<table>
<thead>
<tr>
<th>Title</th>
<th>A maximal forcing axiom compatible with weak club guessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MIYAMOTO, Tadatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1619: 63-75</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140203</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A maximal forcing axiom compatible with weak club guessing
Tadatoshi MIYAMOTO

Abstract

We show there is no maximal forcing axiom compatible with tail club guessing. On the other hand, we may formulate a maximal forcing axiom compatible with a weak club guessing.

Introduction

We formulate a forcing axiom compatible with a tail club guessing in [M]. This note is a continuation to [M]. We show a maximal forcing axiom compatible with tail club guessing does not hold. On the other hand, we may force a maximal forcing axiom compatible with a weak club guessing. Namely, if a ladder system \((C_\delta \mid \delta \in A) \) is weak club guessing and a supercompact cardinal exists, then there is a model of set theory where

1. \((C_\delta \mid \delta \in A) \) remains weak club guessing. Namely, for any club \(D \) of \(\omega_1 \), there exists \(\delta \in A \) such that \(D \cap C_\delta \) is infinite.
2. Let \(P \) be any preorder such that \(P \) preserves every stationary subset of \(\omega_1 \) and that for any \(B \subseteq A \) such that the ladder system \((C_\delta \mid \delta \in B) \) is weak club guessing, \(P \) also preserves the ladder system \((C_\delta \mid \delta \in B) \) to be weak club guessing. Then every system \((D_i \mid i < \omega_1) \) of dense subsets of \(P \) has a filter which hits every \(D_i \).

§1. No maximal forcing axioms are compatible with TCG

We set our notation.

1.1 Definition A sequence \((C_\delta \mid \delta \in A) \) is a ladder system, if

- \(A \subseteq \{ \delta \mid \delta < \omega_1, \delta \) is a limit ordinal\).
- For every \(\delta \in A \), \(C_\delta \) is a cofinal subset of \(\delta \) and is of order type \(\omega \).

A ladder system \((C_\delta \mid \delta \in A) \) is tail club guessing, if for any club \(D \subseteq \omega_1 \), there exists \(\delta \in A \) such that \(C_\delta \setminus D \) is finite. A ladder system \((C_\delta \mid \delta \in A) \) is weak club guessing, if for any club \(D \subseteq \omega_1 \), there exists \(\delta \in A \) such that \(C_\delta \cap D \) is infinite. Hence if \((C_\delta \mid \delta \in A) \) is tail club guessing, then it is weak club guessing.

Fix a ladder system \((C_\delta \mid \delta \in A) \). We write for small sets and positive sets as follows;

- \((TCG) = \{ X \subseteq \omega_1 \mid (C_\delta \mid \delta \in A \cap X) \) fails to be tail club guessing\}.
- \((TCG)^+ = \{ X \subseteq \omega_1 \mid (C_\delta \mid \delta \in A \cap X) \) is tail club guessing\}.

Similarly,

- \((WCG) = \{ X \subseteq \omega_1 \mid (C_\delta \mid \delta \in A \cap X) \) fails to be weak club guessing\}.
- \((WCG)^+ = \{ X \subseteq \omega_1 \mid (C_\delta \mid \delta \in A \cap X) \) is weak club guessing\}.

We know of a forcing axiom which is compatible with tail club guessing.

Theorem. \((M)\) Let \((C_\delta \mid \delta \in A) \) be tail club guessing. Then we may force the following, assuming that a supercompact cardinal exists.

1. \((C_\delta \mid \delta \in A) \) remains tail club guessing.
2. Forcing axiom \(^+ \) holds for the class of partially ordered sets \(P \) which are semiproper and \((C_\delta \mid \delta \in A)\)-\(\omega \)-semiproper,
On the other hand,

1.2 Proposition. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be a ladder system. Let \(n_* < \omega \). Then there exists a partially ordered set \(P \) and a \(P \)-name \(\check{D} \) such that

(1) \(P \) is proper and \((TCG)^+ \)-preserving.
(2) \(\models \neg \vDash_{\check{D}} \text{is a club in } \omega_1 \text{ such that for all } \delta \in A, |C_{\delta} \setminus \check{D}| \geq n_* \).

\(\square \)

We make use of this \(P \) in two ways. First, we observe TCG-sequences may get killed at limit stages of iterated forcing.

1.3 Corollary. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be a ladder system. Then there exists an iterated forcing \(\langle P_n \mid n < \omega \rangle \) such that

- If \(\langle C_{\delta} \mid \delta \in A \rangle \) is tail club guessing, then for all \(n < \omega, \models \neg \vDash_{P_n} \langle C_{\delta} \mid \delta \in A \rangle \) remains tail club guessing".
- If \(P_n \) is any limit of the \(P_n \)'s, then \(\models \neg \vDash_{P_n} \langle C_{\delta} \mid \delta \in A \rangle \) must fail to be tail club guessing".

Second, we put above in terms of forcing axiom. Suppose \(\langle C_{\delta} \mid \delta \in A \rangle \) is tail club guessing. Then no maximal forcing axioms hold for the class of partially ordered sets \(P \) which preserve all stationary subsets of \(\omega_1 \) and all elements of \((TCG)^+ \) (i.e. for any \(X \subseteq \omega_1, \text{ if } \langle C_{\delta} \mid \delta \in A \cap X \rangle \text{ is tail club guessing, then it remains so in the generic extensions of } P \)).

1.4 Corollary. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be tail club guessing. Let forcing axiom hold for the class of partially ordered sets \(P \) such that \(P \) are proper and that for any \(B \subseteq A \) such that \(\langle C_{\delta} \mid \delta \in B \rangle \) is tail club guessing, then \(\models \neg \vDash_{\check{D}} \langle C_{\delta} \mid \delta \in B \rangle \) remains to be tail club guessing". Then we have a contradiction.

\(\square \)

Proof of proposition 1.2. Let \(p \in P \), if \(p = (\alpha^p, D^p) \) such that

(1) \(\alpha^p < \omega_1 \).
(2) \(D^p \subseteq \alpha^p + 1, \alpha^p \in D^p \) and \(D^p \) is closed.
(3) For all \(\delta \in A \) with \(\delta \leq \alpha^p, |C_{\delta} \setminus D^p| \geq n_* \).

For \(p, q \in P \), let \(q \leq p \), if

(1) \(\alpha^p \leq \alpha^q \).
(5) \(D^p = D^q \cap (\alpha^p + 1) \).

Claim. (Dense) For any \(p \in P \) and any \(\eta \) with \(\alpha^p < \eta < \omega_1 \), there exists \(q \leq p \) such that \(\alpha^q = \eta \).

Proof. Let \(\alpha^q = \eta \) and \(D^q = D^p \cup \{ \eta \} \). Then this \(q = (\alpha^q, D^q) \) works.

\(\square \)

Claim. \(P \) is proper and \(\sigma \)-Baire.

Proof. Let \(\theta \) be a sufficiently large regular cardinal. Let \(N \) be a countable elementary substructure of \(H_\theta \) with \(P \in N \). Let \(p \in N \cap P \). We want \(q \leq p \) such that \(q \) is \((P, N) \)-generic. Let \(\delta = N \cap \omega_1 \). We construct a \((P, N) \)-generic sequence \(\langle \eta_n \mid n < \omega \rangle \) such that \(p_0 \leq p \) and that \(\{ \alpha^p \cap C_{\delta} \} \setminus D^{p_0} \geq n_* \). Let \(\alpha^q = \delta \) and \(D^q = \{ D^{p_n} \mid n < \omega \} \cup \{ \delta \} \). Then this \(q = (\alpha^q, D^q) \) works.

