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1 Introduction

In recent years there appear several papers in finance on jump models and on jump-
diffusion models using stochastic calculus, after the success of the Black-Scholes model.
Indeed, classical $[1|$ and [16] include chapters on jump-diffusions. Recent examples are
[17], [22], [10], [11], and $[27|$ . However, fairly restricted types of jump processes have
been treated, due to the technical difficulties. For example, $[1|$ and [16] have treated the
diffusion $+$ compound Poisson model. The so-called geometric $L6vy$ model $S_{t}=S_{0}e^{Z_{t}}$ ,
where $Z_{t}$ denotes a L\’evy process (with infinite jumps), has not been included in the
previous typical jump models studied in many papers.

Let $S_{t}$ denote ajump-diffusion given as a solution to SDE which is driven by a LEvy
process. We study here as an application of Malliavin calculus of jump type the sensitivity
analysis for asset prices. Basic concept is as follows.

price $=E^{Q}[(pay- 0ff)]$ .

Here price means today’s $(t=0)$ value of some contingent claim (pay-off) with respect to
$S_{t}$ in future $(t=T)$ , and $Q$ is a risk neutral probability.

We assume the pay-off depends on some parameter $\lambda$ . We consider the marginal
move of the price with respect to $\lambda$ by using the integration-by-parts:

$\frac{\partial}{\partial\lambda}$ (price) $(\lambda)=E^{Q}$ [(pay-off). (weight) $(\lambda)$ ].

The L.H.S. denotes the marginal move of the asset price with respect to $\lambda$ , hence it serves
to measure the stability of the price. Such quantities qre called Greeks. Some examples
of Greeks are Delta, Vega, Gamma, $Rho$ and Theta. For the precise definition, see below.

The basic &amework of this thoery on the Wiener space has been established in
[8]. We study in this paper some functionals on the Wiener-Poisson space, and develop a
stochastic calculus of variations to achieve the integration-by-parts formula.

2 Jump-diffusion models in closed form

Let $N(dtdz)$ be a Poisson random measure on $[0,T|xR$ with the mean measure $dt\cdot\delta_{\{1\}}$ ,
and $W_{t}$ be a Wiener process on R.

Let $Z_{t}$ be a simple L\’evy process given by

$\ovalbox{\tt\small REJECT}=\sigma_{1}W_{t}+\sigma_{2}\tilde{N}_{t}$ ,
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where $\tilde{N}_{t}=N_{t}-t$ .
The price process $S_{t}$ associated to this $Z_{t}$ is defined by

$\frac{dS_{t}}{S_{t-}}=r(t)dt+\sigma_{1}(t)dW_{t}+\sigma_{2}(t)d\tilde{N}_{t},$ $S_{0}=x$ .

Here $r(t),$ $\sigma_{1}(t\rangle,$ $\sigma_{2}(t)$ are deterministic fmctions. Then $S_{t}$ is $reprented$ explicitly in
closed form

$S_{t}=x\exp[/0^{t_{\sigma_{1}(s)dW_{\epsilon}+\int_{0}^{t}(r(t)-\sigma_{2}(s))ds-\frac{1}{2}\int_{0}^{t}\sigma_{2}^{2}(s)ds]\cross\Pi_{k=1}^{N_{l}}(1+\sigma_{2}(T_{k}))}}$

where $T_{1},$ $T_{2},$
$\ldots$ are jump times of $N_{t}$ . cf. [1] (3.2).

More generally, assume that $X_{t}$ is a jump semimantngale, such that it is a solution
to a SDE driven by a $Iae^{J}vy$ process. The price process is defined by

$\frac{dS_{t}}{S_{t-}}=r(t)dt+\sigma_{1}(t)dW_{t}+\sigma_{2}(t)dX_{t},$ $S_{0}=x$ .

Then $S_{t}$ is represented also in closed form by

$S_{t}=x \exp[\int_{0}^{t}\sigma_{1}(s)dW_{s}+\int_{0}^{t}(r(t)-\frac{1}{2}\sigma_{1}^{2}(s))ds+\int_{0}^{\ell}\sigma_{2}(s)dX_{8}-\frac{1}{2}\int_{0}^{t}\sigma_{2}^{2}(s)d[X,X|_{s}|$

$x\Pi_{s=0}^{t}((1+\sigma_{2}(s)\Delta X_{\epsilon})\exp(-\sigma_{2}(s)\Delta X_{s}+\frac{1}{2}(\sigma_{2}(s)\Delta X_{s})^{2}))$ .
Note that the product is a infinite product in general.

Let, for example, $F=S_{T},T>0$ . If we know explicitly the density of $F$ via closed
formulae above, then we can estimate $E[f(F)|$ directly. We may then have closed forms
for Greeks for “good” $f$ . This way is called the kemel density estimation method [13].
An example of a such density is the variance gamma distribution [18]. However this is
not always the case. For example, there is no explicit formula for the price of American
option.

3 Greeks

Let $\lambda$ be some parameter in $S\tau$ given above, and let $F=F^{\lambda}$ be a functional of $S_{t}$ .
That is, for example, $F=S_{T}^{(\lambda)},$ $T>0$ or $F= \int_{0}^{T}S_{t}^{(\lambda)}dt$ . Let $f$ be a a.e. smooth
function taking values on R. Then $f(F)$ is a random variable. An example of $f(x)$ is
$fo(x)=(x-K).1_{[K,\infty)}$ , or its smooth regularization $f=fo*\varphi_{\epsilon}$ , where $\varphi_{\epsilon}$ is a molifier.

