<table>
<thead>
<tr>
<th>Title</th>
<th>Uniform Sets and Complexity (The 8th Workshop on Stochastic Numerics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KAMAE, Teturo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1620: 197-203</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140214</td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Uniform Sets and Complexity

Teturo KAMAE
Matsuyama University, 790-8578 Japan
kamae@apost.plala.or.jp

An element $\omega \in \{0, 1\}^N$ is called an infinite 0-1-word which is a mapping from \mathbb{N} to $\{0, 1\}$, while it is also considered as an infinite sequence $\omega(0)\omega(1)\omega(2)\cdots$ of 0 and 1. On the other hand, an element u in $\{0, 1\}^* := \bigcup_{k=0}^\infty \{0, 1\}^k$ is called a finite 0-1-word and represented as a finite sequence $u_1u_2\cdots u_k$ of 0 and 1, where k is such that $u \in \{0, 1\}^k$, which is called the length of u and is denoted by $|u|$. We also denote $\{0, 1\}^+ := \bigcup_{k=1}^\infty \{0, 1\}^k$.

The concatenation uv or $u\omega$ of $u \in \{0, 1\}^*$ with $v \in \{0, 1\}^*$ or $\omega \in \{0, 1\}^N$ is defined as the word $u_1u_2\cdots u_kv_1v_2\cdots v_l$ or $u_1u_2\cdots u_k\omega(0)\omega(1)\omega(2)\cdots$, where $k = |u|$ and $l = |v|$, respectively. In this case, u is called a prefix of uv or $u\omega$, or equivalently, uv or $u\omega$ is called an extension of u.

For $u \in \{0, 1\}^*$, the cylinder set $[u]$ determined by u is defined by

$$[u] = \{ \omega \in \{0, 1\}^N; u \text{ is a prefix of } \omega \}.$$

The prefix tree $G(\Omega) = (V, E)$ of a nonempty closed set $\Omega \subset \{0, 1\}^N$ is defined to be a directed graph such that the set V of vertices is the set of cylinder sets $[u]$ which meet Ω, and the set E of edges is the set of the ordered pairs $([u],[v]) \in V \times V$ such that v is an immediate extension of u, that is, u is the prefix of v such that $|v| = |u| + 1$.

Two nonempty closed sets Ω, $\Lambda \subset \{0, 1\}^N$ are said to be isomorphic to each other if their prefix trees are isomorphic to each other. The class of all closed subsets of $\{0, 1\}^N$ isomorphic to Ω is denoted by $[\Omega]$ and is called the language structure of (or determined by) Ω.

Define

$$\Theta_0 := \{0^\infty\}, \quad \Theta_1 := \{1^\infty\},$$

$$\Theta_\delta := \{ \omega \in \{0, 1\}^N; \sum_{n \in \mathbb{N}} \omega(n) \leq 1 \},$$

$$\Theta_{1-\delta} := \{ \omega \in \{0, 1\}^N; \sum_{n \in \mathbb{N}} (1-\omega(n)) \leq 1 \},$$

$$\Theta_+ := \{ \omega \in \{0, 1\}^N; \omega \text{ is increasing} \},$$

$$\Theta_- := \{ \omega \in \{0, 1\}^N; \omega \text{ is decreasing} \},$$
Figure 1: $G(\Theta_\delta)$ (left) and $G(\Theta_+)$ (right)

![Diagram](image1.png)

Definition 1. For a nonempty closed set $\Omega \subset \{0,1\}^\Sigma$, define the complexity function $p_\Omega(S) := \#\pi_S\Omega$, which is a function of finite sets $S \subset \Sigma$, where $\#$ denotes the number of elements in a set and $\pi_S : \{0,1\}^\Sigma \to \{0,1\}^S$ is the projection. We call Ω a uniform set if $p_\Omega(S)$ depends only on $\#S$. In this case, the function $p_\Omega(k) := p_\Omega(S)$ of $k = 1,2,\cdots$, where $\#S = k$, is called the uniform complexity function of Ω. We also define the maximal pattern complexity function of Ω as $p^*_\Omega(k) := \sup_{\#S = k} p_\Omega(S)$ ($k = 1,2,\cdots$). Note that $p_\Omega(k) = p^*_\Omega(k)$ ($k = 1,2,\cdots$) if Ω is a uniform set.