\(\square \)

Claim. If \(X \subseteq \omega_1 \) such that \(\langle C_{\delta} \mid \delta \in A \cap X \rangle \) is tail club guessing, then \(\models \neg \vDash_{\check{D}} \langle C_{\delta} \mid \delta \in A \cap X \rangle \) remains to be tail club guessing".
Proof. Suppose $p \Vdash \text{"C" is a club in } \omega_1^\omega$. Want $q \leq p$ and $\delta \in A \cap X$ such that $q \Vdash \text{"C}_\delta \setminus \text{C" is finite".}$ To this end, take an \in-chain $\langle N_i \mid i < \omega_1 \rangle$ in H_θ, where θ is sufficiently large. Since $\langle \text{C}_\delta \mid \delta \in A \cap X \rangle$ is tail club guessing, there exists $\delta \in A \cap X$ such that $\text{C}_\delta \setminus \{N_i \cap \omega_1 \mid i < \omega_1 \}$ is finite. By renaming, we have an \in-chain $(N_n \mid n < \omega)$ in H_θ such that $\{N_n \cap \omega_1 \mid n < \omega\}$ is an end-segment of C_δ. We may assume that $P, p, \text{C} \in N_0$ and $|\text{C}_\delta \setminus \{N_0 \cap \omega_1\}| \geq n_*$. We construct a descending sequence $(q_n \mid n < \omega)$ of conditions such that

- $q_0 \leq p$.
- $\|(\alpha^{q_0} \cap \text{C}_\delta) \setminus D^{q_0}\| \geq n_*$.
- $q_n \in N_{n+1} \cap P$ is (P, N_n)-generic.

Let $\alpha^{q_0} = \delta$ and $D^{q_0} = \bigcup\{D^{p} \mid n < \omega \} \cup \{\delta\}$. Then $q \Vdash P_n \cap \omega_1 \in \text{C}_\delta$ for all $n < \omega$. Hence this q works.

Claim. Let G be P-generic over V. Let $D = \bigcup\{D^{p} \mid p \in G\}$. Then D is a club in ω_1 and for all $\delta \in A$, $|\text{C}_\delta \setminus D| \geq n_*$.

Proof of corollary 1.3. Iteratively force clubs D_n in ω_1 so that for all $\delta \in A$ and all $n < \omega_1$, $|\text{C}_\delta \setminus D_n| \geq n$. Then let $D = \bigcap\{D_n \mid n < \omega\}$. If ω_1 gets preserved, then D is a club in ω_1 such that for all $\delta \in A$, $\text{C}_\delta \setminus D$ is infinite. Hence $\langle \text{C}_\delta \mid \delta \in A \rangle$ fails to be tail club guessing. If ω_1 gets collapsed, then this entails the same conclusion.

Proof of corollary 1.4 is the same. Argue in V and get a sequence $(D_n \mid n < \omega)$ of clubs in ω_1.

§2. A maximal forcing axiom is compatible with WCG

We have seen that there is no maximal forcing axiom compatible with tail club guessing (TCG). But a weak club guessing (WCG) admits maximal one.

2.1 Definition. Let $\langle \text{C}_\delta \mid \delta \in A \rangle$ be a ladder system. Let \mathcal{F} denote the set of all cofinal subsequences of C_δ (viewed as sequences of length ω) for all $\delta \in A$. Let $\text{Seq}^{\omega}(\omega_1)$ denote the set of all sequences $(a_n \mid n < \omega)$ such that each a_n is a countable subset of ω_1. Hence we have $\mathcal{F} \subseteq \text{Seq}^{\omega}(\omega_1)$. Let P be a preorder, we say P is \mathcal{F}-limsup-semiproper, if for all sufficiently large regular cardinals θ and all \in-chains $\langle N_n \mid n < \omega \rangle$ in H_θ with $P, \langle \text{C}_\delta \mid \delta \in A \rangle \in N_0$, if $\langle N_n \cap \omega_1 \mid n < \omega \rangle \in \mathcal{F}$, then for any $p \in N_0 \cap P$, there exists $q \leq p$ such that for infinitely many $n < \omega$, q is (P, N_n)-semi-generic.

Similarly, we say P is \mathcal{F}-liminf-semiproper, if q is (P, N_n)-semi-generic for all but finitely many $n < \omega$.

Lastly, we say P is \mathcal{F}-generic-limsup-semiproper, if $q \Vdash P_{\omega_1}[G] \cap \omega_1^\omega = N \cap \omega_1^\omega$ for infinitely many $n < \omega$.

Hence we are looking at the set $\{n < \omega \mid N[G] \cap \omega_1^\omega = N \cap \omega_1^\omega \}$ in $V[G]$ which might be infinite and may or may not be in V.

For the notion of ω-stationary sets $S \subseteq \text{Seq}^{\omega}(K) = \{a_n \mid n < \omega \} \cap K$ for all $n < \omega$, may see [M]. They are analogously formulated as the stationary sets in $|K|^\omega$.

2.2 Proposition. Let P be a preorder.

- If P is ω_1-closed, then P is ω-semiproper.
- If P is ω-semiproper, then P is \mathcal{F}-liminf-semiproper.
- If P is \mathcal{F}-liminf-semiproper, then P is \mathcal{F}-limsup-semiproper.
- If P is \mathcal{F}-limsup-semiproper, then P is \mathcal{F}-generic-limsup-semiproper.
- If \mathcal{F} is ω-stationary and P is \mathcal{F}-generic-limsup-semiproper, then P preserves ω_1.
2.3 Definition. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be a ladder system. We formulate (proper, \(\langle C_{\delta} \mid \delta \in A \rangle \)-limsup-semiproper, full) -Reflection Principle (abusively, \(\mathcal{F}\)-RP) as follows: Given any \((K, S, \theta, a)\) such that

- \(K \) is a set with \(K \supseteq \omega_{1} \).
- \(S \subseteq \text{Seq}^{\omega}(K) \).
- \(\theta \) is a regular cardinal with \(K \in H_{|\text{TC}(K)|}^{+} \in H_{(2|\text{TC}(K)|)^{+}} \in H_{\theta} \).
- \(a \in H_{\theta} \).

There exists \((D, \langle N_{i} \mid i < \omega_{1} \rangle) \) such that

- \(D \) is a club in \(\omega_{1} \).
- \(\langle N_{i} \mid i < \omega_{1} \rangle \) is an \(\varepsilon \)-chain in \(H_{\theta} \) with \(a \in N_{0} \).
- For any \(\delta \in \mathcal{Y}^{*}(D) = \{ \delta \in A \mid |C_{\delta} \cap D| = \omega \} \), let \(\langle C_{\delta}(k_{\delta}(m)) \mid m < \omega \rangle \) enumerate \(\{ C_{\delta}(k) \mid C_{\delta}(k) \in D \} \).

Then there exists \(n_{\delta} < \omega \) such that we have either (1) or (2).

1. \(\langle N_{i} \mid i < \omega_{1} \rangle \cap K \cap n_{\delta} \leq m < \omega \rangle \in S \).
2. For any strictly increasing sequence \(\langle m_{l} \mid l < \omega \rangle \) of natural numbers with \(n_{\delta} \leq m_{0} \) and for any \(\varepsilon \)-chain \(\langle M_{l} \mid l < \omega \rangle \) defined on \(\langle N_{i} \cap K \mid l < \omega \rangle \notin S \).

We might call \(i_{\delta} = C_{\delta}(k_{\delta}(n_{\delta})) \) a critical point of \(C_{\delta} \) with respect to \(D \) for each \(\delta \in \mathcal{Y}^{*}(D) \). Hence we are looking at \(\langle N_{i} \mid i_{\delta} \leq i < \omega \rangle \cap D \).

