,e “ 7 [[0%, @) Il IS0 NI (Garar) Ny = ME Ny

a’ |p,. “((r,n) | n < w) is a sequence of strictly increasing natural numbers”.
a |-p,. “MT = MS, FrmyGarar]”.



72

o a” {|-p, . “foralln <w, AY Awy = M?

m(r.n) ﬂ “h e
Let g < p be a fusion of a’s in P,
Then there exists a sequence (n; | k¥ < w) of P,.-names such that

1l

® gll-p..“(Nk | k < w) is a sequence of strictly increasing natural numbers”.

e For all k < w, we have g |-p_. “My, Nwy = Ma, [Gaa-] Nwi”.

More specifically, we may calculate (ix | £ < w), (ax | kK < w), (on | k < w), (pr | k¥ < w) and
(m(k.,n) | k,n <w) in V[G4-] such that, where M =, N abbreviates M Nw; = N Nwy,

o My[Gupar] € ME(Gagar] =u, ME = M.

° A'{[m(UAU){GOOQ'] C )\[m(() 0){0(,0“,][(;010-} = ’\I("U {G(no'] = x!('()) = ]\/{2}(0 0y A’fnl(o.o).
. A;]n'(o m(1 0))IGao ] C A!m(Om(l 0)) [ n()(xx][Golﬂz][Gaz(x'] = 1’\[7(,:('1 0)[G0102H 02(,-} = Mém’ll)[Gaza.]
) ]
M = A[r<r:(()l 0 =o1 MR 0oma.0n = Mmomaon-
In general,
00 =a = ap.

a0 nin) — Qkt1-
ax = l(ax).
M2 = M,.
M) = Moo [Cagar -

]\I<m> =4, ]\1,”(() n):

]\/I-rgi()‘ ik te) o AIr(rz(()L +1“:‘l>)[G"k+10k+ 2]'

A{vgi()v"‘ik-ik*\) —_ M,S?i;f",,’)

AI(?[Gaoa‘} =w A’[o-
Méiu‘mv”)[cﬂkﬂo‘] =w A{éiosm.i”
And so
1"-{0[000(}‘] =un A’]O-
J\'{m(o.m(l.-~-.m(lc.0)~-~)}[Guncr'j w ‘)\':[m(().m(l,---.rn(k:.())m))

Where m(k,n) abbreviates m({ip, -+, ix). n).

We give a proof of iteration lemma 3.2.

3.2 Lemma. (Iteration Lemma) Let 6 be a sufficiently large regular cardinal. Let N be a countable
elementary substructure of Hg with I,(Cs | § € A) € N.
Let (o, a*,a,p, (Mn | n < w)) satisfy

e a<a*<v.
eac P,,p€ P, and a < p|a.

e all-p, "N U{Ga. p} C Mo, (M, | n < w) is an €-chain in H Gl and (M,0w; | n<w)e FVEG Gal»,

Then there exists (g, ((n) | n < w)) such that
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e g€ P,.and g <p.
o gla=a.

qlt-p,.

“

m(n) are strictly increasing natural numbers and Z\:'Iﬁ,,m)[G'c,- [a, ") Nwy = ]Wm(n) Nwi”.

Notational Remark, Let @ < 3 and G5 be Pg-generic over V. Then

G, denotes Ggla = {r[a | r € Gg} which is P,-generic over V.
H, denotes {r(a)|G4] | 7 € G} which is Qa = Qa[Gal-generic over V[Gy].

If 7 is a P,-name, then we may view #[G,] as a term z[G»[@] being interpreted by Gg in V[Gg). We
simply denote this by z for easier notation. For sequences s = (&, | n < w) of P,-names, we abbreviate as
follows;

e 2, = £,][Gq] (the n-th value of the interpretation of a term (s(n)[ o) } J)) by Ga in VI{G4])
= £,]Gpla] (the n-th value of the interpretation of a term (3(n)[Gsld] | n ) by Gg in V|Gg]) for
each n < w.

Proof. By induction on o* for all (o, a,p, (M, | n < w)).

