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Yasushi Ishikawa

Depatment of Mathematics, Ehime University

1 Introduction

In recent years there appear several papers in finance on jump models and on jump-
diffusion models using stochastic calculus, after the success of the Black-Scholes model.
Indeed, classical [1] and [16] include chapters on jump-diffusions. Recent examples are
[17], [22], [10], [11], and [27]. However, fairly restricted types of jump processes have
been treated, due to the technical difficulities. For example, [1] and [16] have treated the
diffusion + compound Poisson model. The so-called geometric Lévy model S; = Sge?t,
where Z; denotes a Lévy process (with infinite jumps), has not been included in the
previous typical jump models studied in many papers.

Let S; denote a jump-diffusion given as a solution to SDE which is driven by a Lévy
process. We study here as an application of Malliavin calculus of jump type the sensitivity
analysis for asset prices. Basic concept is as follows.

price = E°|(pay-off)].
Here price means today’s (¢t = 0) value of some contingent claim (pay-off) with respect to
St in future (t = T'), and Q is a risk neutral probability.

We assume the pay-off depends on some parameter \. We consider the marginal
move of the price with respect to A by using the integration-by-parts:

é%(price)(/\) = E%[(pay-off).(weight)(\)].

The L.H.S. denotes the marginal move of the asset price with respect to A, hence it serves
to measure the stability of the price. Such quantities gre called Greeks. Some examples
of Greeks are Delta, Vega, Gamma, Rho and Theta. For the precise definition, see below.

The basic framework of this thoery on the Wiener space has been established in
[8]. We study in this paper some functionals on the Wiener-Poisson space, and develop a
stochastic calculus of variations to achieve the integration-by-parts formula.

2 Jump-diffusion models in closed form

Let N(dtdz) be a Poisson random measure on [0,T] x R with the mean measure dt - 673},
and W; be a Wiener process on R.

Let Z; be a simple Lévy process given by

Zy = o1\ We + 02Ny,
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where N, = N; — t.
The price process S; associated to this Z; is defined by

g—st = r(8)dt + o1 (£)dW; + 02(8)dNs, So = .
t—

Here r(t),01(t),02(t) are deterministic functions. Then S; is represented explicitly in
closed form

S = zexpl [ o1(s)aWs + [ () = oa(s))ds ~ 3 [ oB(o)ds] x Iy (1 + 02(T0)

where T3, T3, ... are jump times of N;. cf. [1] (3.2).

More generally, assume that X, is a jump semimartingale, such that it is a solution
to a SDE driven by a Lévy process. The price process is defined by

%‘i = r(t)dt + o1(t)dW; + o2(t)d X, Sp = z.
t—
Then S; is represented also in closed form by
t t 1 2 t 1 t 2
Se=zel [ are)dW, + [ () - 3o3(eNds + [ oa(e)ix, - 5 [ oB)dx, X1,

1
XTI _o((1 + 02(8)AX,) exp(—0o2(8)AX, + §(ag(s)AXs)2)).
Note that the product is a infinite product in general.

Let, for example, F = St,T > 0. If we know explicitly the density of F via closed
formulae above, then we can estimate E[f(F’)] directly. We may then have closed forms
for Greeks for “good” f. This way is called the kernel density estimation method [13].
An example of a such density is the variance gamma distribution [18]. However this is
not always the case. For example, there is no explicit formula for the price of American
option.

3 Greeks

Let A be some parameter in Sy given above, and let FF = F* be a functional of S;.
That is, for example, F = Sgn)‘),T >0o0r F = fOT St('\)dt. Let f be a a.e. smooth
function taking values on R. Then f(F) is a random variable. An example of f(z) is
fo(z) = (z — K).1ik,00), OF its smooth regularization f = f, * @, where @, is a molifier.

So called Greeks associated to f(F') are given as follows.
(1) Delta = exp{— f§ r(t)dt} & E[f(F)].

Delta is the derivative of the price with respect to the parameter A = z (the initial
value of S).

(2) Vega = exp{— [¢ r(t)dt}z2 E[f(F)].



More precisely, for ¢ > 0, let
dSs
€

t—

= r(t)dt + (01(t) + €51(t))dW; + o2(t)dNy, S§ = =.

We put T
Ce=exp{~ [ r(t)at}BlI(Sp)L

Then Vega = Qgﬂlgo. This is a (Fréchet) derivative of S; with respect to o1(.) (coefficient
of the Wiener process) in the direction ;(.).