2.4 Theorem. Let \(\mathcal{F}^{\mathcal{Y}} \subseteq \text{Seq}^{\omega}(\omega_{1}) \) be defined by \(\langle C_{\delta} \mid \delta \in A \rangle \). Then \(\mathcal{F}^{\mathcal{Y}^{[G_{\alpha}]}} \)-generic-limsup-semiproper combined with semiproper iterates under the simple iteration. (The \(\mathcal{F}^{\mathcal{Y}^{[G_{\alpha}]}} \) are uniformly defined from the ladder system \(\langle C_{\delta} \mid \delta \in A \rangle \) in each intermediate universe \(V[G_{\alpha}] \). The exact value of \(\mathcal{F}^{V[G_{\alpha}]} \) increasingly changes as \(\alpha \) gets bigger.)

2.5 Corollary. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be weak club guessing so that \(\mathcal{F} \) defined from \(\langle C_{\delta} \mid \delta \in A \rangle \) is \(\omega \)-stationary. Let us recall \(\mathcal{F} = \{ \langle C_{\delta}(k(m)) \mid m < \omega \rangle \mid \delta \in A \} \). \(\langle k(m) \mid n < \omega \rangle \) is a sequence of strictly increasing natural numbers. We may force the following, if there exists a supercompact cardinal.

1. If \(\langle C_{\delta} \mid \delta \in A \rangle \) is weak club guessing in the ground model, then it remains to be so in the extensions.
2. Forcing axiom \(\square^{+} \) holds for the class of partially ordered sets \(P \) such that \(P \) is \(\mathcal{F} \)-generic-limsup-semiproper.

2.6 Lemma. Let \(\langle C_{\delta} \mid \delta \in A \rangle \) be a ladder system. Let \(\mathcal{F} \subseteq \text{Seq}^{\omega}(\omega_{1}) \) be defined from the system. Let \(\mathcal{F} \)-Reflection Principle hold. Let us consider \((WCG)^{+} \) with respect to the system. Let \(P \) be a preorder. Then the following are equivalent on \(P \).

1. \(P \) is \((WCG)^{+} \)-preserving.
2. \(P \) is \(\mathcal{F} \)-generic-limsup-semiproper.

The \(\mathcal{F}\)-RP gets forced by a little better notion of forcing than semiproper + \(\mathcal{F} \)-generic-limsup-semiproper partially ordered set.

2.7 Lemma. Let \(\mathcal{F} \subseteq \text{Seq}^{\omega}(\omega_{1}) \) be as above. Let forcing axiom hold for the class of preorder set \(P \) such that \(P \) is proper and that \(P \) is \(\mathcal{F} \)-limsup-semiproper. Then \(\mathcal{F} \)-Reflection Principle holds.

2.8 Corollary. The following is consistent, if there exists a supercompact cardinal.

1. \(\langle C_{\delta} \mid \delta \in A \rangle \) is weak club guessing.
2. The forcing axiom \(\square^{+} \) holds for the class of preorder set \(P \) such that \(P \) preserves every stationary subset of \(\omega_{1} \) and that \(P \) preserves every member of \((WCG)^{+} \) with respect to \(\langle C_{\delta} \mid \delta \in A \rangle \).
Proof of lemma 2.6. (2) implies (1): No use of \mathcal{F}-RP made in this direction. Let $X \subseteq \omega_1$ such that $(C_\delta \mid \delta \in X \cap A)$ is a club guessing. Suppose $p \vdash \neg \langle C \mid \delta \in X \cap A \rangle$ is a club. Want $q \leq p$ and $\delta \in X \cap A$ such that $q \vdash \neg \langle C \rangle$. To this end, let θ be a sufficiently large regular cardinal. Since $(C_\delta \mid \delta \in X \cap A)$ is club guessing, we may take an ϵ-chain $(N_\delta \mid n < \omega)$ in H_δ such that $(N_\delta \cap \omega_1 \mid n < \omega) \in H_\delta$ is a cofinal subset of C_δ, where $\delta = N_\omega \cap \omega_1$ and $N_\lambda = \bigcup\{N_\delta \mid n < \omega\}$. We may assume P, $(C_\delta \mid \delta \in A), p, \dot{C} \in N_0$. Since P is \mathcal{F}-generic-limsup-semi-proper and $(N_\delta \cap \omega_1 \mid n < \omega) \in \mathcal{F}$, we have a q such that $q \vdash \neg p$ and $q \vdash \neg \langle N_\delta \mid n < \omega \rangle \in \mathcal{F}$ for infinitely many $n < \omega$. Hence $q \vdash \neg \langle N_\delta \mid n < \omega \rangle \in \mathcal{F}$ for infinitely many $n < \omega$ and so $q \vdash \neg \langle C \rangle$.

Claim. $B = \{\delta \in Y^*(D) \mid \delta \models \text{(1) in \mathcal{F}-RP}$\} \in (WCG)^+$.

Proof. Let E be a club in ω_1. Want $\delta \in B$ with $\langle C_\delta \cap E \rangle = \omega$. Since S is ω-stationary in Seq$^\omega(H_\theta)$, we may take an ϵ-chain $(N_\delta \mid n < \omega)$ in H_δ such that $D, \langle M_i \mid i < \omega_1 \rangle, E \in N_\delta$ and that $(N_\delta \cap H_\theta \mid n < \omega) \in S$. Let $N^*_\delta = \bigcup\{N_\delta \mid n < \omega\}$ and $\dot{\delta} = N^*_\delta \cap \omega_1$. Then $(N_\delta \cap \omega_1 \mid n < \omega) \in S$ and is through $D \cap E$. In particular, $\delta \in Y^*(D)$ and $\langle C_\delta \cap E \rangle = \omega$. Let $\{N_\delta \cap \omega_1 \mid n < \omega\} \subseteq C_\delta \cap D = \langle C_\delta(k_m) \rangle \mid m < \omega \rangle$. By considering an end-segment, we may assume $(N_\delta \cap H_\theta \mid n < \omega) \in S^*$ with $C_\delta(k_m) < N^*_\delta \cap \omega_1$.

Want (1) holds at this δ so that $\delta \in B$. Since $N^*_\delta \supseteq \omega_1, M(N^*_\delta \cap \omega_1) = \omega$ for all $n < \omega$ and $(N_\delta \cap H_\theta \mid n < \omega) \in S^*$, (2) in \mathcal{F}-RP fails. Hence (1) must hold in \mathcal{F}-RP.

Proof of lemma 2.7. Let (K, S, θ, a) be as the hypothesis of \mathcal{F}-RF. We force $D, \langle N_i \mid i < \omega \rangle$ and $\langle n_\delta \mid \delta \in A \rangle$ by initial segments. Let $p \in P$, if $p = \langle \alpha^p, D^p, \langle N_i^p \mid i \leq \alpha^p \rangle, \langle n_\delta^p \mid \delta \in A \cap (\alpha^p + 1) \rangle \rangle$ satisfies the following:

1. $\alpha^p < \omega_1$.
2. $D^p \subseteq \alpha^p + 1, \alpha^p \in D^p$ and D^p is closed.
3. $\langle N_i^p \mid i \leq \alpha^p \rangle$ is an ϵ-chain in H_θ with $a \in N^p_0$.
4. For each $\delta \in A \cap (\alpha^p + 1), n_\delta^p < \omega$. If $C_\delta \cap D^p = \omega$, then let $\langle C_\delta(k) \mid k < \omega \rangle$ enumerate C_δ and let $\langle C_\delta(k_m^p) \mid m < \omega \rangle$ enumerate $C_\delta \cap D^p$. And we demand either (i) or (ii).
(i) \(\langle N_{C_{k}(k_{m})}^{p} \cap K \mid n_{m}^{p} \leq m < \omega \rangle \in S\).

(ii) For any strictly increasing sequence \(\langle n_{m} \mid l < \omega \rangle\) of natural numbers with \(n_{m}^{p} \leq n_{0}\) and any \(\varepsilon\)-chain \(\langle M_{l} \mid l < \omega \rangle\) in \(H_{\theta}\) such that \(\langle M_{l} \mid l < \omega \rangle \supseteq_{\omega_{1}} \langle N_{C_{k}(k_{m})}^{p} \mid l < \omega \rangle\), we have \(\langle M_{l} \cap K \mid l < \omega \rangle \notin S\).