Let $\mathcal{N} = \{N_0 < N_1 < N_2 < \cdots\}$ be an infinite subset of \mathbb{N}. For $\omega \in \{0,1\}^\mathcal{N}$, where $a^\infty = aaaa \cdots$ for $a \in \{0,1\}$ and $\omega \in \{0,1\}^\mathbb{N}$ is called increasing (decreasing) if $\omega(n) \leq \omega(m)$ ($\omega(n) \geq \omega(m)$, respectively) for any $n < m$.

All of Θ_δ, $\Theta_{1-\delta}$, Θ_+, Θ_- are isomorphic to each other since for example, $G(\Theta_\delta)$ and $G(\Theta_+)$ are isomorphic (Figure 1). It also holds that $\Theta_\delta \cup \Theta_-$ and $\Theta_+ \cup \Theta_-$ are isomorphic, while $\Theta_\delta \cup \Theta_+$ is not isomorphic to $\Theta_\delta \cup \Theta_-$ (Figure 2).
of a super-infinite set

For the primitive set $i=1,2,$ an infinite set, we have a nonempty subset A with the property

If we sometimes identify the infinite subset $S = \{s_1 < s_2 < \cdots < s_k\} \subset \mathbb{N}$ in the sense that

For $\Omega \subset \{0,1\}^{\Sigma}$, where Σ is a countably infinite set, and an injection $\psi : \mathbb{N} \rightarrow \Sigma$, denote

Note that if Ω is a uniform set, then $\Omega \circ \psi$ is also a uniform set with the same complexity function.

Definition 2. A nonempty closed set $\Omega \subset \{0,1\}^{\mathbb{N}}$ is called a super-stationary set if $\Omega[\mathcal{N}] = \Omega$ holds for any infinite subset \mathcal{N} of \mathbb{N}. Note that a super-stationary set is a uniform set and all of Θ_0, Θ_1, Θ_δ, $\Theta_{1-\delta}$, Θ_+, Θ_- are super-stationary sets.

Definition 3. A nonempty closed set $\Omega \subset \{0,1\}^{\Sigma}$ is said to have a primitive factor $[\Omega \circ \phi]$ if $\Omega \circ \phi$ is a super-stationary set, where $\phi : \mathbb{N} \rightarrow \Sigma$ is an injection and $[\Omega \circ \phi]$ is the language structure determined by $\Omega \circ \phi$.

Definition 4. Let $\Omega \subset \{0,1\}^{\mathbb{N}}$ be a nonempty closed set. For $\omega \in \Omega$ and $k \in \mathbb{N}$, we denote $\omega|_k = \omega(0)\omega(1)\cdots\omega(k-1) \in \{0,1\}^k$. Let Ω' be the set of accumulating points of Ω, that is,

We call Ω' the derived set of Ω. Clearly, Ω' is a closed set (possibly, the empty set). We denote $\Omega^{(0)} = \Omega$ and $\Omega^{(i)} = (\Omega^{(i-1)})'$ for $i = 1, 2, \cdots$. The degree of Ω is defined to be $d = 0, 1, 2, \cdots$ such that $\Omega^{(d)} \neq \emptyset$ and $\Omega^{(d+1)} = \emptyset$, if such d exists, otherwise, ∞. The degree of Ω is denoted by $\deg \Omega$. For completeness, we define $\emptyset' = \emptyset$ and $\deg \emptyset = -1$.

We have the following results.

Theorem 5. (Kamae [1]) Let Ω be a nonempty closed subset of $\{0,1\}^{\Sigma}$, where Σ is a countably infinite set.

1. If there exists an injection $\psi : \mathbb{N} \rightarrow \Sigma$ such that $\deg(\Omega \circ \rho) < \infty$, then there exists an increasing injection $\phi : \mathbb{N} \rightarrow \mathbb{N}$ such that $\Omega \circ \phi$ is a super-stationary set.
2. If $\deg(\Omega \circ \rho) = \infty$ for any injection $\rho : \mathbb{N} \rightarrow \Sigma$, then $p_{\psi}(k) = 2^k$ ($k = 1, 2, \cdots$).

Hence, any uniform set has a primitive factor and any uniform complexity function is realized by a super-stationary set.
Remark 6. (1) of the Main Theorem can be generalized easily to the case of general finite alphabet.

