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Uniform Sets and Complexity
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An element w € {0,1}N is called an infinite 0-1-word which is a map-
ping from N to {0,1}, while it is also considered as an infinite sequence
w(O)w(l)w(2) - of 0 and 1. On the other hand, an element u in {0,1}* :=

k——o{o 1}* is called a finite 0-1-word and represented as a finite sequence
uity - - -uy of 0 and 1, where k is such that u € {0,1}*, which is called the
length of u and is denoted by |u|. We also denote {0,1}+ = U, {0, 1}*.

The concatenation uv or ww of u € {0,1}* with v € {0,1}* or w € {0, 1}¥
is defined as the word wujug---upvivy---v; or s - - ~upw(0)w()w(2) - - -,
where k£ = |u| and ! = |v|, respectively. In this case, u is called a prefiz of
uv or uw, or equivalently, uv or uw is called an extension of u.

For u € {0, 1}*, the cylinder set [u] determined by u is defined by

[u] = {w € {0,1}; u is a prefix of w}.

The prefiz tree G(2) = (V, E) of a nonempty closed set Q C {0,1}N is
defined to be a directed graph such that the set V of vertices is the set
of cylinder sets [u] which meet 2, and the set F of edges is the set of the
ordered pairs ([u], [v]) € V x V such that v is an immediate extension of u,
that is, u is the prefix of v such that |v| = |u| + 1.

Two nonempty closed sets ©, A C {0,1}N are said to be isomorphic to
each other if their prefix trees are isomorphic to each other. The class of all
closed subsets of {0, 1}" isomorphic to Q is denoted by [] and is called the
language structure of (or determined by) Q.

Define

Qo := {0}, O;:= {1*},

05 = {w € {0,1}%; D w(n) <1},

neN

©;-5 :={w e {0,1}%; Y (1-w(n)) <1},

neN
0, = {w € {0,1}; w is increasing},
- = {w € {0,1}"; w is decreasing},
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- [000]1> [000]4
- [00]=—~ [001]— [00]——/—: [001]—
/[0] [01]— [010}— /[0]/: [01}— [011]—
[] =[] —[10—[100}— [] =—[1] — [11]—[111}—
Figure 1: G(©;) (left) and G(©4) (right)
[000]4 - [OOO]Zb
/ . [00=— [001}—
DF—0IST o= ot fo10
. / (01— [010]— []
Ve Ol — """ [ 11— [1] <—- [10}— [100]
[ [1] [10}— [100]— [11}—- [110]—
™~ [11]—s [111]— [111]<
Figure 2: G(©5 U ©,) (left) and G(O5 U ©_) (right)
where a® = aaa--- for a € {0,1} and w € {0,1}N is called increasing

(decreasing) if w(n) < w(m) (w(n) > w(m), respectively) for any n < m.

All of ©5, ©;_5, ©4, O_ are isomorphic to each other since for example,
G(©5) and G(©4) are isomorphic (Figure 1). It also holds that ©5; U ©_
and ©4 U ©O_ are isomorphic, while ©5 U ©4 is not isomorphic to s UO_
(Figure 2).

Definition 1. For a nonempty closed set Q C {0, 1}%, define the complezity
function pa(S) := #mns?, which is a function of finite sets S C ¥, where #
denotes the number of elements in a set and 75 : {0,1}* — {0,1}° is the
projection. We call Q a uniform set if pq(S) depends only on #S. In this
case, the function pq(k) := pq(S) of k = 1,2, .-, where #S = k, is called
the uniform complezity function of 2. We also define the mazimal pattern
complezity function of Q as p,(k) := supg.ps—r Pa(S) (k =1,2,--+). Note
that po (k) = ph(k) (k=1,2,--) if Q is a uniform set.

Let N = {Ng < Ny < N2 < ---} be an infinite subset of N. For w €



{0,1}N and © C {0, 1}, define wN] € {0,1}N and Q[NV] ¢ {0,1}N by

wiMl(n) = w(N;) (neN)
QN = {wNM € {0,1} we Q).