For \(p, q \in P\), we set \(q \leq p\), if

(5) \(\alpha^{p} \leq \alpha^{q}\).

(6) \(D^{\alpha} = D^{\alpha} \cap (\alpha^{p} + 1)\).

(7) For all \(i \leq \alpha^{p}\), \(N_{i}^{p} = N_{i}^{q}\).

(8) For all \(\delta \in A \cap (\alpha^{p} + 1)\), \(n_{\delta}^{p} = n_{\delta}^{q}\).

Claim. (Dense, Extension by Escape) For any \((p, \eta, x)\) such that \(p \in P\), \(\alpha^{p} < \eta < \omega_{1}\) and \(x \in H_{\theta}\), there exists \(q \in P\) such that \(q \leq p\), \(\alpha^{q} = \eta\) and \(x \in N_{q}\).

Proof. Let \(\alpha^{q} = \eta\), \(D^{q} = D^{p} \cup \{\eta\}\) and \(\langle N_{i}^{q} \mid i \leq \alpha^{q}\rangle\) be any \(\varepsilon\)-chain which end-extends \(\varepsilon\)-chain \(\langle N_{i}^{p} \mid i \leq \alpha^{p}\rangle\) and \(x \in N_{q}\). Let \(\langle n_{\delta}^{q} \mid \delta \in A \cap (\alpha^{q} + 1)\rangle\) be any sequence of natural numbers which end-extends \(\langle n_{\delta} \mid \delta \in A \cap (\alpha^{p} + 1)\rangle\). Since for any \(\delta \in A \cap (\alpha^{q} + 1)\), \(|C_{\delta} \cap D^{q}| = \omega\) iff \((\delta \leq \alpha^{p}\) and \(|C_{\delta} \cap D^{p}| = \omega)\), this \(q\) works.

Claim. (Targeted-Extension) Let \(\lambda\) be a sufficiently large regular cardinal and \(M\) be a countable elementary substructure of \(H_{\lambda}\) with \(P \in M\). Let \(\delta_{M} = M \cap \omega_{1}\). Then for any \((p, \xi, D)\) such that \(p \in M \cap P\), \(\xi < \delta_{M}\) and \(D \in M\) is a dense subset of \(P\), there exists \(r \in M \cap D\) such that \(r \leq p\), \(\xi < \alpha^{r}\) and \(C_{\delta_{M}} \cap D^{r} = C_{\delta_{M}} \cap D^{p}\).

Proof. We consider a family of maps indexed by \(p \in P\). Let \(p \in P\). Let \(\eta\) be such that \(\alpha^{p} < \eta < \omega_{1}\). Let \(r = f_{p}(\eta)\), where \(r \in D, r \leq p, \eta < \alpha^{r}\) and \(D^{r} \cap (\alpha^{p}, \eta] = \{\eta\}\). We may assume \((f_{p} \mid p \in P) \subseteq M\). Since \(p \in M\), \(f_{p} \subseteq M\). Let \(C(f_{p}) = \{\beta < \omega_{1} \mid \forall \eta \in M, \alpha^{p} < \eta < \beta, \alpha^{f_{p}(\eta)} < \beta\}\). Then \(C(f_{p})\) is a club in \(\omega_{1}\) and \(C(f_{p}) \subseteq M\). Take \(\beta \in C(f_{p}) \subseteq M\) such that \(\alpha^{q}, \xi < \beta\). Let \(\eta\) be such that \(\alpha^{p}, \xi, max(C_{\delta_{M}} \cap \beta) < \eta < \beta\). Then \(f_{p}(\eta) \in M\) and so there exists \(r \in M \cap D\) such that \(r \leq p, \xi < \alpha^{r}\) and \(C_{\delta_{M}} \cap D^{r} = C_{\delta_{M}} \cap D^{p}\).

Claim. (Proper) \(P\) is proper and \(\sigma\)-Baire.

Proof. Let \(\lambda\) be a sufficiently large regular cardinal and \(M\) be a countable elementary substructure of \(H_{\lambda}\) with \(P \in M\). Let \(p \in M \cap P\). Let \(\delta_{M} = M \cap \omega_{1}\). Then by repeating above claim, we may construct a \((P, M)\)-generic sequence \(\langle p_{n} \mid n < \omega \rangle\) such that \(C_{\delta_{M}} \cap D^{p_{n}} = C_{\delta_{M}} \cap D^{p}\) for all \(n < \omega\). Let \(\alpha^{q} = \delta_{M}\), \(D^{q} = \bigcup\{D^{p_{n}} \mid n < \omega\} \cup \{\delta_{M}\}\). \(\langle N_{q}^{q} \mid i \leq \delta_{M}\rangle = \bigcup\{\langle N_{q}^{p_{n}} \mid i \leq \alpha^{p_{n}}\rangle \mid n < \omega\} \cup \{\langle \delta_{M}, M \cap H_{\theta}\rangle\}\). \(\langle n_{\delta}^{q} \mid \delta \in A \cap (\delta_{M} + 1)\rangle\) be any end-extension of all of \(\langle n_{\delta}^{p_{n}} \mid \delta \in A \cap (\alpha^{p_{n}} + 1)\rangle\). Notice that \(C_{\delta_{M}} \cap D^{q} = C_{\delta_{M}} \cap D^{p}\) which is finite. Hence this \(q\) is a lower bound of the \(p_{n}\)'s.

Claim. \(P\) is \(\mathcal{F}\)-limsup-semiproper.

Proof. Let \(\lambda\) be a sufficiently large regular cardinal. Let \(\langle N_{n} \mid n < \omega \rangle\) be an \(\varepsilon\)-chain in \(H_{\lambda}\) such that \(K, \theta, P, (C_{k} \mid \delta \in A) \in N_{0}\) and \(\langle N_{n} \cap \omega_{1} \mid n < \omega \rangle \subseteq F\). Let \(N_{\omega} = \bigcup\{N_{n} \mid n < \omega\}\) and let \(\delta^{*} = N_{\omega} \cap \omega_{1}\). Let \(\langle C_{k}^{*} \mid k < \omega \rangle\) enumerate \(C_{\delta^{*}}\) and \(\langle C_{(k)} \mid k < \omega \rangle\) enumerate \(\langle C_{(k^{*})} \mid n < \omega \rangle\).

Let \(p \in N_{0} \cap P\). We want \(q\) such that \(q \leq p\) and \(q = (P, N_{q})\)-semi-generic for infinitely many \(n < \omega\). To this end, we argue in two cases.

Case 1. There exists a sequence \(\langle n_{l} \mid l < \omega \rangle\) of strictly increasing natural numbers and an \(\varepsilon\)-chain \(\langle M_{l} \mid l < \omega \rangle\) in \(H_{\theta}\) such that \(\langle M_{l} \mid l < \omega \rangle \supseteq_{\omega_{1}} \langle N_{n_{l}} \cap H_{\theta} \mid l < \omega \rangle\) and \(\langle M_{l} \cap K \mid l < \omega \rangle \in S\).