Other Greeks are, for example,

(3) Gamma = exp{— [ r(t)dt} Lz E[f(F)).

(4) Rho = £ (exp{— f§ r(t)dt}E[f(F)]). (The Rho is defined similarily as Vega.)

(8) Theta = fn(exp{~ g r(t)dt}E[f(F)]).

We remark that these Greeks can be regarded as corresponding (first or second) terms
in the asymptotic expansion

1
E[F* — E[F] = ciA + §C2A2 N

when A > O is small.

4 Weights

For the calculation of Greeks we can use Malliavin calculus for jump-diffusion processes.
In this section we assume that the 1-dimensional process X; driving the SDE above is
given by X; = o1W; + 0492, where Z; is a Lévy process

¢ . t
Zy = bt + / / zN(dsdz) + / / zN(dsdz)
0 Jiz|<1 0 Jiz|>1

whose Lévy measure is given by u(dz). We do not assume u(dz) is absolutely continuous
with respect to the Lebesgue measure. It can even be a discrete measure. (If p = dgyy
then Z; is a Poisson process N;.) In this case it is not practical to compute Greeks along
the closed form expression in general.

Let F = F* be as in the previous section (A = z). For a random variable G* € L?
depending on z, we have

2 E[G*f(F)) = BIG*8f(F)3.F| + E[8.G* - (F)].

If we choose G* =1, 5
- E[f(F)] = E[0(F).0.F). ©)
We introduce a gradient operator D,,u = (t, z), on the Poisson space on [0,7] X R.
We assume the chain rule

Dyf(F) = 8f(F).DuF (1)
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and the local operator property
D,(XY)=XD,Y +YD,X (2)

hold for the operator D,. By the chain rule for the gradient D, and by the integration
by parts, we have

BF

= BUESER) )

R.HS. of (0) = E[

This leads to the calculation for Delta.

Here 4(.) is the adjoint operator (Skorohod integral) associated to the gradient D,
and the term 6(---) is called a weight provided that it is square integrable. In practical
computation it is important to calculate this Weight.

We can proceed the calculation (3) above following the formula

5(vG) = Gé(v) — /0 g / D.Go(u)dtu(dz) @)

(cf. [6] Proposition 1).
To compute Gamma we need to compute the second derivative
02 7] 7]
32 EU(F)] = 5-E[f(F).0(G)] = E[f(F)5-é(G)] + E[f(F)§(6(G)G)],
where G = D F

For the precise framework for this calculation on the Wiener-Poisson space, there
seems to exist no decisive set-up up to now (e.g., gradient operator, its adjoint, norms,
Sobolev spaces, ...). In the section 7 we present a new framework for this.

5 Finite difference operator and gradient operator on Pois-
son space

Let Z, = N, for simplicity. On the Poisson space we introduce two gradients.

Let U = [0,7] x R. We choose u in U of the form u = (¢,1). Let F = f(T1,...,T3),
where f = f(z1,...,&,) is a smooth function and T} denotes the k-th jump time of Nj.
We introduce two gradient of F on U.

We put
DuF = — Z 6kf(T17-~aTn)‘ (5)

Ne<k<n
Here 8;, denotes z2—. This definition is due to Carlen-Pardeux [4].
Bzx

We introduce a finite difference operator D by

ﬁuF = f(Tla ---:TNutaTN:+1’ n-l) f(Tl, ) ) (6)



71

if Ny < n. The above is equivalent to
DuF = f(T, s Ty t, T, oos Tne1) — f(T0y o0, Tp) (7

if Ty <t < Ti+1- This definition is due to Nualart-Vives [21] (see also Picard [23]).

The operator D, satisfies the properties (1), (2) in Sect. 4, whereas D, does not.
Instead we have by the mean value theorem when ¢ is differentiable :

- 1 - ~
Dup(F) = / 8p(F + 6D, F)do.D,F. @)
0
And also ; : : L '
(cf. [21] Lemma 6.1).
The gradient D, is closable (in L?(£2, L2([0,71))), and its adjoint is given by

T . T
§(v) = /0 v(t)dN, — /0 Duv(t)dt.
Further we have r
E] / DyF v dt] = E[F5(v)]
0
([26] Propositions 7, 8, {19] p.104).
The formula (4) then reads
T
5(vG) = G(v) — (v, DuG) = G6(v) + / o) S Bkg(Th, .., Tn))dt

0 Ni<k<n

if G = ¢g(T1,...,Tn). Hence, the formula (3) reads

o, F 1

1
6(DuF) - a”Fé(DuF) - (DuF’

Dy (0, F)).