So called Greeks associated to $f(F)$ are given as follows.
(1) Delta $= \exp\{-\int_{0}^{T}r(t)dt\}_{Tx}^{\partial}E[f(F)]$ .
Delta is the derivative of the price with respect to the parameter $\lambda=x$ (the initial

value of $S$).

(2) Vega $= \exp\{-\int_{0}^{T}r(t)dt\}_{T\sigma_{1}}^{\partial_{-}}E[f(F)]$ .
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More precisely, for $\epsilon>0$ , let

$\frac{dS_{t}^{\epsilon}}{S_{t-}^{\epsilon}}=r(t)dt+(\sigma_{1}(t)+\epsilon\tilde{\sigma}_{1}(t))dW_{t}+\sigma_{2}(t)d\tilde{N}_{t},$ $S_{0}^{\epsilon}=x$ .

We put
$C_{\epsilon}\equiv\exp\{-/0^{\tau_{r(t)dt\}E[f(S_{T}^{\epsilon})|}}$ .

Then Vega $=\yen^{\partial C}|_{\epsilon=0}$ . This is a ( $\mathbb{R}$\’echet) derivative of $S_{t}$ with respect to $\sigma_{1}($ . $)$ (coefficient
of the Wiener process) in the direction $\tilde{\sigma}_{1}($ . $)$ .

Other Greeks are, for example,

(3) Gamma $= \exp\{-\int_{0\varpi^{2}}^{\tau_{r(t)dt\}^{\partial}E[f(F)]}}$ .
(4) Rho $=\pi^{(\exp\{-\int_{0}^{\tau}r(t)dt\}E[f(F)|)}\partial$ . (The $Rho$ is defined similarily as Vega.)

(5) Theta $= \pi\partial(\exp\{-\int_{0}^{\tau}r(t)dt\}E[f(F)])$ .
We remark that these Greeks can be regarded as corresponding (first or second) terms

in the asymptotic expansion

$E[F^{\lambda}]-E[F]=c_{1} \lambda+\frac{1}{2}c_{2}\lambda^{2}+\cdots$

when $\lambda>0$ is small.

4 Weights

For the calculation of Greeks we can use Malliavin calculus for jump-diffusion processes.
In this section we assume that the l-dimensional process $X_{t}$ driving the SDE above is
given by $X_{t}=\sigma_{1}W_{t}+\sigma 2Z_{e}$ , where $Z_{t}$ is a L\’evy process

$Z_{t}=bt+/0^{t}/|z| \leq 1^{z\tilde{N}(dsdz)}+\int_{0}^{t}/|z|>1^{zN}$(dsdz)

whose L\’evy measure is given by $\mu(dz)$ . We do not assume $\mu(dz)$ is absolutely continuous
with respect to the Lebesgue measure. It can even be a discrete measure. (If $\mu=\delta_{\{1\}}$

then $Z_{t}$ is a Poisson process $N_{t}.$ ) In this case it is not practical to compute Greeks along
the closed form expression in general.

Let $F=F^{x}$ be as in the previous section $(\lambda=x)$ . For a random variable $G^{x}\in L^{2}$

depending on $x$ , we have

$\frac{\partial}{\partial x}E[G^{x}f(F)|=E[G^{x}\partial f(F)\partial_{x}F|+E[\partial_{x}G^{x}\cdot f(F)|$ .

If we choose $G^{X}\equiv 1$ ,
$\frac{\partial}{\partial x}E[f(F)]=E[\partial f(F).\partial_{x}F]$ . (0)

We introduce a gradient operator $D_{u},$ $u=(t, z)$ , on the Poisson space on $[0,T]x$ R.
We assume the chain rule

$D_{u}f(F)=\partial f(F).D_{u}F$ (1)
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and the local operator property

$D_{u}(XY)=XD_{u}Y+YD_{u}X$ (2)

hold for the operator $D_{u}$ . By the chain mle for the gradient $D_{u}$ and by the integration
by parts, we have

R.H.S. of (0) $=E[ \frac{D_{u}f(F)}{D_{u}F}.\partial_{x}F|=E[D_{u}f(F).\frac{\partial_{x}F}{D_{u}F}|=E[f(F)\delta(\frac{\partial_{x}F}{D_{u}F})|$ . (3)

This leads to the calculation for Delta.

Here $\delta(.)$ is the adjoint operator (Skorohod integral) associated to the gradient $D_{u}$ ,
and the term $\delta(\cdots)$ is called a weight provided that it is square integrable. In practical
computation it is important to calculate this Weight.

We can proceed the calculation (3) above following the formula

$\delta(vG)=G\delta(v)-\int_{0}^{T}\int D_{u}Gv(u)dt\mu(dz)$ (4)

(cf. [6] Proposition 1).

To compute Gamma we need to compute the second derivative

$\frac{\partial^{2}}{\partial x^{2}}E[f(F)|=\frac{\partial}{\partial x}E[f(F).\delta(G)]=E[f(F)\frac{\partial}{\partial x}\delta(G)]+E[f(F)\delta(\delta(G)G)]$ ,

where $G= \frac{\partial F}{D_{u}F}$ .
For the precise framework for this calculation on the Wiener-Poisson space, there

seems to exist no decisive set-up up to now (e.g., gradient operator, its adjoint, norms,
Sobolev spaces, ...). In the section 7 we present a new framework for this.