Apply the Sequential 3 H Lemma (see [M]) to get an \(\varepsilon\)-chain \(\langle M_{l}^{*} \mid l < \omega \rangle\) in \(H_{\lambda}\) such that

- \(\langle M_{l}^{*} \mid l < \omega \rangle \supseteq_{\omega_{1}} \langle N_{n_{l}} \mid l < \omega \rangle\).

\[M_\ast \cap H | l < \omega = M_\ast \cap H | l < \omega \in S. \]

Notice that \(\alpha^q = \delta^\ast = \cap \omega_{1} \) and \(\alpha^q = \delta^\ast = \cup \{ \delta^\ast, \cap \omega_{1} \} \). Let \(\alpha^q = \cup \{ \delta^\ast, \cap \omega_{1} \} \). exists

\[\text{Case 2. For all sequences } (n_l | l < \omega) \text{ of strictly increasing natural numbers and all } \in \text{-chains } (M_l | l < \omega) \text{ in } H_{\delta} \text{ with } (M_l | l < \omega) \subseteq (N_{n_l} \cap H_{\delta} | l < \omega), \text{ we have } (M_l \cap K | l < \omega) \notin S: \]

It suffices to get \(q \in P \) such that \(q \leq p \) and for all \(n < \omega, q \) is \((P, N_{n}) \)-generic. To this end, we may construct a descending sequence \((q_n | n < \omega) \) of conditions such that

\[p \geq q_n \in N_{n+1} \text{ and } q_n \text{ is } (P, N_{n}) \text{-generic}. \]

\[D^\omega \cap C_{\delta} = (D^\omega \cap C_{\delta}) \cup \{ M_\ast \cap H | l < \omega \}, \]

\[\alpha^q = \cup \{ M_\ast \cap H | l < \omega \} \]

\[\text{Let } C_{\delta} \cap D^\omega = \{ C_{\delta}(k^\omega_{\ast} (m)) | m < \omega \}. \]

\[\text{Since } D^\omega \cap C_{\delta} = (D^\omega \cap C_{\delta}) \cup \{ M_\ast \cap H | l < \omega \}, \text{ there exists } n^\omega_{\ast} \text{ such that} \]

\[\{ M_\ast \cap H | l < \omega \} = \{ C_{\delta}(k^\omega_{\ast} (m)) | n^\omega_{\ast} \leq m < \omega \}. \]

And so

\[\langle N^\omega_{C_{\delta}(k^\omega_{\ast} (m))} | l < \omega \rangle = \langle M_\ast \cap H | l < \omega \rangle = \langle M_l \cap H | l < \omega \rangle \in S. \]

Hence this \(q \) works.

\[\square \]
For all sequences \(\langle m_l | l < \omega \rangle \) of strictly increasing natural numbers with \(n^{\omega}_l \leq m_0 \) and all \(\varepsilon \)-chains \(\langle M_l | l < \omega \rangle \) in \(H_\theta \) with \(\langle M_l | l < \omega \rangle \supseteq_{\varepsilon\omega_1} \langle N^\theta_{C_\delta, (\delta, (m_l))} | l < \omega \rangle \) which is a subsequence of \(\langle N_n \cap H_\theta | n < \omega \rangle \), we have \(\langle M_l \cap K | l < \omega \rangle \notin S \).

Hence this \(\eta \) works.

Now apply forcing axiom to this \(P \). We have a club \(D \) in \(\omega_1 \) and an \(\varepsilon \)-chain \(\langle N_i | i < \omega_1 \rangle \) which works for \((K, S, \theta, a) \) in \(\mathcal{F}-RP \).

§3. Iteration theorem

We show \(\mathcal{F}^{V[G_\alpha]} \)-generic-limsup-semiproper combined with semiproper iterates under the simple iterations. For an account on the simple iterations, see [M].

3.1 Theorem. Let \(I = ((P_\alpha | \alpha \leq \nu), (\dot{Q}_\alpha | \alpha < \nu)) \) be a simple iteration such that

- For all \(\alpha < \nu \), \(\models_{P_\alpha} \dot{Q}_\alpha \) is semiproper".
- For all \(\alpha < \nu \), \(\models_{P_\alpha} \dot{Q}_\alpha \) is \(\mathcal{F}^{V[G_\alpha]} \)-generic-limsup-semiproper".

where \(\mathcal{F}^{V[G_\alpha]} \) is formed in \(V[G_\alpha] \) as the set of cofinal subsequences of the \(\langle C_\delta(n) | n < \omega \rangle \)'s for all \(\delta \in A \). Hence \(\mathcal{F}^{V[G_\alpha]} \) may contain new cofinal subsequences than the original \(\mathcal{F} = \mathcal{F}^{V} \).

Then for all \(\alpha \leq \nu \), we have \(\models_{P_\alpha} \" the tails \(P_\alpha \) are semiproper and \(\mathcal{F}^{V[G_\alpha]} \)-generic-limsup-semiproper".

In particular, \(P_\nu \) is semiproper and \(\mathcal{F}^{V} \)-generic-limsup-semiproper.

3.2 Iteration Lemma. Let \(\theta \) be a sufficiently large regular cardinal and \(N \) be a countable elementary substructure of \(H_\theta \) with \(I, \langle C_\delta | \delta \in A \rangle \in N \).

Let \((\alpha, \alpha^*, a, p, \langle M_n | n < \omega \rangle) \) be such that

- \(\alpha < \alpha^* \leq \nu \).
- \(a \in P_\alpha \), \(p \in P_\alpha \) and \(a \leq p[\alpha] \).
- \(a \models_{P_\alpha} \langle M_n | n < \omega \rangle \) is an \(\varepsilon \)-chain in \(H_\theta^{V[G_\alpha]} \) such that \(N \cup \{G_\alpha, p\} \subseteq M_0 \) and that \(\langle M_n \cap \omega_1 | n < \omega \rangle \in \mathcal{F}^{V[G_\alpha]} \).

Then there exists \(q \in P_\alpha \) such that

- \(q[\alpha] = a \) and \(q \leq p \).
- \(a \models_{P_\alpha} q[\alpha, \alpha^*] \models_{P_{\alpha^*}} M_n[G_{\alpha^*}] \cap \omega_1 = M_n \cap \omega_1 \) for infinitely many \(n < \omega \)".

We extract sort of typical constructions involved as (Technical construction 1-3).

Lemma. (Technical construction 1) Let \((\alpha, \alpha^*, a, p, \langle \delta^k | k < \omega \rangle, \check{\dot{X}}) \) be such that

- \(\alpha < \alpha^* \leq \nu \) and \(\alpha^* \) is limit.
- \(a \in P_\alpha \), \(p \in P_\alpha \) and \(a \leq p[\alpha] \).
- \(\langle \delta^k | k < \omega \rangle \) are stages for \(p \).
Then there exists \((\beta, \alpha, x, \langle \delta_k \mid k < \omega \rangle \rangle \) such that
- \(\alpha < \beta < \alpha^*\).
- \(b \in P_\beta, b \upharpoonright \alpha \leq \alpha, x \in P_\alpha^*\) and \(b \leq x \upharpoonright \beta\).
- \(b(\alpha) \upharpoonright P_\alpha \cdot x = x^\tau\).
- \(\langle \delta_k \mid k < \omega \rangle\) are stages for \(x\) and for all \(k < \omega, \vdash P_\alpha \cdot \delta_k^{x^\tau} \leq \delta_k^n\) (a step ahead).
- \(b^{-1} \vdash P_\alpha \cdot \delta_0^n = \beta^n\).

Lemma. (Technical construction 2) Let \((\alpha, \alpha^*, a, p, \langle \delta_k^n \mid k < \omega \rangle, \dot{x})\) be as in technical construction 1. Then there exists \((\langle (\beta_i, b_i, x_i, \langle \delta_k^{x_i} \mid k < \omega \rangle \rangle \rangle \rangle | i < \mu \rangle \rangle \) such that
- \(\beta = \beta_i, b = b_i, x = x_i, \langle \delta_k^{x_i} \mid k < \omega \rangle = \langle \delta_k^{x_i} \mid k < \omega \rangle\) serve exactly as in technical construction 1.
- For \(i, j < \mu\) such that \(i \neq j\), we have that \(b_i \upharpoonright \alpha\) and \(b_j \upharpoonright \alpha\) are incompatible in \(P_\alpha\).
- \(\{b_i \upharpoonright \alpha \mid i < \mu\}\) forms a maximal antichain below \(a\) in \(P_\alpha\).