For $\xi = \xi_1 \xi_2 \cdots \xi_k \in \{0,1\}^k$ and $\eta = \eta_1 \eta_2 \cdots \eta_l \in \{0,1\}^l$ with $k \leq l$, we say that ξ is a super-subword of η, if $\xi = \eta_{s_1} \eta_{s_2} \cdots \eta_{s_k}$ holds for some $1 \leq s_1 < s_2 < \cdots < s_k \leq l$. For this ξ and $\omega \in \{0,1\}^N$, we say that ξ is a super-subword of ω, if $\xi = \omega(s_1) \omega(s_2) \cdots \omega(s_k)$ holds for some $0 \leq s_1 < s_2 < \cdots < s_k < \infty$. In these cases, we denote $\xi \ll \eta$ or $\xi \ll \omega$.

For $\xi \in \{0,1\}^*$, denote
\[P(\xi) := \{\omega \in \{0,1\}^N; \xi \ll \omega \text{ does not hold}\}, \]
that is, $P(\xi)$ is the set of infinite 0-1-words with the prohibited word ξ as its super-subword. Denote for $\Xi \subset \{0,1\}^*$,
\[Q(\Xi) := \bigcup_{\xi \in \Xi} P(\xi) \text{ and } P(\Xi) := \bigcap_{\xi \in \Xi} P(\xi). \]
We call $\eta \in \{0,1\}^* \cup \{0,1\}^N$ a cover of Ξ if $\xi \ll \eta$ holds for any $\xi \in \Xi$. It is called a minimal cover if in addition, any $\zeta \not\ll \eta$ is not a cover of Ξ. Let $L(\Xi)$ be the set of minimal covers of Ξ.

Theorem 7. (T. Kamae, H. Rao, B. Tan and Y-M. Xue [2]) (1) The class of super-stationary sets other than $\{0,1\}^N$ coincides with the class of sets $Q(\Xi)$ with nonempty finite sets $\Xi \subset \{0,1\}^*$. It also coincides with the class of sets $P(L(\Xi))$ with nonempty finite sets $\Xi \subset \{0,1\}^*$.
(2) The complexity function $p_\Omega(k)$ of a super-stationary set Ω other than $\{0,1\}^N$ is a polynomial function of k for large k.

The following Corollary follows from abov 2 theorems.

Corollary 8. The complexity function $p_\Omega(k)$ of a uniform set Ω is either 2^k ($k = 1, 2, \cdots$) or a polynomial function of k for large k.

Let X be a metrizable space with a continuous group or semi-group action G. For a family of subsets A_1, A_2, \cdots, A_k of X, let $P(\{A_i; i = 1, 2, \cdots, k\})$ denote the partition of X generated by these subsets, that is, the family of nonempty sets of the form
\[A_1^{i_1} \cap A_2^{i_2} \cap \cdots \cap A_k^{i_k} \quad (i_1, i_2, \cdots, i_k \in \{0,1\}), \]
where for a set $A \subset X$, we denote $A^1 = A$ and $A^0 = X \setminus A$.

Let D be a nonempty subset of X. Define the maximal pattern complexity function $p_{X,G,D}^*(k)$ of the triple (X, G, D) by
\[p_{X,G,D}^*(k) = \sup_{\tau \subset G, \#\tau = k} \#(\sigma^{-1}D; \sigma \in \tau) \quad (k = 1, 2, \cdots). \]
Definition 9. For a set U and $k \in \mathbb{N}$, $\mathcal{F}_k(U)$ denotes the family of sets $S \subset U$ with $\#S = k$. A countably infinite subset Σ of G is called an *optimal position* of the triple (X, G, D) if

$$
\# \mathcal{P}(\{\sigma^{-1}D; \sigma \in \tau\}) = p_{X,G,D}^*(k),
$$

(2)

holds for any $k = 1, 2, \cdots$ and $\tau \in \mathcal{F}_k(\Sigma)$.

Let $\Sigma \subset G$ be a countably infinite set. We call $\omega \in \{0, 1\}^\Sigma$ a *name* of the partition $\mathcal{P}(\{\sigma^{-1}D; \sigma \in \Sigma\})$ if there exists $x \in X$ such that

$$
\omega(\sigma) = \begin{cases}
1 & x \in \sigma^{-1}D \\
0 & x \notin \sigma^{-1}D.
\end{cases}
$$

The closure of the set of names of the partition $\mathcal{P}(\{\sigma^{-1}D; \sigma \in \Sigma\})$ is called the *name set* of Σ with respect to the triple (X, G, D).

The following theorem is clear from the definitions.

Theorem 10. The name set of any optimal position Σ of a triple (X, G, D) is a uniform set with the uniform complexity function $p_{X,G,D}^*$.