5 Finite difference operator and gradient operator on Pois-
son space

Let $Z_{t}=\tilde{N}_{t}$ for simplicity. On the Poisson space we introduce two gradients.

Let $U=[o,\eta X$ R. We choose $u$ in $U$ of the form $u=(t, 1)$ . Let $F=f(T_{1}, \ldots, T_{n})$ ,
where $f=f(x_{1}, \ldots, x_{n})$ is a smooth function and $T_{k}$ denotes the k-th jump time of $N_{t}$ .
We introduce two gradient of $F$ on $U$ .

We put
$D_{u}F=- \sum_{N_{\ell}<k\leq n}\partial_{k}f(T_{1}, \ldots,T_{n})$

. (5)

Here $\partial_{k}$ denotes $F_{k}^{\partial}$ . This definition is due to Carlen-Pardeux [4].

We introduce a finite difference operator $\tilde{D}$ by

$\tilde{D}_{u}F=f(T_{1}, \ldots,T_{N_{t}},t,T_{N\ell+1}, \ldots,T_{n-1})-f(T_{1}, \ldots,T_{n})$ (6)
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if $N_{t}<n$ . The above is equivalent to

$\tilde{D}_{u}F=f(T_{1}, \ldots,T_{k}, t,T_{k+1}, \ldots,T_{n-1})-f(T_{1}, \ldots,T_{n})$ (7)

if $T_{k}<t\leq T_{k+1}$ . This definition is due to Nualart-Vives [21] (see also Picard [23]).
The operator $D_{u}$ satisfies the properties (1), (2) in Sect. 4, whereas $\overline{D}_{u}$ does not.

Instead we have by the mean value theorem when $\varphi$ is differentiable :

$\tilde{D}_{u}\varphi(F)=\int_{0}^{1}\partial\varphi(F+\theta\tilde{D}_{u}F)d\theta.\tilde{D}_{u}F$ . (8)

And also
$\tilde{D}_{u}(FG)=F\cdot\tilde{D}_{u}G+G\cdot\tilde{D}_{u}F+\tilde{D}_{u}F\overline{D}_{u}G$ (9)

(cf. [21] Lemma 6.1).

The gradient $D_{u}$ is closable $(in L^{2}(\Omega, L^{2}([0,T])))$ , and its adjoint is given by

$\delta(v)=/0^{\tau_{v(t)d\tilde{N}_{t}-}}/0^{\tau_{D_{u}v(t)dt}}$.

Further we have
$E[/0^{\tau_{D_{u}Fvdt|}}=E[F\delta(v)]$

([26] Propositions 7, 8, [19] p.104).

The formula (4) then reads

$\delta(vG)=G\delta(v)-(v, D_{u}G)=G\delta(v)+/o^{T}v(t)(\sum_{N_{t}<k\leq n}\partial_{k}g(T_{1}, \ldots, T_{n}))dt$

if $G=g(T_{1}, \ldots,T_{n})$ . Hence, the formula (3) reads

$\delta(\frac{\partial_{x}F}{D_{u}F})=\partial_{x}F\delta(\frac{1}{D_{u}F})-(\frac{1}{D_{u}F}\prime D_{u}(\partial_{x}F))$ .

Although, $due\sim$ to (9), $\tilde{D}_{u}$ does not satisfy the chain rule, we can show the property
below between $D_{u}$ and $D_{u}$ for which the chain rule holds.

Let $p_{n}(t)=P(N_{t}=n)=\urcorner_{n}^{{}^{t^{n}}e^{-t}}$ be the density function of $T_{n}$ . We have then

$p_{n}^{t}(t)=p_{n-1}(t)-p_{n}(t),$ $t>0$ .
Let $T=\infty$ . In view of this formula, the formula

$\frac{d}{du}\int_{t}^{u}g(s, u)ds=g(u,u)+\int_{t}^{u}\frac{\partial}{\partial u}g(s, u)ds$ ,

and due to the fact that the jump times of a Poisson process are uniformly distributed
given the number of jumps, we have the following Proposition.

Proposition Let $F=f(T_{1}, \ldots,T_{n})$ and $G=g(T_{1}, \ldots, T_{n})=\varphi(F)$ . That is, $g=\varphi\circ f$ .
Then

$E[D_{u}G/\mathcal{F}_{t}|=E[\tilde{D}_{u}G/\mathcal{F}_{t}]$ .
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The proof is due to N. Privault. It also follows from the Kabanov formula (cf. [21]
Theorem. 6.2), We state the direct proof below in case $n=5$ . Proof for the general case
is easy.

Example

Let $G=g(T_{n})$ . We have the equality directly as follows.

$E[D_{u}g(T_{n})/\mathcal{F}_{t}]=-1_{\{N_{t}<n\}}E[g’(T_{n})/\mathcal{F}_{t}|$

$=- \int^{\infty}g’(x)p_{n-1-N_{t}}(x-t)dx=g(t)p_{n-1-N_{t}}(0)+\int^{\infty}g(x)p_{n-1-N_{t}}’(x-t)dx$

$=g(t)1_{\{T_{n-1}\leq t<T_{n}\}}+ \int^{\infty}g(x)p_{n-1-N_{t}}^{l}(x-t)dx$

$=g(t)1_{\{T_{n-1}\leq t<T_{n}\}}+ \int^{\infty}[p_{n-2-N_{t}}(x-t)-p_{n-1-N_{t}}(x-t))g(x)dx$

$=g(t)1_{\{T_{\mathfrak{n}-1}\leq t<T_{n}\}}+E[1_{\{T_{n-1}>t\}}g(T_{n-1})-1_{\{T_{n}>t\}}g(T_{n})/\mathcal{F}_{t}]$

$=E|1_{t^{T_{n-1>\ell\}}}}g(T_{n-1})+1_{\{T_{\mathfrak{n}-1}\leq t<T_{n}\}g(t)-1_{\{T_{n}>t\}}g(T_{n})}/\mathcal{F}_{t}]$

$=E[1_{\{N_{t}<n-1\}}(g(T_{n-1})-g(T_{n}))+1_{\{N_{t}=n-1\}}(g(t)-g(T_{n}))/\mathcal{F}_{t}]$

$=E[\tilde{D}_{u}g(T_{n})/\mathcal{F}_{t}|$ .