Case 1. (Successor Steps Essential) Let (o, + 1,a,p, (Mn | n < w)) be as in the hypothesis. Since
P, “Qa is FV[Cel-generic-limsup-semiproper” and a |l-p, “p(a) € Qa N My, (M, | n < w) is an €-chain
in H, ViGal ang (M, Nwi | n < wy € FVICal" we have a|p, “there exists 7 < p(a) in Q. such that

7 f}—;‘[( Yn < w | Mp|Hy)Nwy = MyNw1} is infinite””. Let ¢ € Pyy1 such that g = a and a |I-p, “g(a) =

7. Then g < pin Pyqq and gl-p,,, ¢ Mn[Caas1]Nwy = Mp[Ho)Nwy = M, Nw, for infinitely many n < w”.
Case 2. (Successor Steps General) Let (a, B+ 1,a.p, (M, | n < w)) be as in the hypothesis. We may
assume o < 3. Apply the hypothesis of induction to (a, 8,a,p[8, (Mp { n < w)). We have (¢, (th(n) | n <
w)) such that
e ¢ € Py,a=¢qaand ¢ <p[s.
e ¢' |- p,“rn(n) are strictly increasing natural numbers and My, (n)[Gap] w1 = My ny Nwy for all n < w”.
Hence ¢’ |- p; “(Mmn)[Gag] | n < w) is an €-chain in Hy VIGal such that N U {G3,p} € My(0)[Gagl and
(Mpm)[GaplNwr | n <w) € FVICsl"  Now we are in case 1 with 8,8+ 1,¢",p, (Mpm)[Gap) | n <

w)). Hence we have ¢ € Py such that ¢[8 = ¢/, ¢ < p and ql-py,, “Mpn(n)[Gap)[Gp+1] Nwi =
M ()G ap] Nwy for infinitely many n < w”. And so gla = a and q ll-p,,, “Mn[Gap+1] Nw1 = Mm Nwy
for infinitely many m < w”.

Case 3. (Limit) Let (a,a",a,p, (M, | n < w)) be as in the hypothesis. We assume o* is limit.
Construct a tree representation T and a map (o — (a”,a%,p%, (87 | n < w). (M | n < w)) | ¢ € T) such
that

For () =0 € T, we set

0) @ = a,ab = a,p" =p, (5,9 | k < w) be any stages for p such that Sé> = & and that a|l-p, “(5,9 | k<
w) € My” and (MY |n<w) = (M, |n<uw).
In general, for 0 = (ip,- -, %k—1) € Tk, we demand

(1) a<a? <a™.

(2) a® € Pyo and a°[ax < a.

(3) p° € Py. and p? < p.

(4) a® < p"fa”.

(5) (67 | n < w) are stages for p°.

(6)

D

71 |p,. “68 = a” (Oth-stage self-decisive condition).
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(7) (M7 | n < w) is a sequence of P,,a -names such that a% | p,, “N U {G\.p7 (67 | k < w)} C Mg,
(M2 | n < w) is an €-chain in Hg Gl and (.’\[f,' Nwy | n<w)eFY (Gl

For 7 = o7 (i) = (i, -.ik—1.%k) € Tk41, there exists a sequence (ii(r.n) | n < w) of Pyr-names and
we demand
(8) a® <.
y aTfa” <a”.
) T <p7.
) a”[a® |-p. “pT. (87 | n < w) € M{ and p"[[a°,a*) is (Pyoq-, MZ)-semi-generic”.
(12) Foralln < w, |Fp.“ n+1 < 67" (a step ahead).
) pTla" T lp,. “55 = a"" (Oth-stage self-decisive condition).
) @’ lk-p,- “(m(7.n) | n < w) is a sequence of strictly increasing natural numbers and for all n < w,
m(r,n) > 1, M2, (Gawar] = M and MZ, ey N1 = M nw™.

m(r.n)

The contruction is by recursion on k < w. For k = 0, we set Tp = {0} and sct a?.a® p? (82 | n < W)
and (M? | n < w) as specified. This is possible as a |- p, “N U{Ga.p} C Mo". Then it is easy to see that all
the assumptions (1) through (7) for o = 0 are satisfied.