Lemma. (Technical construction 3) Let \((\alpha, \alpha^*, a, p, \langle \delta_k^n \mid k < \omega \rangle, \langle \dot{M}_n \mid n < \omega \rangle\rangle\) be such that
- \(\alpha < \alpha^* \leq \nu\) and \(\alpha^*\) is limit.
- \(a \in P_\alpha, p \in P_\alpha^*\) and \(a \leq p \upharpoonright \alpha\).
- \(\langle \delta_k^n \mid k < \omega \rangle\) are stages for \(p\) in \(P_\alpha^*\).
- \(a^{-1} \vdash P_\alpha \cdot \delta_0^n = \alpha^n\).
- \(a \vdash \langle \dot{M}_n \mid n < \omega \rangle\rangle\) is an \(\mathcal{E}\)-chain in \(H_\theta[G_\alpha]\) with \(N \cup \{G_\alpha, a, \langle \delta_k^n \mid k < \omega \rangle\} \subseteq \dot{M}_0^n\).

Let \(T\) be a tree such that \(T \subseteq <\omega ON\) with \(\emptyset = T_0\). For \(\sigma = \emptyset\), let
- \(\mathcal{A}^0 = \alpha, a^0 = a, p^0 = p, \langle \delta_k^n \mid k < \omega \rangle = \langle \delta_k^n \mid k < \omega \rangle\) and \(\langle \dot{M}_n^0 \mid n < \omega \rangle = \langle \dot{M}_n \mid n < \omega \rangle\).

For all \(\sigma \in T\), we have \((\alpha^\sigma, a^\sigma, p^\sigma, \langle \delta_k^n \mid k < \omega \rangle, \langle \dot{M}_n^\sigma \mid n < \omega \rangle\rangle\) such that
- \(\alpha < \alpha^\sigma < \alpha^*\).
- \(a^\sigma \in P_{\alpha^\sigma}, p^\sigma \in P_{\alpha^\sigma}^*\). \(a^\sigma \upharpoonright \alpha \leq a, p^\sigma \leq p\) and \(a^\sigma \leq p^\sigma \upharpoonright a^\sigma\).
- \(\langle \delta_k^n \mid k < \omega \rangle\rangle\) are stages for \(p^\sigma\) in \(P_{\alpha^\sigma}^*\).
- \(a^\sigma^{-1} \vdash P_\alpha \cdot \delta_0^n = \alpha^\sigma^n\).
- \(a^\sigma \vdash \delta_0^n = \alpha^\sigma^n\).
- \(a^\sigma \vdash \langle \dot{M}_n^\sigma \mid n < \omega \rangle\rangle\) is an \(\mathcal{E}\)-chain in \(H_\theta[G_\alpha^\sigma]\) with \(N \cup \{G_\alpha^\sigma, a^\sigma, \langle \delta_k^n \mid k < \omega \rangle\} \subseteq \dot{M}_0^n\).

For all \(\tau \in \text{suc}_T(\sigma),\) we have \(\langle \dot{m}(\tau, n) \mid n < \omega \rangle\rangle\) such that
- \(\alpha^\sigma \leq \alpha^\tau\).
- \(a^\tau \upharpoonright a^\sigma \leq \alpha^\sigma\).
- \(p^\tau \leq p^\sigma\) in \(P_{\alpha^\sigma}^*\).
- \(\langle \dot{M}_n^\tau \mid n < \omega \rangle\rangle\) are a step ahead of \(\langle \delta_k^n \mid k < \omega \rangle\).
- \(a^\tau \vdash \alpha^\sigma \vdash P_\alpha \cdot \langle \alpha^\sigma, a^\tau \rangle = \dot{M}_0^n[G_\alpha^\sigma[G_\alpha^\sigma^\tau]] \cap \omega_1 = \dot{M}_0^n \cap \omega_1^\tau\).
- \(a^\tau \vdash \langle \dot{m}(\tau, n) \mid n < \omega \rangle\rangle\) is a sequence of strictly increasing natural numbers.
- \(a^\sigma \vdash \dot{M}_n^\tau = \dot{M}_n^\tau[G_\alpha^\sigma[G_\alpha^\sigma^\tau]]\).
\begin{itemize}
\item $a^\tau \models \neg \rho_{\alpha^*}$ "for all $n < \omega$, $M_n^\tau \cap \omega_1 = M_n^\sigma \cap \omega_1$".
\item Let $q \leq p$ be a fusion of a^σ's in P_{α^*}.
\item Then there exists a sequence $(\check{n}_k | k < \omega)$ of P_{α^*}-names such that
\item $q \models \neg \rho_{\alpha^*}$, "$(\check{n}_k | k < \omega)$ is a sequence of strictly increasing natural numbers".
\item For all $k < \omega$, we have $q \models \neg \rho_{\alpha^*}$ "$n_k \cap \omega_1 = M_{n_k} \cap \omega_1$".
\end{itemize}

More specifically, we may calculate $(i_k | k < \omega)$, $(\alpha_k | k < \omega)$, $(\alpha_k | k < \omega)$, $(p_k | k < \omega)$ and $(m(k, n) | k, n < \omega)$ in $V[G_{\alpha^*}]$ such that, where $M = \omega_1 N$ abbreviates $M \cap \omega_1 = N \cap \omega_1$,

- $M_0[G_{\alpha_{00}}] \subseteq M_0^\emptyset[G_{\alpha_{00}}] = \omega_1 M_0^\emptyset = M_0$.
- $M_0(m(0,0))[G_{\alpha_{00}}] \subseteq M_0^\emptyset(m(0,0))[G_{\alpha_{00}}] = M_0^\emptyset(n) = \omega_1 M_0^\emptyset = M_0(m(0,0))$.
- $M_0(m(0,0))[G_{\alpha_{00}}] \subseteq M_0^\emptyset(m(0,0))[G_{\alpha_{00}}] = M_0^\emptyset(n) = M_0^\emptyset(m(0,0)) = M_0(m(0,0))$.

In general,

- $a^\emptyset = a = a_0$.
- $a^{(i_0, \ldots, i_k)} = a_{k+1}$.
- $\alpha_k = \lambda(\alpha_k)$.
- $M_n^\emptyset = M_n^\emptyset$.
- $M_n^\emptyset(m) = M_0(m, n)[G_{\alpha_{00}}]$.
- $M_n^\emptyset = \omega_1 M_n$.
- $M_n^\emptyset(m, \alpha_{k+1}) = M_n^\emptyset(m, \alpha_{k+1})[G_{\alpha_{k+1} \alpha_{k+2}}]$.
- $M_n^\emptyset(m, \alpha_{k+1}) = \omega_1 M_n^\emptyset(m, \alpha_{k+1})$.
- $M_0^\emptyset[G_{\alpha_{00}}] = \omega_1 M_0^\emptyset$.
- $M_0^\emptyset[G_{\alpha_{00}}] = \omega_1 M_0^\emptyset$.

And so

\begin{align*}
M_0[G_{\alpha_{00}}] &= \omega_1 M_0.
M_0(m, \cdots, m(k, n), \cdots)[G_{\alpha_{00}}] &= \omega_1 M_0(m, \cdots, m(k, n), \cdots).
\end{align*}

Where $m(k, n)$ abbreviates $\langle i_0, \cdots, i_k \rangle$. n).

We give a proof of iteration lemma 3.2.

3.2 Lemma. (Iteration Lemma) Let θ be a sufficiently large regular cardinal. Let N be a countable elementary substructure of H_θ with $I, (C_\delta | \delta \in A) \in N$.