We sometimes identify the infinite subset A/ ¢ N with an increasing injection
n = Ny from N into itself. We use the same notation [S] for a finite set
S = {81 < 83 <---< 8k} C Nin the sense that

QLS] = {w(sn)w(sa) ---w(se) € {0,1}% w € Q.

For Q@ C {0,1}%, where ¥ is a countably infinite set, and an injection
% : N — X, denote

Qoy:={wo e {0,1}F; we Q}

Note that if €2 is a uniform set, then o 7 is also a uniform set with the
same complexity function.

Definition 2. A nonempty closed set © C {0, 1}Nis called a super-stationary
set if Q[NV] = Q holds for any infinite subset A" of N. Note that a super-

stationary set is a uniform set and all of @g, ©;, Os, ©1_5, 4, O_ are

super-stationary sets.

Definition 3. A nonempty closed set 2 C {0, 1}¥ is said to have a primitive
factor [QQo¢] if Lo¢ is a super-stationary set, where ¢ : N — ¥ is an injection
and [Q o ¢] is the language structure determined by Q o ¢.

Definition 4. Let © C {0,1}N be a nonempty closed set. For w € Q and
k € N, we denote w|r = w(0)w(1) - - -w(k — 1) € {0,1}*. Let Q' be the set of
accumulating points of €2, that is,

Q' = {w e Q; #([w|g] NN) = oo for any k € N}.

We call Q' the derived set of Q. Clearly, ' is a closed set (possibly, the
empty set). We denote Q(©) = Q and Q) = (Q6-1) for i = 1,2,---. The
degree of 2 is defined to bed = 0, 1,2, - - - such that Q%) £ @ and QU+1) = ¢,
if such d exists, otherwise, co. The degree of €2 is denoted by deg (2. For
completeness, we define '/ = @ and deg @ = —1.

We have the following results.

Theorem 5. (Kamae [1]) Let Q be a nonempty closed subset of {0,1}%,
where ¥ is a countably infinite set.

(1) If there ezists an injection ¥ : N — ¥ such that deg(€2 o p) < oo, then
there exists an increasing injection ¢ : N — N such that Q o ¢ is a super-
stationary set.

(2) If deg(Q2 0 p) = 0o for any injection p : N — X, then ph(k) = 2% (k =
1,2,--).

Hence, any uniform set has a primitive factor and any uniform complezity
function is realized by a super-stationary set.
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Remark 6. (1) of the Main Theorem can be generalized easily to the case
of general finite alphabet.

For § = &&2---& € {0,1}* and 9 = myny---my € {0,1} with & < [,
we say that £ is a super-subword of 7, if £& = 7,,7,, - - -7,, holds for some
1 <8 <8< :--< s <I. For this £ and w € {O,I}N, we say that £ is a
super-subword of w, if £ = w(s;)w(sz) - - -w(sk) holds for some 0 < s; < 52 <
-++ < 8 < 00. In these cases, we denote £ € nor £ K w.

For £ € {0,1}*, denote

P(&) := {w € {0,1}N; & < w does not hold},

that is, P(£) is the set of infinite 0-1-words with the prohibited word ¢ as
its super-subword. Denote for = C {0, 1}*,

Q(E) == U P(&) and P(Z) := ﬂ P(E).

Ee= (€&

We call € {0,1}*U {0, 1} a cover of = if ¢ & 7 holds for any £ € E. It is
called a minimal cover if in addition, any ¢ ﬁn is not a cover of Z. Let L(Z)
be the set of minimal covers of =.

Theorem 7. (T. Kamae, H. Rao, B. Tan and Y-M. Xue [2]) (1) The class
of super-stationary sets other than {0,1}N coincides with the class of sets
Q(Z) with nonempty finite sets = C {0,1}*. It also coincides with the class
of sets P(L(Z)) with nonempty finite sets = C {0, 1}.