Although, due to (9), D,, does not satisfy the chain rule, we can show the property
below between D, and D, for which the chain rule holds.

Let pn(t) = P(N; = n) = Le~ be the density function of T,,. We have then
Pn(t) = pr-1(t) — pa(2), t > 0.
Let T' = oco. In view of this formula, the formula
i/u (s,u)ds = g( u)+/u—a— (s,u)ds
du p gsa _guv A aug 3 ’

and due to the fact that the jump times of a Poisson process are uniformly distributed
given the number of jumps, we have the following Proposition.

Proposition Let F = f(T1,...,T,) and G = g(Th, ...,T5,) = @(F). That is, g = po f.
Then
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The proof is due to N. Privault. It also follows from the Kabanov formula (cf. {21]
Theorem. 6.2). We state the direct proof below in case n = 5. Proof for the general case
is easy.

Example

Let G = g(T;,). We have the equality directly as follows.

E[Dyg(Tn)/ Fe) = —Yn,<n) Elg' (T0)/ T2

== ‘/;oo gl($)pn—1—N¢ (-’L' — t)dx = g(t)pn—l—Ne (O) + /toog(w)p;_lgNt (a: - t)dx
=g(t)YT_ <t<Tn} + /too 9(@)ph_1_n, (z — t)dz

= 9O, s stcry + [ Prma-n(@ = 1) = Prosoni (2 — O)g(@)de

= g(O) Lz, _, <<} + BTy 5>009(Tn-1) — Y1 >09(T) / Fi)
= Elr,_,>09(Tn-1) + L1 _, <t<10}91) — L1 5639(Tn) / Fi
= E[l{N,<n-1}(9(Th-1) — 9(T0)) + L N,=n-1}(9(t) — 9(T0))/ F]
= E[Dug(Tn)/]:t]-
It is natural that they coincide with each other by the uniqueness of the Clark-Ocone
formula for G, as they are the conditional expectation terms (integrands) in the 1-st

stochastic integral in the Clark-Ocone expression. Cf. [28]. However we can see it directly
in this case.

Proof.
Let G = g(Tl, Ts,...,T5).
E[D,G/F]=~ Y E6g(T1,...Ts)/Fi]
N¢<k<5
0o —(s5—t) S5 SNp+2
= - Z / € 5 / e / 6kg(T1, ...,TNt, SNy+1y eery 35)d8Nt+1...d85
Ne<k<s 0 t ¢
5 oo —(s5~2) 85 o Sk SN¢+2
= — z / e (83 / —a———/ / (11, -, TN,y SNy 41y s 85)AS N, 41...dS5

k=Ne+27t t Sk Jt t

5

00 ~(ss—t) 35 Sk SNy +2 .
+ 3 /t € /t /t /e 9(T1,s s TNy s SNe+15 Sks Sky Skt1y vy 85)A3 N +1...d3k—1...dS5
k=N¢+2

oo —(a5~t) 85 8Ny +2 o
_I{Ng<5} ./t € ® \/t t [ BSN 1 g(Tl3 ey TNu SNe41y o0y 35)d3N,+1...d35

o 85 SNe+2 9
=-1(Nt<4}[t e~(ss t)/t ﬂ B_SEQ(TI’""TN"SN'+1’""ss)dsN""l"'d%



4

k=N¢+4+2

k_Ng+2
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o0 S5 Skt 1 a S} SNy+2
/ e—(”s‘t)/ / —/ / g(T1, ..., TN, , SN,+1, ---, $5)dSN, +1...dS5
t t t Osy Jt t

e=(5-1) Sk SNy +2 .
/ 5 / / / g(T],)"')TNt7sN¢+1)sk7sk7sk+l’"'?ss)dsNt+1"'dsk_’1"
i t

(e ] _ 86 SN¢+2 6
_l{Nt<5} A e-(85 9 / T / g(Tl’ ooy TNt’ SNe+1se0s 35)d3Nt+1"'d85