Let $(\alpha, \alpha^*, \alpha, p, (M_n | n < \omega))$ satisfy

- $\alpha < \alpha^* \leq \nu$.
- $a \in P_{\alpha^*}$, $p \in P_{\alpha^*}$ and $a \leq p|\alpha$.
- $a \models \neg \rho_{\alpha^*}$, $N \cup \{G_\alpha, p\} \subseteq M_0$, $(M_n | n < \omega)$ is an e-chain in $H_\theta \cap V[G_\alpha]$ and $(M_n \cap \omega_1 | n < \omega) \in \mathcal{F}^V[G_{\alpha^*}]$.

Then there exists $(q, (\check{m}(n) | n < \omega))$ such that
\[q \in P_{\alpha^*}, \text{ and } q \leq p. \]
\[q \vdash \alpha = a. \]
\[q \vdash \pi(n) \text{ are strictly increasing natural numbers and } M_{m(0)}[G_{\alpha^*}] \cap \omega_1 = M_{m(0)} \cap \omega_1. \]

Notational Remark. Let \(\alpha < \beta \) and \(G_{\beta} \) be \(P_\beta \)-generic over \(V \). Then
\[G_{\alpha} \text{ denotes } G_{\beta}[\alpha] = \{ r | \alpha \in G_{\beta} \} \text{ which is } P_{\alpha^*} \text{-generic over } V. \]
\[H_{\alpha} \text{ denotes } \{ r(\alpha) | G_{\alpha} \} \text{ which is } Q_{\alpha} \text{-} generic \text{ over } V[G_{\alpha}]. \]

If \(\dot{x} \) is a \(P_{\alpha^*} \)-name, then we may view \(\dot{x}[G_{\alpha}] \) as a term \(\dot{x}[\dot{G}_{\beta}[\dot{\alpha}] \) being interpreted by \(G_{\beta} \) in \(V[G_{\beta}] \). We simply denote this by \(\dot{x} \) for easier notation. For sequences \(s = (\dot{x}_n | n < \omega) \) of \(P_{\alpha^*} \)-names, we abbreviate as follows:

\[x_n = \dot{x}_n[G_{\alpha}] \text{ (the } n \text{-th value of the interpretation of a term } \langle s(n)[G_{\alpha}] | n < \omega \rangle \text{ by } G_{\alpha} \text{ in } V[G_{\alpha}] \]
\[= \dot{x}_n[G_{\beta}[\alpha] \text{ (the } n \text{-th value of the interpretation of a term } \langle s(n)[G_{\beta}[\dot{\alpha}] | n < \omega \rangle \text{ by } G_{\beta} \text{ in } V[G_{\beta}] \text{ for each } n < \omega. \]

Proof. By induction on \(\alpha^* \) for all \((\alpha, a, p, (M_n | n < \omega)). \)

Case 1. (Successor Steps Essential) Let \((\alpha, \alpha + 1, a, p, (M_n | n < \omega)) \) be as in the hypothesis. Since \(\Pi_{\alpha}^n, \dot{Q}_{\alpha} \) is \(F^{\mathcal{H}V[G_{\alpha}]} \)-generic-\(\Pi^{\mathcal{H}V[G_{\alpha}]} \)-semiproper and \(a \vdash \pi(n) \alpha^* \) \(\in \dot{M}_0 \cap \dot{M}_0 \cap \omega_1 = M_{m(0)} \cap \omega_1 \). Hence \(\alpha^* \vdash \pi(n) \text{ all } n < \omega \).
\[\text{Hence } \alpha^* \vdash \pi(n) \text{ all } n < \omega \text{ and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]
\[\text{and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]
\[\text{Hence } \alpha^* \vdash \pi(n) \text{ all } n < \omega \text{ and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]
\[\text{Hence } \alpha^* \vdash \pi(n) \text{ all } n < \omega \text{ and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]

Case 2. (Successor Steps General) Let \((\alpha, \beta + 1, a, p, (M_n | n < \omega)) \) be as in the hypothesis. We may assume \(\alpha < \beta \). Apply the hypothesis of induction to \((\alpha, \beta, a, p, (M_n | n < \omega)). \) We have \(q', \langle \dot{m}(n) | n < \omega \rangle \) such that

\[q' \in P_{\beta}, a = q' \text{ and } q' \leq p[\beta]. \]
\[q' \vdash \dot{m}(n) \text{ are strictly increasing natural numbers and } M_{m(0)}[G_{\alpha}] \cap \omega_1 = M_{m(0)} \cap \omega_1 \text{ for all } n < \omega. \]
\[\text{Hence } q' \vdash \pi(n) \text{ all } n < \omega \text{ and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]
\[\text{and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]

Case 3. (Limit) Let \((\alpha, \alpha^*, a, p, (M_n | n < \omega)) \) be as in the hypothesis. We assume \(\alpha^* \) is limit. Construct a tree representation \(T \) and a map \(\langle \sigma \mapsto (\alpha^*, a^*, p^*, \langle \delta_{\sigma}^n(n) | n < \omega \rangle, (M_{\sigma}^n | n < \omega)) | \sigma \in T \rangle \) such that

\[\{ \} = \emptyset \in T_0, \text{ we set } \]
\[(0) \alpha^0 = \alpha, a^0 = a, p^0 = p, \langle \delta_{\sigma}^0(n) | k < \omega \rangle \text{ are any stages for } p \text{ such that } \delta_{\sigma}^0 = \alpha^0 \text{ and } p \vdash \alpha^0 \text{ all } \langle \delta_{\sigma}^0(n) | n < \omega \rangle = (M_{\sigma}^0 | n < \omega). \]
\[\text{In general, for } \sigma = \langle i_0, \ldots, i_{k-1} \rangle \in T_k, \text{ we demand } \]
\[(1) \alpha \leq \alpha^* \leq \alpha^*. \]
\[(2) a^* \in P_{\alpha}^* \text{ and } a^* \vdash \alpha \leq a. \]
\[(3) p^* \in P_{\alpha^*} \text{ and } p^* \vdash p. \]
\[(4) a^* \leq p^* \vdash \alpha^*. \]
\[(5) \langle \delta_{\sigma}^n | n < \omega \rangle \text{ are stages for } p^*. \]
\[(6) p^* \vdash \alpha^* \vdash \pi(n) \text{ all } n < \omega, \text{ and } \Pi_{\alpha}^n, \dot{Q}_{\alpha} \text{ is } \mathcal{H}V[G_{\alpha}] \text{-generic.} \]
(7) \((M^\sigma_m | n < \omega) \) is a sequence of \(P_{\alpha^*} \)-names such that \(\alpha^* \vDash \mu_{\alpha^*} \text{“} N \cup \{ G_{\alpha^*}, p^\tau, (\delta^\sigma_n | k < \omega) \} \subseteq M^\sigma_0 \), \((M^\sigma_m | n < \omega) \) is an \(\epsilon \)-chain in \(H^V_{\theta(G_{\alpha^*})} \) and \((M^\sigma_m | \omega_1 | n < \omega) \in \mathcal{F}^V[G_{\alpha^*}] \).

For \(\tau = \sigma^-(i) = (i_0, \ldots, i_{k-1}, i_k) \in T_{k+1} \), there exists a sequence \(\langle \hat{m}(\tau, n) | n < \omega \rangle \) of \(P_{\alpha^*} \)-names and we demand

(8) \(\alpha^* \leq \alpha^\tau. \)

(9) \(\alpha^\tau \vDash \alpha^* \leq \alpha^\tau. \)

(10) \(p^\tau \leq p^\sigma. \)

(11) \(\alpha^\tau \vDash \alpha^* \leq \alpha^\tau \) is \((P_{\alpha^*}, M^\sigma_0) \)-semi-generic, \((P_{\alpha^*}, M^\sigma_0) \)-semi-generic.

(12) For all \(n < \omega, n \vDash \xi_{\alpha^*} \leq \xi_{\alpha^\tau} \) (a step ahead).

(13) \(p^\tau \vDash \alpha^\tau \leq \alpha^\tau \) (0th-stage self-decisive condition).