(2) The complezity function pq(k) of a super-stationary set QU other than
{0, 1}N is a polynomial function of k for large k.

The following Cerollary follows from abov 2 threorems.

Corollary 8. The complezity function pq(k) of a uniform set Q is either
2% (k=1,2,---) or a polynomial function of k for large k.

Let X be a metrizable space with a continuous group or semi-group action
G. For a family of subsets Ay, Az,---,Ax of X, let P({A;:=1,2,---,k})
denote the partition of X generated by these subsets, that is, the family of
nonempty sets of the form

AP NAZ O NAE (iayiz, o, ik € {0,1)),

where for a set A C X, we denote A' = A and A° = X \ A.
Let D be a nonempty subset of X. Define the mazimal pattern complezity
function p% g p of the triple (X, G, D) by

pxepk)= sup #P{oT'D;oer)) (k=1,2--). (1)

TCQG, #1=



Definition 9. For a set U and k € N, Fi.(U) denotes the family of sets
S C U with #S = k. A countably infinite subset ¥ of G is called an optimal
position of the triple (X, G, D) if

#P({o7'D; o € 1}) = pk 6,p(k), (2)
holds for any k = 1,2,--- and 7 € F¢(Z).

Let X C G be a countably infinite set. We call w € {0,1}¥ a name of the
partition P({o~!D; o € £}) if there exists z € X such that

@={ g sgoip ®

The closure of the set of names of the partition P({o™1D; o € £}) is called
the name set of ¥ with respect to the triple (X, G, D).
The following theorem is clear from the definitions.

Theorem 10. The name set of any optimal position  of a triple (X, G, D)
18 a uniform set with the uniform complezity function Px.G.D

Example 11. Let X = G = R/Z. The action of g € G maps z € X to
z+g € X. Let D be an interval [a, b) in X such that a < b < a+1. Then, we
have p}, g(k) = 2k (k = 1,2,---). In this case, a countably infinite subset
2 of GG is an optimal position of (X, G, D) if and only if for any 0,0’ € &
with ¢ # ¢/, D — 0 and D — ¢’ intersect as well as their complements. This
is also equivalent to that #P({o~'D, ¢'"'D}) = 4 for any {0, 0’} € F2(Z).

Let Q2 be the name set of an optimal position . Then, Q is known to
have the unique primitive factor [@s U@_] = [Q(11,01)] ([?]).

Example 12. Let X = R? and G = (R/2rZ) x R2. The action of (8, (u, v))
in G maps (z,y) € X to the following (z’,y’) € X:

2’ =zcosf —ysinf +u
y' = zsinf + ycosb + v.

Let D be a line in X. Then, ¢~1D is also a line for any g € G and we have
Pxc.p(k) = (1/2)k?+(1/2)k+1 (k= 1,2,---). In this case, X is an optimal
position if and only if ¥ is a countably infinite subset of G such that

(1) for any 0,0’ € & with 0 # 0/, 0"'DN &' 'D #£ ), and

(2) for any o, 0’,0" € £ which are different each other,

c'Dno’'Dne" 'D=0.
Let  be the name set of an optimal position X. Then,

Q = {w € {0,1}%; Zw(a) < 2}.

cEL

Hence, 2 has the unique primitive factor [Q(111)].
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Example 13. (Y-M. Xue [5]) Let X = G = R?% The action of g = (g1, 92) €
G maps (z,y) € X to (z+g1,y+92) € X. Let D := {(z,y) € R 22 +y* <
1} be the unit disk. Then, we have p% g p(k) =k* —k+2 (k=1,2,---).
In this case, a countably infinite subset X of G is an optimal position if and
only if #P({¢™D; o € 7}) = pk ¢.p(3) = 8 for any T € F3(¥). Moreover,
T satisfies this condition if £ C {9 € G; ¢? + g2 = r?} with 0 < r < L.
Moreover, the name set  has a unique primitive factor [Q(101, 010)).