Example 11. Let $X = G = \mathbb{R}/\mathbb{Z}$. The action of $g \in G$ maps $x \in X$ to $x + g \in X$. Let D be an interval $[a, b]$ in X such that $a < b < a + 1$. Then, we have $p_{D,G}^*(k) = 2k$ ($k = 1, 2, \cdots$). In this case, a countably infinite subset Σ of G is an optimal position of (X, G, D) if and only if for any $\sigma, \sigma' \in \Sigma$ with $\sigma \neq \sigma'$, $D - \sigma$ and $D - \sigma'$ intersect as well as their complements. This is also equivalent to that $\# \mathcal{P}(\{\sigma^{-1}D, \sigma'^{-1}D\}) = 4$ for any $\{\sigma, \sigma'\} \in \mathcal{F}_2(\Sigma)$.

Let Ω be the name set of an optimal position Σ. Then, Ω is known to have the unique primitive factor $[\Theta_5 \cup \Theta_-] = [\mathcal{Q}(1101)]$ ([?]).

Example 12. Let $X = \mathbb{R}^2$ and $G = (\mathbb{R}/2\pi \mathbb{Z}) \times \mathbb{R}^2$. The action of $((\theta, (u, v)))$ in G maps $(x, y) \in X$ to the following $(x', y') \in X$:

$$
\begin{cases}
x' = x \cos \theta - y \sin \theta + u \\
y' = x \sin \theta + y \cos \theta + v.
\end{cases}
$$

Let D be a line in X. Then, $g^{-1}D$ is also a line for any $g \in G$ and we have $p_{X,G,D}^*(k) = (1/2)k^2 + (1/2)k + 1$ ($k = 1, 2, \cdots$). In this case, Σ is an optimal position if and only if Σ is a countably infinite subset of G such that

(1) for any $\sigma, \sigma' \in \Sigma$ with $\sigma \neq \sigma'$, $\sigma^{-1}D \cap \sigma'^{-1}D \neq \emptyset$, and

(2) for any $\sigma, \sigma', \sigma'' \in \Sigma$ which are different each other,

$$
\sigma^{-1}D \cap \sigma'^{-1}D \cap \sigma''^{-1}D = \emptyset.
$$

Let Ω be the name set of an optimal position Σ. Then,

$$
\Omega = \{\omega \in \{0, 1\}^\Sigma; \sum_{\sigma \in \Sigma} \omega(\sigma) \leq 2\}.
$$

Hence, Ω has the unique primitive factor $[\mathcal{Q}(111)]$.

Example 13. (Y.-M. Xue [5]) Let $X = G = \mathbb{R}^2$. The action of $g = (g_1, g_2) \in G$ maps $(x, y) \in X$ to $(x + g_1, y + g_2) \in X$. Let $D := \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ be the unit disk. Then, we have $p_{X,G,D}^\ast(k) = k^2 - k + 2$ ($k = 1, 2, \cdots$). In this case, a countably infinite subset Σ of G is an optimal position if and only if $\#P(\{\sigma^{-1}D; \sigma \in \tau\}) = p_{X,G,D}^\ast(3) = 8$ for any $\tau \in \mathcal{F}_3(\Sigma)$. Moreover, Σ satisfies this condition if $\Sigma \subset \{g \in G; g_1^2 + g_2^2 = r^2\}$ with $0 < r < 1$. Moreover, the name set Ω has a unique primitive factor $[Q(101, 010)]$.

All the examples so far admit a finitely determined optimal position. The following example does not admit an optimal position.

Example 14. Let $X = T_1 \cup T_2$ and $G = T_1 \times T_2$, where $T_i \cong \mathbb{R}/\mathbb{Z}$ ($i = 1, 2$) and T_1, T_2 are disjoint each other. The action of $g = (g_1, g_2) \in G$ maps $x \in T_i$ to $x + g_i \in T_i$ for $i = 1, 2$. Let $D = [a_1, b_1] \cup [a_2, b_2]$, where $[a_i, b_i] \subset T_i$ and $a_i < b_i < a_i + 1$ for $i = 1, 2$.

Then, we have $p_{X,G,D}^\ast(k) = 4k - 4$ ($k = 2, 3, \cdots$). In this case, there is no optimal position since for any infinite subset Σ of G, there exists a sequence $g_n = (g_{n,1}, g_{n,2}) \in \Sigma$ for $n = 1, 2, \cdots$ such that $g_{n,i}$ converges monotonously to, say $c_i \in T_i$, for $i = 1, 2$. Then, for any sufficiently large n_0, $\#P(\{g_n^{-1}D; n = n_0 + 1, n_0 + 2, n_0 + 3\}) = 6$ but not 8.