It is natural that they coincide with each other by the uniqueness of the Clark-Ocone
formula for $G$ , as they are the conditional expectation terms (integrands) in the l-st
stochastic integral in the Clark-Ocone expression. Cf. [28]. However we can see it directly
in this case.

Proof.

Let $G=g(T_{1}, T_{2}, \ldots, T_{5})$ .

$E[D_{u}G/ \mathcal{F}_{t}]=-\sum_{N_{t}<k\leq 5}E[\partial_{k}g(T_{1}, \ldots,T_{5})/\mathcal{F}_{t}]$

$=- \sum_{N_{t}<k\leq 5}\int_{0}^{\infty}e^{-(s_{5}-t)}\int^{s\epsilon}\cdots\int^{SN_{t}+2}\iota’ z+1,$ $\ldots$ ,

$=- \sum_{k=N_{t}+2}^{5}\int^{\infty}e^{-(s_{5}-t)}\int^{85}\cdots\frac{\partial}{\partial s_{k}}\int^{\epsilon_{k}}\cdots\int^{\delta}N\ell+2g(T_{1}, \ldots,T_{N_{t}}, s_{N_{t}+1}, \ldots, s_{5})ds_{N_{t}+1}\ldots ds_{5}$

$+ \sum_{k=N_{\ell}+2}^{5}\int^{\infty}e^{-(s-t)}5\int^{s_{6}}\ldots\int^{s_{k}}\ldots\int^{\theta}N_{t}+2g(T_{1}, \ldots,T_{N_{t},N_{t}+1}s, s_{k}, s_{k}, s_{k+1}, \ldots, s_{5})d_{SN_{t}+1}\ldots d\hat{s}_{k-1}\ldots ds5$

$-1_{\{N_{t}<5\}\int^{\infty\epsilon s\ldots N_{t}+2}}e^{-(\epsilon-t)} b\int\int^{\epsilon}\frac{\partial}{\partial sN_{t}+1}g(T_{1}, \ldots, T_{N_{t}}, s_{N_{t}+1}, \ldots, s_{5})ds_{N_{t}+1}\ldots ds_{5}$

$=-1_{\{N_{t}<4\}} \int^{\infty}e^{-(s-t)}6/t^{\partial 5}\ldots\int^{sN_{\ell}+2}s$
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$- \sum_{k=N_{t}+2}^{4}1_{t}^{\infty}e^{-(s_{5}-t)}l^{s_{5}}\cdots l^{s_{k+1}}\frac{\partial}{\partial sk}/ts_{k}\ldots/tSN_{i}+2g(T_{1},\ldots,T_{N_{t}},s_{N_{\ell}+1},\ldots,s_{5})ds_{N_{t}+1}\ldots ds_{5}$

$+ \sum_{k=N_{t}+2}^{5}l^{\infty}e^{-(s_{5}- t)}l^{s_{5}}\cdots l^{s_{k}}\cdots l^{g(T_{1},\ldots,T_{N_{t}},s_{N_{t}+i},s_{k},s_{k},s_{k+1},\ldots,s_{5})d_{S}d\hat{s}_{k-1}\ldots ds_{5}}s_{N_{t}+2}N_{t}+1\cdots$

$- 1_{\{N_{t}<5\}}=- 1_{\{N_{t}<4\}}^{\cdots I_{t}^{s_{N\ell+2}}\frac{\partial}{\partial s_{N_{t}+1}}g(T_{1}.’.\cdots,T,ss_{5})ds_{N_{t}+.1}\ldots ds_{5}}t \infty e^{(s_{5}- t)}/t\infty e^{-(s_{5}- t)}\frac{\partial}{\partial s_{5}}\int_{t}^{s_{5}}^{/}\int_{t}^{\theta}^{1_{t}^{s_{6}}}N_{t}+2g(T_{1},.,T_{N_{t},N_{t}+1}s,.,s_{5})d_{SN_{t}+1}..ds_{5}N_{t}N_{t}+1.’.\cdots$

,

$- \sum_{5}^{4}/t\infty e^{-(sg- t)}\int_{t}^{85}\int^{\epsilon N_{t}+2}g(T_{1},\ldots,T_{N_{t},N_{t}+1,\ldots,k-1,k+1}sss,s_{k+1},\ldots,s_{5})d_{SN_{t}+1}\ldots d_{\hat{S}k}\ldots ds_{5}$

$+ \sum_{k=N_{t}+2}l^{e^{-(\epsilon\epsilon- t)}}\infty l^{85}\cdots/t\epsilon_{k}\ldots\int^{\epsilon_{N+2}}\epsilon gT_{1},\ldots,T_{N_{t}},+k,k+1,\ldots$,