All the examples so far admit a finitely determined optimal position. The
following example does not admit an optimal position.

Example 14. Let X = T{UTzand G = T1x T2, where T; 2 R/Z (i = 1,2)
and T;, T, are disjoint each other. The action of ¢ = (g1,92) € G maps
z € T;toz+g; € T;fori = 1,2. Let D = [a1,b1) U [az,b3), where
[@;, b)) C T;and a; < b; <a;+1fori=1,2.

Then, we have p% g p(k) = 4k — 4 (k = 2,3,---). In this case, there
is no optimal position since for any infinite subset X of G, there exists a
sequence gn = (gn1,9gn2) € X for » = 1,2,-.- such that g,; converges
monotonously to, say ¢; € Ty, for i = 1,2. Then, for any sufficiently large
no, #P({g;'D; n = no + 1,n0 + 2,n0 + 3}) = 6 but not 8.

Definition 15. A nonempty closed set @ C {0,1}N is called a stationary
set if T7Q = , where T : {0,1}N — {0,1}N is the shift. Note that a
super-stationary set is always stationary since TQ = Q[{1,2,---}]. We call
N ={Ny < N; < N2 < ---} C N an optimal window of Q if pa(S) = pg (k)
forany k=1,2,--- and S C NV with #S = k.

Take a stationary set © C {0,1}N as X and the additive semi-group N as
G. Let the action of n € N to w € 2 be T"w. Let D = {w € ; w(0) = 1}.
In this case, it is easy to see that

Theorem 168. For an infinite subset N' of N, N is an optimal position of
(2, N, D) if and only if N is an optimal window of 2.

Hence, the following theorem follows from Theorem 4.1 of T. Kamae, H.
Rao, B. Tan, Y-M. Xue [3].

Theorem 17. Let o € {0,1}N be a recurrent pattern Sturmian word. Let
X =0(a), G = {T"; n € N} and D = {w € Q; w(0) = 1}. Then, an
optimal position of the triple (X, G, D) exists.

Example 18. Let Q = O(a) with the non-simple Toeplitz word o € {0, 1}N
defined in Example 3 in N. Gjini, T. Kamae, B. Tan, and Y.-M. Xue [4].
Then, p(k) = 2F (k = 1,2,---) holds. In this case, an optimal window
does not exist. Take an arbitrary N = {No < N; < N; < ---} ¢ N. For
any k € N, there exists K € N with K > k and § € {0,1}¥ such that
o = (€ag)(€a1)(€az) - - - holds with ag,ay,az--- € {0,1}. There exists such
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with the property that there exist 3 elements in N, say N, < N, < N,

with N, # N, = N, modulo K + 1. Then, either 001 or 101 is not in
Q[{Ny, N,, N,}]. Hence, AV is not an optimal window.

The following is the list of the language structures and the complexity

functions with degree < 1.

(1) [©0) =[Q(1)], pa(k) =1,

(2) [90 U 61] = [Q(O) 1)]7 pﬂ(k) =2,

(3) [0s] = [Q(11)], pa(k) =k +1,

(4) [@5 U 91] = [Q(ll,O)], pg(k) =k +2— 1g=,

(5) (05 U©4] = [Q(11, 10)], pa(k) = 2k,

(6) [©5U6_] = [Q(11,01)], pa(k) = 2%,

(7) [OsUB;_5] = [Q(11, 00)], pa(k) =2k +2 -2 1x-y,

&) [BsuBLUB_ ] = [Q(11, 10,01)], pa(k) = 3k — 2 + 1=,

(9) [OsUB;_sUB ] = [@(11, 00, 10)], pa(k) =3k - 1 — 1g=s,

(10) [05 U5 UO4 UO_] = [Q(11, 00, 10,01)], pa(k) = 4k — 4+ 2+ 15e;.
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