Suppose we have constructed T, and a?,a%,p%, (87 | n < w) and {Alf,’{ | n < w) for each ¢ € Tk
such that (1) through (7) are satisfied. Let v = a”, w = a”, 2 = p7, (§p | n < w) = (67 | n < w) and
(N, In < &) = (MZ |n <w) for shorter notation. Then w € P, forces that

e NU{Gy,z,{b, | n < w)} C Npand z[vy € G,.

Hence by the iteration lemma for semiproperness and lemmas on stages (please see [M] for an account),
there exists (8.y, (0¥ | n < w)) in V[G] such that
e vy < B <ar.
e y<urin P,-.

(6,’{ | n < w) are stages for y.

© y[371-p,. 508 = 5.

e Foralln <w, |Fp,. “bny1 < 6¥” (a step ahcad).
o ylv€G,.

o yl[v.0*) is (Pyg~, Np)-semi-generic

(B.y, (6% | n < w)) € Ny.

Then for any d < w in P, such that d decides the values of 3,y and (8¢ | n < w), we may consider
(v.83.d.y[B.(Nn | 1 € n < w)) satisfying

* ’)"<5’<a‘.

e dec P,. y[ﬁepgandd<(y[ﬂ[
o dl-p, “NU{G+,y[3} € Ny and (N, | 1 < n < w) is an €-chain in H, Y161 and (NnNwi |1<n<w) e
]:'V[(" I

Now we apply the hypothesis of induction at 3. Hence there exists (b. (rh(n) | n < w)) such that

e be Py b[y=dand b <y[j3.

e bl p,“(m(n) | n < w) is a sequence of strictly increasing natural numbers such that 1 < r(n) and
Ny [Gas) Dwr = Npygny Nun ™.
And so

e bl-p, “NU{Gpy, 6% | n < W} C NivoylGysls (Neivoy[G-p] | n < w) is an e-chain in H,:/IG“l and
(Nrn(ny[Gal Ny | n < w) € FYICal,
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Since there exists d as above predense many below w, we may construct Ty, and
(1= (a7,a7,p", (6] [ n <w), (M | n<w), (m(r,n) | n<w) | 7€Trs1),

where the correspondences are o” = g,a” = b,p” Y, 0T | n < w) =¥ | n < w), (mnn) |n<w) =
(i(n) | n < w) and (M | n < w) = (Npp(n) [Gs) 1 n < w) This completes thc construction.

Let g be a fusion of the tree representation I". Let G be P,.-generic over V with ¢ € G4-. Let us
calculate (4, | n < w) from the generic cofinal path throucfh T so that for all k < w, (i, | n < k) € T} and
qlin I n<k) e Ga("w In<k) .
Let
M, = M'n[GQJ,

k _ a(i" | n<k) k a(tn 1n<k)’ pk! — plin ln<k)’

a p
8k, = 85m1n<®) Mk = M Im<E) MK = ME (G k], mk,n) = mh((o, - -, ik), ) [Gaksr]-

, a

Then
a* € Gor, p* € Gq-.
]VIO :wl ]"YU[GOO"]»
My0.m(1,m(k.0)-)[Gavar] -+ [Gararir] = MFH,
A/[m(O,m(1,-~-.m(k,0)w))[Ga”a’] ven [G‘,kak H”quua = ]\](k+1[G'am 1(,.],
Mm(O,m(l.-~-.m(k,0)‘--))[Ga"a‘] - Alm(O,m(l.---,m(k,())--'))[Gva(’nz’, o [Gu“af“‘“][Guk“a‘]-
Hence
M 0.m(1,-m(k.0)-)[Gavar] € My T G orrige] Dy MEY! 20y Min(n(lmm(k.0))) -
So

Mp0,m(1,m(k,0)-)]Cavar] Nwr € MEY G oriig:] Nwy = MEF Nwy = Moo.m, . mk,0)-)) Nwi.

So
A‘Im(O,m(l,~~-.m(k:‘())--v)) gw; Ajm(().m.(l.---.'m(k,O)--~))[Gn”u*]-
Note that m(0,m(1,-- -, m(k,0)-.)) strictly increasc.
1
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