$- 1_{\{N_{1}<5\}} \int^{\infty}e^{-(s_{5}- t)}/tSg\ldots l^{s_{N_{t}+2}}\frac{\partial}{\partial_{SN_{t}+1}}g(T,\ldots,T,s,\ldots,s_{5})ds_{N_{t}+1}\ldots ds_{5}$

$+1_{\{N_{t}<4\}}=- 1_{\{N_{t}<4\},l_{t}^{e^{-(\epsilon s-t)}}\infty l_{t}^{sb}\cdots/ds_{5}}f_{t}^{e^{arrow(ss-t)}}\infty f_{t}^{e_{6}}\cdot\cdot/ts_{N_{t}+2}t8N_{t}+2g(.,82g.(.T_{1},\ldots,T_{N_{t}},s_{N_{t}+1},\ldots,.s_{5})ds_{N_{i}+1}\ldots d.s_{5}2,..,..$

$- 1_{\{N_{t}<4\}}/t \infty e^{-(s- t)}5\int_{t}^{\delta g}\ldots/ts_{N_{\ell}+2}g(T_{1},\ldots,T_{N_{t}},s_{N_{t}+2},s_{N_{t}+2},\ldots,s_{5})ds_{N_{t}+1}\ldots ds_{5}$

$+1_{\{N_{t}<4\}\int^{\infty}e^{-(ss- t)}}/ts s\ldots\int^{s_{N_{t}+2}}g(T_{1},\ldots,T_{N_{t}},t,s_{N_{t}+2},\ldots,s_{5})ds_{N_{t}+2}\ldots ds_{5}$

$=- 1_{\{N_{t}<\epsilon\}}/\iota^{-1_{\{5=N_{t}+1\}}}\infty e^{-(\epsilon g- t}\prime l^{\epsilon_{5}}\cdots/tgdsN_{t}+1+5=N_{t}+1\}g(T_{1},..,T_{n- 1},t)/_{1_{\{}}t\infty e^{-(\epsilon- t)}f_{t}^{g(T_{1},\ldots,T,s_{5})ds_{5}}\epsilon_{N_{t}+2}5s5.n_{N_{t}1}$

$+1_{(N_{t}<5\}\int_{t}^{\infty}e^{-(s_{b}-t)}\int^{s5}\cdots\int g(T_{1},\ldots,,.T_{N_{l}},t_{N_{t}+2},\ldots,s_{5})d_{SN_{t}+2}\ldots ds_{5}}t=E[\tilde{D}_{u}G/\mathcal{F}_{t}]tSN_{t}+2$
,
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The operators $D_{u}$ and $\delta$ can be extended to the case

$Z_{t}= \sum_{k=1}^{m}\tilde{N}_{k}(t)$ ,

where $N_{k}$ ’s are independent Poisson processes, by composing a direct sum of independent
Poisson spaces (cf. [19] p.103). On the other hand, for the adjoint of $\tilde{D}_{u}$ , see the section
7.

6 Integration-by-parts setting by Bismut

In this section we state the integration-by-parts formula by using Bismut perturbation.
We sketch the idea below in case $d=1$ . We assume in this section that $\mu(dz)=g(z)dz$ ,
where $g(z)$ is a smooth function on $R$ having compact support.

Let $v$ be a bounded predictable process on $[0, +\infty)$ to R. We consider the perturba-
tion

$\theta^{\lambda}:z\mapsto z+\lambda\nu(z)v$ , $\lambda\in R$ .
Here $\nu(z)$ is a smooth function which is $O(z^{2})$ near $z=0$. Let $N^{\lambda}(dsdz)$ be the Poisson
random measure defined by

$\int_{0}^{t}/\phi(z)N^{\lambda}(dsdz)=/0^{t}/\phi(\theta^{\lambda}(z))N(dsdz),$ $\phi\in C_{0}^{\infty}(R)$ .

We put $Z_{s}^{\lambda}= \int_{0}^{t}\int zN^{\lambda}(dudz)$ , and denote by $P^{\lambda}$ its law. Set $\Lambda^{\lambda}(z)=\{1+\lambda\sqrt{}(z)v\}_{g}\ovalbox{\tt\small REJECT}_{z}^{\lambda}$ ,
and

$U_{t}^{\lambda}= \exp[\{\int_{0}^{t}\int\log\Lambda^{\lambda}(z)N(dsdz_{j})-\int_{0}^{t}ds\int(\Lambda^{\lambda}(z)-1)g(z)dz]$.

Then $Z_{t}^{\lambda}$ is a martingale, and $P^{\lambda}$ has the derivative

$\frac{dP^{\lambda}}{dP}=U_{t}^{\lambda}$ on $\mathcal{F}_{t}$ .

where $\mathcal{F}_{t}$ denotes the a-field generated by $Z_{t}$ (cf. [2] Theorem 6-16, Bismut [3], (2.34)).

Consider the perturbed process $F_{8}^{\lambda}$ which is defined by a SDE driven by $Z^{\lambda}$ in place of
Z. Then $E^{P}[f(F_{t})|=E^{P^{\lambda}}[f(F_{t}^{\lambda})|=E^{P}[f(F_{t}^{\lambda})U_{t}^{\lambda}]$, and we have $0=\varpi^{E^{P}[f(F_{t}^{\lambda})U_{t}^{\lambda}],f}\partial\in$

$C_{0}^{\infty}(R)$ . By the chain rule, for I $\lambda$ I small, we have

$\frac{\partial f}{\partial\lambda}(F_{t}^{\lambda})=D_{x}f(F_{t}^{\lambda})\cdot\frac{\partial F_{t}^{\lambda}}{\partial\lambda}$ , $f\in C_{0}^{\infty}(R)$ .