Definition 15. A nonempty closed set $\Omega \subset \{0, 1\}^N$ is called a stationary set if $T\Omega = \Omega$, where $T : \{0, 1\}^N \rightarrow \{0, 1\}^N$ is the shift. Note that a super-stationary set is always stationary since $T\Omega = \Omega[\{1, 2, \cdots\}]$. We call $N = \{N_0 < N_1 < N_2 < \cdots\} \subset \mathbb{N}$ an optimal window of Ω if $p_{\Omega}(S) = p_{\Omega}^\ast(k)$ for any $k = 1, 2, \cdots$ and $S \subset N$ with $\#S = k$.

Take a stationary set $\Omega \subset \{0, 1\}^N$ as X and the additive semi-group N as G. Let the action of $n \in \mathbb{N}$ to $\omega \in \Omega$ be $T^n\omega$. Let $D = \{\omega \in \Omega; \omega(0) = 1\}$. In this case, it is easy to see that

Theorem 16. For an infinite subset N of N, N is an optimal position of (Ω, N, D) if and only if N is an optimal window of Ω.

Hence, the following theorem follows from Theorem 4.1 of T. Kamae, H. Rao, B. Tan, Y.-M. Xue [3].

Theorem 17. Let $\alpha \in \{0, 1\}^N$ be a recurrent pattern Sturmian word. Let $X = \overline{O}(\alpha)$, $G = \{T^n; n \in \mathbb{N}\}$ and $D = \{\omega \in \Omega; \omega(0) = 1\}$. Then, an optimal position of the triple (X, G, D) exists.

Example 18. Let $\Omega = \overline{O}(\alpha)$ with the non-simple Toeplitz word $\alpha \in \{0, 1\}^N$ defined in Example 3 in N. Gjini, T. Kamae, B. Tan, and Y.-M. Xue [4]. Then, $p_{\Omega}^\ast(k) = 2^k$ ($k = 1, 2, \cdots$) holds. In this case, an optimal window does not exist. Take an arbitrary $N = \{N_0 < N_1 < N_2 < \cdots\} \subset \mathbb{N}$. For any $k \in \mathbb{N}$, there exists $K \in \mathbb{N}$ with $K \geq k$ and $\xi \in \{0, 1\}^K$ such that $\alpha = (\xi a_0)(\xi a_1)(\xi a_2) \cdots$ holds with $a_0, a_1, a_2 \cdots \in \{0, 1\}$. There exists such
K with the property that there exist 3 elements in \mathcal{N}, say $N_u < N_v < N_w$ with $N_u \not\equiv N_v \equiv N_w$ modulo $K + 1$. Then, either 001 or 101 is not in $\Omega\{N_u, N_v, N_w\}$. Hence, \mathcal{N} is not an optimal window.

The following is the list of the language structures and the complexity functions with degree ≤ 1.

(1) $[\Theta_0] = [Q(1)], p_\Omega(k) = 1,$
(2) $[\Theta_0 \cup \Theta_1] = [Q(0, 1)], p_\Omega(k) = 2,$
(3) $[\Theta_\delta] = [Q(11)], p_\Omega(k) = k + 1,$
(4) $[\Theta_\delta \cup \Theta_1] = [Q(11, 0)], p_\Omega(k) = k + 2 - 1_{k=1},$
(5) $[\Theta_\delta \cup \Theta_+] = [Q(11, 10)], p_\Omega(k) = 2k,$
(6) $[\Theta_\delta \cup \Theta_-] = [Q(11, 01)], p_\Omega(k) = 2k,$
(7) $[\Theta_\delta \cup \Theta_{1-\delta}] = [Q(11, 00)], p_\Omega(k) = 2k + 2 - 2 \cdot 1_{k=1},$
(8) $[\Theta_\delta \cup \Theta_+ \cup \Theta_-] = [Q(11, 10, 01)], p_\Omega(k) = 3k - 2 + 1_{k=1},$
(9) $[\Theta_\delta \cup \Theta_{1-\delta} \cup \Theta_+] = [Q(11, 00, 10)], p_\Omega(k) = 3k - 1 - 1_{k=2},$
(10) $[\Theta_\delta \cup \Theta_{1-\delta} \cup \Theta_+ \cup \Theta_-] = [Q(11, 00, 10, 01)], p_\Omega(k) = 4k - 4 + 2 \cdot 1_{k=1}.$

References