85Nt+

o 85 [SNg+2
=—‘1{N‘<4}‘/t’ (.95-—t) / / t g( 15 ++s TNg» SNy+15 -- 85)dS N, +1...d85

k=N:+2

o0 —(8 -'t) 8 SNy+2 "
‘A e e /t- /; g(Tl, -'-1TNt’8Ne+1,"'a8k—11sk+1)3k+la ...,S5)d3Nt+1...dSk...d55

.d85

o—(o5=0) a5 85 8N, +2 .
+ Z / 5 / / / 9(T1, ..., TN, SNe+1) Sk Sks Skt1s -3 85 )ASN, +1...d8k_1...dS5
t t t

k=N;+2

o0 —(.8 —-t) E13 SNy +2 6
—1in,<5) /t e\ .l cee /; 9T, ..., TN, , SNy+1, --vy S5)dS N, +1.-..dS5

O8N, +1

(e o] _( —t) 85 8N +2
=——1{Nt<4}/tr e % /t, ft g(T1, ..., TN, SNy +1, -, 85)ASN, +1...dS5

o __(s —t) 1. 8Nt+2
+1{Nt<4} -/t‘ e \%8 /t . ./; g(T1, ..., TN, SNy+2) SNy 425 --+3 5 )dSN,+1--.dS5

—I{Nt

ST 85 SNy+2 o
<5} / € (e5-2) / ce / ’ g(Tlv weey TNza SNe+1;5 --+» 35)d3Nt+1"-d35
t t t O8N, +1

o0 85 BN, +2
= _l{Ng<4} ‘/t‘ e~ (85—1) ./t' .- /; g(ﬂ, vy TN, 3 SNy 415 +09 85)d81vt+1...d85

oo 85 8N, +2
+1{Nt<4}/ e”(as—t)-/- / ‘ g(TI:"'»TNt’sNg+2a 3N¢+2,---,35)d3N¢+1---d35 .

SN +2
-1{N,<4}/ (s t)/ / 9(T1, ..., TN,, SN, +2, SNy +25 -+, 85 )dS N, +1...dS5

—(s5—t) SNe+2 d
+1{Nt<4}/t e /t‘ / Q(TI,---,TN¢,t33N¢+2) vy 85)d8 N, +2..-dS5

—1{5=Nt+1}/t (as—t)/ 9(Th, ..., Tn-1, 85)dss

+1{5=Ng+1}g(T1a ey Tn—1, t)

00 —-(s —t) 85 8N¢+2
=—1{N,<5}/t e\ /t /t 9(T1, ..., TN,, SN, +15 -1 95)AS N, +1...dS5

+1

S L SNy+2
{N:<5}£ e\ /t /t 9(T1, .., TNy ty N2 5 ooy 85)dSN, +2...dS5

= E[D,G/Fi.
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The operators D, and & can be extended to the case
m ~
= z Nk (t)a
k=1

where Ny’s are independent Poisson processes, by composing a. direct sum of independent
Poisson spaces (cf. [19] p.103). On the other hand, for the adjoint of D, see the section
7.

6 Integration-by-parts setting by Bismut

In this section we state the integration-by-parts formula by using Bismut perturbation.
We sketch the idea below in case d = 1. We assume in this section that u(dz) = g(z)dz,
where g(2) is a smooth function on R having compact support.

Let v be a bounded predictable process on [0, +00) to R. We consider the perturba-
tion
6*: 2z 24+ (z)v, A€R.
Here v(z) is a smooth function which is O(2?) near z = 0. Let N*(dsdz) be the Poisson
random measure defined by

/0 ‘ / #(z)N*(dsdz) = /0 t / #(0*(2))N(dsdz), ¢ € C(R).

We put Z) = [} f zN*(dudz), and denote by P* its law . Set A*(z) = {1+)\u’(z)v}9—(%%§n,
and

U = expl{ /0 ‘ / log A*(z)N(dsdz;) — /0  ds f (A (2) = 1)g(2)d2)].

Then Z is a martingale, and P> has the derivative

ap?
dpP
where F; denotes the o —field generated by Z; (cf. [2] Theorem 6-16, Bismut [3], (2.34) ).

Consider the perturbed process F;* which is defined by a SDE driven by Z* in place of
z Then EP[f(F,)) = EP*[f(F})] = E'P[f(F )U?], and we have 0 = ZEP[f(FMUP|, f €
C§°(R). By the chain rule, for || small, we have
6F"

LR = Df(EY)- S, fe o).