We have for $\lambda=0$

$E^{P}[D_{x}f(F_{t}) \cdot\frac{\partial F_{t}^{\lambda}}{\partial\lambda}|_{\lambda=0}|=-E^{P}[f(F_{t})\frac{\partial}{\partial\lambda}U_{t}^{\lambda}|_{\lambda=0}]$ .

By Corollary &17 of [2], we may differentiate $U_{t}^{\lambda}$ with respect to $\lambda$ , to obtain

$R_{t} \equiv\frac{\partial}{\partial\lambda}U_{t}^{\lambda}|_{\lambda=0}=\int_{0}^{t}\int\frac{div\{g(\cdot)v\nu(\cdot)\}(z)}{g(z)}\{N(dsdz)-dsg(z)dz\}$ .
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Next we compute $H_{t}^{\lambda}\equiv\#^{\theta F^{\lambda}}\lambda$ . $F_{t}^{\lambda}$ is differentiable a.s. for $|\lambda|$ small, and its derivative
at $\lambda=0,$ $H_{t}=H_{t}^{0}$ is obtained explicitly as the solution of a SDE (cf. [2] Theorem 6-24).
We put $DH_{t}=\pi^{H_{t}|_{\lambda=0}}\partial\lambda$ , where $\pi^{H_{t}}\partial\lambda$ is the second $\mathbb{R}$\’echet derivative of $F_{t}^{\lambda}$ defined as
in [2] Theorem $\not\in 44$ . Then $\varpi^{H_{t}^{\lambda,-1}|_{\lambda=0}}\partial=-H_{t}^{-1}DH_{t}H_{t}^{-1}$ . Here $\varpi^{H_{t}^{\lambda,-1}}\partial$ is defined by
$<\varpi^{H_{t}^{\lambda,-1},e}\partial>=$ trace $[e’\mapsto<-H_{t}^{\lambda};^{-1\partial}(\varpi^{H_{t}^{\lambda}\cdot e’)H_{t}^{\lambda,-1},e}>],$ $e\in R$ .

We carry out the integration-by-parts procedure for $G_{t}^{\lambda}=f(F_{t}^{\lambda})H_{t}^{\lambda,-1}$ . Recall we
have $E[G_{t}^{0}]=E[G_{t}^{\lambda}\cdot U_{t}^{\lambda}|$ . Taking the Fr\’echet derivation $r_{\lambda}^{1_{\lambda=0}}\partial$ for both sides yields

$0=E[D_{x}f(F_{t})H_{t}^{-1}H_{t}]+E[f(F_{t}) \frac{\partial}{\partial\lambda}H_{t}^{\lambda,-1}|_{\lambda=0}]+E[f(F_{t})H_{t}^{-1}\cdot R_{t}|$ .

This yields
$E[D_{x}f(F_{t})|=E[f(F_{t})A_{t}^{(1)}]$

where
$\mathcal{A}_{t}^{(1)}=\{H_{t}^{-1}DH_{t}H_{t}^{-1}-H_{t}^{-1}R_{t}\}$ .

This is the integration-by-parts formula in Bismut setting. We can calculte $H_{t}^{-1}DH_{t}H_{t}^{-1}$

explicitly.

7 New integration-by-parts setting for jump diffusion

This is a joint work with Prof. H. Kunita. [12]

From the gradient-adjoint formula to the integration-by-parts formula for $f(F)$ , there
are several attempts. Here we recall one which is based on Picard’s method.

In this section, let $N$ (dtdz) be a Poisson random measure on $[0,T|xR^{m}$ and $W_{t}$ be
a Wiener process on $R^{m}$

)
$m\geq 1$ .

Let $T_{0}$ be a positive number and let $T=[0, T_{0}]$ . Let $\Omega_{1}$ be the set of all continuous
maps $\omega_{1}$ : $Tarrow R^{m}$ such that $\omega 1(0)=0$ and let $\mathcal{F}_{1}$ be the smallest $\sigma- field$ of $\Omega_{1}$ with
respect to which $\{w_{1}(t), t\in[0,T]\}$ are measurable. Let $P_{1}$ be a probability measure on
$(\Omega_{1}, \mathcal{F}_{1})$ such that $W(t)$ $:=\omega_{1}(t)$ is a standard l-dimensional Brownian motion.

Set
$\varphi(\rho)=\int_{|z|\leq\rho}|z|^{2}\mu(dz)$ . (10)

We say that the measure $\mu$ satisfies an order condition if there exists $0<\alpha<2$ such that

$\lim_{\rhoarrow}\inf_{0}\frac{\varphi(\rho)}{\rho^{\alpha}}>0$. (11)

Note that $L6vy$ measures with finite mass do not satisfy the order condition, because
$\lim\inf_{\rhoarrow 0_{\rho}^{\omega_{a}}}=0$ holds for any $\alpha\in(0,2)$ then. On the other hand, IAvy measures of
stable laws with exponent $\beta$ satisfies the order condition with $\alpha=2-\beta$ .

Let $T_{0}$ be a positive number and let $T=[0,T_{0}]$ . Let $\Omega_{1}$ be the set of all continuous
maps $\omega_{1}$ : $Tarrow R^{m}$ such that $\omega_{1}(0)=0$ and let $\mathcal{F}_{1}$ be the smallest a-field of $\Omega_{1}$ with
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respect to which $\{w_{1}(t),t\in[0,T|\}$ are measurable. Let $P_{1}$ be a probability measure on
$(\Omega_{1},\mathcal{F}_{1})$ such that $W(t)$ $:=\omega_{1}(t)$ is a standard l-dimensional Brownian motion.