(14) \(\alpha^\tau \vDash \alpha^* \) is a sequence of strictly increasing natural numbers and for all \(n < \omega, \hat{m}(\tau, n) \geq 1, M^\sigma_{\hat{m}(\tau, n)} \cap \omega_1 = M^\sigma_n \cap \omega_1 = M^\sigma_n \cap \omega_1 \).

The contradiction is by recursion on \(k < \omega \). For \(k = 0 \), we set \(T_0 = \{ \emptyset \} \) and set \(a^0, a^\sigma, p^\sigma, (\delta^\sigma_n | n < \omega) \) and \((M^\sigma_m | n < \omega) \) as specified. This is possible as a \(n \vDash \mu_{\alpha^*} \text{“} N \cup \{ G_{\alpha^*}, p \} \subseteq M^\sigma_0 \). Then it is easy to see that all the assumptions (1) through (7) for \(\sigma = \emptyset \) are satisfied.

Suppose we have constructed \(T_k \) and \(\alpha^\sigma, a^\sigma, p^\sigma, (\delta^\sigma_n | n < \omega) \) and \((M^\sigma_m | n < \omega) \) for each \(\sigma \in T_k \) such that (1) through (7) are satisfied. Let \(\gamma = \alpha^\sigma, w = a^\sigma, x = p^\sigma, \hat{\delta}_n | n < \omega = \delta^\sigma_n \) and \(\langle \hat{N}_n | n < \omega \rangle = \langle M^\sigma_n | n < \omega \rangle \) for shorter notation. Then \(w \in P_{\alpha^*} \) forces that

- \(N \cup \{ G_{\gamma}, x, (\hat{\delta}_n | n < \omega) \} \subseteq \hat{N}_0 \) and \(x \vDash \gamma \vDash \hat{G}_{\gamma} \).

Hence by the iteration lemma for semiproperness and lemmas on stages (please see [M] for an account), there exists \((\beta, y, (\delta^\sigma_n | n < \omega) \subseteq V[G_{\gamma}] \) such that

- \(\gamma < \beta < \alpha^* \).
- \(y \leq x \) in \(P_{\alpha^*} \).
- \(\delta^\sigma_n \leq n < \omega \) are stages for \(y \).
- \(y \vDash \beta^{-1} \vDash \hat{\delta}^\sigma_0 = \beta^\sigma \).
- For all \(n < \omega, \hat{\delta}^\sigma_0 \leq \delta^\sigma_n \) (a step ahead).
- \(y \vDash \gamma \in G_{\gamma} \).
- \(\gamma \vDash \alpha^* \) is \((P_{\alpha^*}, N_0, \lambda_{\alpha}) \)-semi-generic
- \(\beta, y, (\delta^\sigma_n | n < \omega) \in N_1 \).

Then for any \(a \leq w \) in \(P_{\alpha^*} \) which \(d \) decides the values of \(\beta, y \) and \(\langle \delta^\sigma_n | n < \omega \rangle \), we may consider \(\gamma, \beta, d, y(\delta^\sigma_n | n < \omega) \) satisfying

- \(\gamma < \beta < \alpha^* \).
- \(d \in P_{\beta}, y \vDash \beta \in P_{\beta} \) and \(d \leq y \vDash y \).
- \(y \vDash \gamma \vDash \hat{G}_{\gamma}, y(\beta) \subseteq \hat{N}_1 \) and \(\langle \hat{N}_n | 1 \leq n < \omega \rangle \) is an \(\epsilon \)-chain in \(H^V_{\theta(G_{\gamma})} \) and \(\langle \hat{N}_n \cap \omega_1 | 1 \leq n < \omega \rangle \in \mathcal{F}^V[G_{\gamma}] \).

Now we apply the hypothesis of induction at \(\beta \). Hence there exists \(b, \langle \hat{m}(\beta, n) | n < \omega \rangle \) such that

- \(b \in P_{\beta}, \hat{b} \vDash \gamma = d \) and \(b \leq \gamma \vDash \beta \).
- \(b \vDash \hat{m}(\beta, n) | n < \omega \) is a sequence of strictly increasing natural numbers such that \(1 \leq \hat{m}(n) \) and \(\hat{N}_{\hat{m}(n)}[G_{\gamma}] \cap \omega_1 = \hat{N}_{\hat{m}(n)} \cap \omega_1 \).

And so

- \(b \vDash \hat{m}(\beta, n) | n < \omega \) is an \(\epsilon \)-chain in \(H^V_{\theta(G_{\beta})} \) and \(\langle \hat{N}_{\hat{m}(n)}[G_{\gamma}] | n < \omega \rangle \subseteq \mathcal{F}^V[G_{\beta}] \).

Since there exists d as above predense many below w, we may construct T_{k+1} and

$$(\tau \mapsto (\alpha^\tau, \alpha^\tau, p^\tau, (\delta_n^\tau \mid n < \omega), (M_n^\tau \mid n < \omega), (m(\tau, n) \mid n < \omega)) \mid \tau \in T_{k+1}),$$

where the correspondences are $\alpha^\tau = \beta, \alpha^\tau = b, p^\tau = y, (\delta_n^\tau \mid n < \omega) = (\delta_n^\tau \mid n < \omega), (m(\tau, n) \mid n < \omega) = (\bar{m}(n) \mid n < \omega)$ and $(M_n^\tau \mid n < \omega) = (M_m(n) \mid n < \omega)|G_{k,d}$. This completes the construction.

Let q be a fusion of the tree representation T. Let G_{α} be P_{α}-generic over V with $q \in G_{\alpha}$. Let us calculate $(i_n \mid n < \omega)$ from the generic cofinal path through T so that for all $k < \omega, (i_n \mid n < k) \in T_k$ and $a^{(i_n \mid n < k)} \in G_{\alpha,i_n \mid n < k}$.

Let

$$M_n = M_n[G_{\alpha}],$$

$$a^k = a^{(i_n \mid n < k)}, p^k = p^{(i_n \mid n < k)},$$

$$\delta_m^k = \delta_m^{i_n \mid n < k}, \ M_m^k = M_m^{i_n \mid n < k}, M_m^k = M_m^k[G_{\alpha}], \ m(k, n) = m((i_0, \cdots, i_k), n)[G_{\alpha+k}].$$

Then

$$a^k \in G_{\alpha^k}, \ p^k \in G_{\alpha^k}.$$

$M_0 = \omega_1, M_0[G_{\alpha^0}]$,

$$M_{m(0,m(1,\cdots,m(k,0),\cdots))}[G_{\alpha_0}] \cdots [G_{\alpha+\alpha+1}] = M_{0}^{k+1},$$

$$M_{m(0,m(1,\cdots,m(k,0),\cdots))}[G_{\alpha_0}] \cdots [G_{\alpha+\alpha+1}] = M_{0}^{k+1}[G_{\alpha+\alpha+1}].$$

Hence

$$M_{m(0,m(1,\cdots,m(k,0),\cdots))}[G_{\alpha_0}] \subseteq M_0^{k+1}[G_{\alpha+\alpha+1}] \supseteq_{\omega_1} M_0^{k+1} \supseteq_{\omega_1} M_{m(0,m(1,\cdots,m(k,0),\cdots))}. $$

So

$$M_{m(0,m(1,\cdots,m(k,0),\cdots))}[G_{\alpha_0}] \cap \omega_1 \leq M_0^{k+1}[G_{\alpha+\alpha+1}] \cap \omega_1 = M_0^{k+1} \cap \omega_1 = M_{m(0,m(1,\cdots,m(k,0),\cdots))} \cap \omega_1.$$

Note that $m(0,m(1,\cdots,m(k,0)\cdots))$ strictly increase.

\[
\square
\]

References

miyamoto@nanzan-u.ac.jp
Division of Mathematics
Nanzan University
27 Seirei-cho, Seto, Aichi
489-0863 JAPAN