Ut on ft.

We have for A =0

EPID,f(F) - BF O Ixmal = ~BPIf(F) kU ol

By Corollary 6-17 of {2, we may differentiate U;* with respect to ), to obtain

R; = %U{\h=o = /ot/ div {g(s-])(zz)/(-)}(z) {N(dsdz) — dsg(z)dz}.



Next we compute H = —5-'-— F is differentiable a.s. for |A| small, and its derivative
at A = 0, H; = HY is obtained exphcﬂ:ly as the solution of a SDE (cf. [2] Theorem 6-24).
We put DH; = BXHt |A=0, Where ?ﬁH ) is the second Fréchet derivative of F;* defined as

in [2] Theorem 6-44. Then mHt)‘ Yy=o = —H;'DH;H*. Here BXHtA ~1 is defined by
< mHt Le >=trace [¢/ < —H" “NEH )H) e >] e € R.

We carry out the integration-by-parts procedure for Gp = f(F} )Ht)‘ ~1 Recall we
have E[G?] = E[G} - UP]. Taking the Fréchet derivation Zla=0 for both sides yields

0

0 = E[D, f(Fy)H; ' Hy] + E[f (E) Ht ! x=o] + E[f(F)H; - R

This yields
E[Df(F)] = E[f(F) A"

where
AY = (H7'DHH;* — H{1R,}.
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This is the integration-by-parts formula in Bismut setting. We can calculte H; ! DH,H;!

explicitly.

7 New integration-by-parts setting for jump diffusion

This is a joint work with Prof. H. Kunita. [12]

From the gradient-adjoint formula to the integration-by-parts formula for f(F), there
are several attempts. Here we recall one which is based on Picard’s method.

In this section, let N(dtdz) be a Poisson random measure on [0,T] x R™ and W; be
a Wiener process on R™, m > 1.

Let Tp be a positive number and let T = [0,Tp]. Let Q; be the set of all continuous
maps wy : ' — R™ such that wi(0) = 0 and let F; be the smallest o-field of §2; with
respect to which {w;(t),t € [0,T]} are measurable. Let P; be a probability measure on
(2, F1) such that W(t) := w(t) is a standard 1-dimensional Brownian motion.

Set
o0y = [ |alPu(da). (10)
lzl<p
We say that the measure u satisfies an order condition if there exists 0 < a < 2 such that
hmmf tP(P) (11)
p—0 .

Note that Lévy measures withk finite mass do not satisfy the order condition, because
liminf,_o 2% = 0 holds for any « € (0,2) then. On the other hand, Lévy measures of
stable laws with exponent 3 satisfies the order condition with a = 2 — §.

Let T be a positive number and let T = [0,Tp]. Let §2; be the set of all continuous
maps w; : T — R™ such that w1(0) = 0 and let F; be the smallest o-field of 3 with
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respect to which {w;(t),t € [0,T]} are measurable. Let P; be a probability measure on
(Qu, F1) such that W(t) := wi(t) is a standard 1-dimensional Brownian motion.

Let Q2 be the set of all integer valued measures on U = T x R™ such that wo(T" x
{0}) = 0 and let F2 be the smallest o-field of Q2 with respect to which {w2(E); E are
Borel sets in U} are measurable. Let P; be a probability measure on (Q2, F3) such that
N(dtdz) := wa(dtdz) is a Poisson random measure with intensity measure N(dtdz) :=
dtu(dz), where p is a Lévy measure.

Let H = L?(T;R™). For h; € H, we set

W) = [ mis)aw,.
We denote by S; the collection of random variables X written as

X =fW(hi), -+, W(hn,)),

where f(zy,..,Zn,) is bounded B(R™ ) measurable, smooth in (zi,...,Zn,), ny € N.
The Malliavin-Shigekawa’s derivative of X (with respect to the first variable w;) is an
1-dimensional row vector stochastic process given by

DX = 3 2L W (ha), ., Wk (). (12
1 4

Next, we shall introduce difference operators Dy, u € U, acting on the Poisson space.
For each u = (t,2) = (¢,21) € U, we define a map & : Q3 — Q9 by e;wa(A) = w2(4AN
{u}¢), and €} : Q2 — Q2 by eFwa(A) = wo(A N {u}®) + 14(u). (These are extended to
by setting (w1, ws) = (w1,€fw2)) It holds e;w = w a.s. P for any u since wy({u}) =0
holds for almost all ws for any u. The difference operators D,, for a F;-measurable random
variable X is defined after Picard [23] by

DX =Xoe} — X. (13)

Let u = (u!, ..., uk) = ((t1,2"), ..., (b, 2F)) = (t,2). We set |u| = |z| = max; i<k |2
and y(u) = |2}|-- - |2*|. We define e}; =€} o---0ef and D, = D% = D,, --- D,, . Further
for z = (2!,..., 2F) where z* € R™, we set 8,9 = 9,1 - -- 0,xg. It is an k-vector function.