Let $\Omega_{2}$ be the set of all integer valued measures on $U=TxR^{m}$ such that $\omega 2(Tx$

$\{0\})=0$ and let $\mathcal{F}_{2}$ be the smallest $\sigma- field$ of $\Omega_{2}$ with respect to which $\{w_{2}(E);E$ are
Borel sets in $U$} are measurable. Let $P_{2}$ be a probability measure on $(\Omega_{2}, \mathcal{F}_{2})$ such that
$N(dtdz)$ $:=\omega 2(dtdz)$ is a Poisson random measure with intensity measure $\hat{N}$(dtdz) $:=$

$dt\mu(dz)$ , where $\mu$ is a $L6vy$ measure.
Let $H=L^{2}(T;R^{m})$ . For $h_{l}\in H$ , we set

$W(h_{l})=/\tau^{h_{l}(s)dW_{\epsilon}}$ .

We denote by $S_{1}$ the collection of random variables $X$ written as
$X=f(W(h_{1}), \cdots, W(h_{n_{1}}))$ ,

where $f(x_{1}, \ldots, x_{n_{1}})$ is bounded $\mathcal{B}(R^{n_{1}})$ measurable, smooth in $(x_{1}, \ldots, x_{n}1),$ $n_{1}\in$ N.
The MaMiavin-Shigekawa’s derivative of $X$ (with respect to the first variable $\omega_{1}$ ) is an
l-dimensional row vector stochastic process given by

$D_{t}X= \sum_{\iota}\frac{\partial f}{\partial x_{l}}(W(h_{1}), \ldots, W(h_{n}))h_{\iota}(t)$. (12)

Next, we shall introduce difference operators $D_{u},$ $u\in U$ , acting on the Poisson space.
For each $u=(t, z)=(t, z_{1})\in U$ , we define a map $\epsilon_{\overline{u}}$ : $\Omega_{2}arrow\Omega_{2}$ by $\epsilon_{\overline{u}}\omega_{2}(A)=\omega 2(A\cap$

$\{u\}^{c})$ , and $\epsilon_{u}^{+}:\Omega_{2}arrow\Omega_{2}$ by $\epsilon_{u}^{+}\omega_{2}(A)=\omega_{2}(A\cap\{u\}^{c})+1_{A}(u)$ . (These are extended to $\Omega$

by setting $\epsilon_{u}^{\pm}(\omega_{1},\omega_{2})=(\omega_{1},\epsilon_{u}^{\pm}\omega 2))$ It holds $\epsilon_{\overline{u}}\omega=\omega$ a.s. $P$ for any $u$ since $\omega_{2}(\{u\})=0$

holds for almost all $\omega_{2}$ for any $u$ . The difference operators $\tilde{D}_{u}$ for a $\mathcal{F}_{2}$-measurable random
variable $X$ is defined after Picard [23] by

$\tilde{D}_{u}X=X\circ\epsilon_{u}^{+}-- X.$ (13)

Let $u=(u^{1}, \ldots, u^{k})=((t_{1}, z^{1}), \ldots, (t_{k}, z^{k}))=(t, z)$ . We set $| u|=|z|=\max_{1\leq i\leq k}|z^{i}|$

and $\gamma(u)=|z^{1}|\cdots|z^{k}|$ . We define $\epsilon_{u}^{+}=\epsilon_{u_{1}}^{+}\circ\cdots\circ\epsilon_{u_{k}}^{+}$ and $\tilde{D}_{u}=\tilde{D}_{u}^{k}=\tilde{D}_{u_{1}}\cdots\tilde{D}_{u_{k}}$ . Further
for $z=(z^{1}, \ldots, z^{k})$ where $z^{i}\in R^{m}$ , we set $\partial_{l}g=\partial_{z^{1}}\cdots\partial_{z^{k}}g$ . It is an k-vector function.

Let $S_{2}$ be the collection of random variables $X$ written as

$X=f(N(\varphi 1), \cdots, N(\varphi_{n}2))$ ,

where $f(x_{1}, \ldots, x_{n_{2}})$ is bounded $B(R^{n_{2}})$ measurable, smooth in $(x_{1}, \ldots,x_{n_{2}}),$ $n_{2}\in N$ .

Let $S=S_{1}\otimes S_{2}$ . Spaces $S_{1},S_{2}$ are identified with $S_{1}\otimes 1,1\otimes\$ respectively. The
space $S$ is the linear span of functionals $X$ such that

$X= \sum_{i+j=k}X_{1}^{(i)}X_{2}^{(t)},$
$k\in N$ ,

where $X_{1}^{(i)}=f_{1}^{(i)}(W(h_{1}), \ldots, W(h;))$ and $X_{2}^{\circ)}=f_{2}^{0)}(N(\varphi 1), \ldots, N(\varphi j))$ . Here $f_{1}^{(i)}$ and $f_{2}^{0)}$

are bounded $\mathcal{B}(R^{i})(\mathcal{B}(R^{j}))$ measurable, smooth functions of $i(j)$ variables, respectively.
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The adjoint $\tilde{\delta}$ of the operators $\tilde{D}=(\tilde{D}_{u})_{u\in U}$ is defined as follows. Let $Z_{u}=Z_{t,z}$ be
an $\mathcal{F}$-measurable random field, integrable with respect to $\tilde{N}=N-\hat{N}\rangle$ i.e.,

$E[/U|Z_{u}\circ\epsilon_{u}^{-}|(N+\hat{N})(du)]<\infty$.
We set

$\tilde{\delta}(Z)=\int_{U}Z_{u}o\epsilon_{\overline{u}}\tilde{N}(du)$. (14)

It is known that this operator satisfies the adjoint property:

$E[X\tilde{\delta}(Z)]=E[/U^{D_{u}XZ_{u}\hat{N}(du)]}$
’ (15)

for any bounded $\mathcal{F}$-measurable random variable X. ([23], Lemma 1.4).

We shall next introduce linear maps $Q$ and $\overline{Q}_{\rho}$ by

$QY$ $=$ $/\tau^{(D_{t}F)D_{t}Ydt}$
’ (16)

$\tilde{Q}_{\rho}Y$ $=$ $\frac{1}{\varphi(\rho)}/A(\rho)^{(\tilde{D}_{u}F)\tilde{D}_{u}Y\hat{N}(du)}$ . (17)

Lemma The adjoints of $Q$ and $\tilde{Q}_{\rho}$ enist and are equal to

$Q^{*}X$ $=$ $\delta((DF)^{T}X)$ , (18)
$\tilde{Q}_{\rho}^{*}X$ $=$ $\tilde{\delta}_{\rho}((\tilde{D}F)^{T}X)$ , (19)

respectively, where

$\tilde{\delta}_{\rho}(Z)=\frac{1}{\varphi(\rho)}\tilde{\delta}(Z1_{A(\rho)})=\frac{1}{\varphi(\rho)}/A(\rho)^{Z_{u}\circ\epsilon_{\overline{u}}\overline{N}(du)}$ . (20)

Let $f(x)$ be a $C^{2}$-function with bounded derivatives. We claim a modified formula
of integration by parts. Note that $D_{t}(f(F))=f(F)D_{t}F=(D_{t}F)\partial f(F)$. Then we get

$Qf(F)=/\tau(D_{t}F)D_{t}(f(F))dt=R\partial f(F)$ . (21)

Concerning the difference operator $\tilde{D}_{u}$ , we have by the mean value theorem,

$\tilde{D}_{u}(f(G))=(\tilde{D}_{u}G)^{T}\int_{0}^{1}\partial f(G+\theta\tilde{D}_{u}G)d\theta$ , (22)

for a random variable $G$ on the Poisson space. This implies

$\tilde{Q}_{\rho}f(F)=\tilde{R}_{\rho}\partial f(F)$ (23)

$+ \frac{1}{\varphi(\rho)}\int_{A(\rho)}\tilde{D}_{u}F(\tilde{D}_{u}F)^{T}(\int_{0}^{1}\{\partial f(F+\theta\overline{D}_{u}F)-\partial f(F)\}d\theta)\hat{N}(du)$.
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Here
$\tilde{R}_{\rho}=\frac{1}{\varphi(\rho)}\int_{A(\rho)}\tilde{D}_{u}F(\tilde{D}_{u}F)^{T}\hat{N}(du)$.

Sum up (21) and (23) and then take the inner product of this with $S_{\rho}X$ . Its expec-
tation yields the following.

Proposition [12] (Analogue of the formula of integmtion by parts) For any $X$ we have

$E[(X,\partial f(F))|=E[(Q+\tilde{Q}_{\rho})^{*}(S_{\rho}X)f(F)]$ (24)

$- \frac{1}{\varphi(\rho)}E[(X,$ $S_{\rho}/_{A(\rho)}\tilde{D}_{u}F(\tilde{D}_{u}F)^{T}(/0^{1}\{\partial f(F+\theta\tilde{D}_{u}F)-\partial f(F)\}d\theta).\hat{N}(du))]$ .

Here $S_{\rho}=(R+\overline{R}_{\rho})^{-1}$ .
Remark. If there is no Poisson part in (15), then the formula is written as

$E[(X,\partial f(F))]=E[Q^{*}(R^{-1}X)f(F)]=E[\delta((R^{-1}X,DF))f(F)|$ . (25)

On the other hand, if $\tilde{R}_{\rho}$ is not zero or equivalently $\tilde{Q}_{\rho}$ is not zero, we have a remaining
term (the last term of (15)). We have this term even if $Z_{t}$ is a simple Poisson process $N_{t}$

or its sums. However, if we take $f(x)=e^{i(w,x)},$ $w\in R^{d}\backslash \{0\}$ , we have $\partial f(x)=ie^{i(w,x)}w$

and
$e^{i(w,F+\theta\tilde{D}_{u}F)}-e^{i(w,F)}=e^{i(1-\theta)(w,F)}\tilde{D}_{u}(e^{i(w,\theta F)})$ .

Hence we have an expression of the integration-by-parts for the functional

$E[(X,w)\partial_{x}(e^{i(w,F)})|=E[(Q^{*}+\overline{Q}_{\rho}^{*}+R_{\rho,w}^{*})S_{\rho}X\cdot e^{i(w,F)}],$ $\forall w$ . (26)

Here
$R_{\rho,w}^{*}Y=- \frac{i}{\varphi(\rho)}/0^{1}(\tilde{\delta}(e^{i(1-\theta)(w_{2}F)}\chi_{\rho}\tilde{D}F(\tilde{D}F)^{T}Y),e^{i(\theta-1)(w_{2}F)}w)d\theta$ .
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