Let S; be the collection of random variables X written as

X = f(N(e1),» Nlgny)),

where f(zi,...,Zn,) is bounded B(R"?) measurable, smooth in (zy,...,Zn,), n2 € N.
Let S = $; ® S;. Spaces S1,S2 are identified with §; ® 1,1 ® S, respectively. The
space S is the linear span of functionals X such that
x=3 xPxP keN,
i+i=k

where X{ = f)(W(hy), ..., W(h:)) and XJ = f)(N (1), ..., N(p;)). Here f) and 7§
are bounded B(R*) (B(R’)) measurable, smooth functions of ¢ (j) variables, respectively.



The adjoint § of the operators D = (Dy)yey is defined as follows. Let Z, = Z;, be

an F-measurable random field, integrable with respect to N = N — N, i.e.,

B /U |1Zy 0 &7 |(N + N)(du)] < oo.

We set
5(Z)=/UZuoe,;]\7(du).

It is known that this operator satisfies the adjoint property:

E[X§(2Z) =F [ /U f)uXZuN(du)] ,

for any bounded F-measurable random variable X. ([23], Lemma 1.4).

We shall next introduce linear maps @ and Qp by
Qv = / (D¢F)D,Y dt,
T

~ 1 ~ ~ .
WY = = vy Do F)DaY N (du).

Lemma The adjoints of Q and Qp exist and are equal to

QX = §(DF)TX),
QX = 5((DFTX),
respectively, where
%(2) = o(p )6(2 Ap) = w(p) iy 2 2 S N ()

(14)

(15)

(16)

(17

(18)
(19)

(20)

Let f(z) be a C?-function with bounded derivatives. We claim a modified formula
of integration by parts. Note that D;(f(F)) = f(F)DyF = (D;F)8f(F). Then we get

Qf(F) = [ (DF)DUF(F)dt = ROF(F).

Concerning the difference operator Dy, we have by the mean value theorem,

- _ 1 .
Du(£(G)) = (DuG)T /0 8f(G + 6DuG)do,
for a random variable G on the Poisson space. This implies

pr(F) = R,0f(F)

<p(p

) / DuF(DuF)T ( f (8 (F + 6D, F) — 6f(F)}d0) N(duw).

(21)

(22)

(23)
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H
ere ) 1

= D, F(D,F)T N(du).
g w(p)A(p)“(“) (du)

Sum up (21) and (23) and then take the inner product of this with S,X. Its expec-
tation yields the following.

Proposition [12] (Analogue of the formula of integration by parts) For any X we have
E((X,8f(F))] = E[(Q + Q)" (S,X) £ (F)] (24)

B - ) ~
_w(p)E[(X,sp /A , DuF(DF) ( /0 {0f (F + 6D, F) Bf(F)}de)kN(du))].
Here S, = (R+ R,)"!.

Remark. If there is no Poisson part in (15), then the formula is written as

E((X,0f(F))] = E[Q"(R™'X)f(F)] = E[§((R"' X, DF))f(F)]. (25)

On the other hand, if R, is not zero or equivalently Q,, is not zero, we have a remaining
term (the last term of (15)). We have this term even if Z, is a simple Poisson process NN,
or its sums. However, if we take f(z) = e!®?) o e R4 \ {0}, we have 9f(z) = ie'w)y

and N
W F+0DuF) _ i(w.F) _ f(1-0)(w.F) fy (oi(wBF)).

Hence we have an expression of the integration-by-parts for the functional

E[(X, w)8, (e"“F))] = E[(Q* + Q) + R} ,,)S,X - P, v, (26)
Here ) )
" A ~ a1 ~ ~ .
RBpu¥ =~ /0 (3(e0-0@P  DF(DF)TY), 0D D) db.
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