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1 Introduction
We are concerned with the problem of estimating temporal values of the
volatility in such situation that the observation of the price process is con-
taminated by a high frequency noise due to microstructural causes of the
system. For the case that there is no scuh noise, we have presented in the
preceding article ([3]) a scheme that is simple enough to work effectively in a
real-time manner. The aim of the present note is to introduce a new scheme
by doing suitable modification to that old scheme so that the new one still
maintains the nice property of being a real-time estimator. This is done by
the method of multi-step regularization that we are to introduce now.

2 Microstructure Noise
Given the observation data over a finite interval $[0,T]$ of an asset price pro-
cess, say $p(t)$ , we are concerned with the problem of estimating its volatility.
Here we suppose that the price process $p(t)$ is generated by the following It\^o
SDE,

$dp(t)=a(t,\omega)dt+b(t,\omega)dW_{t}$ , $0\leq t\leq T$ (1)

where $W(t),$ $t\geq 0$ is the real Brownian motion defined on a probability space
$(\Omega, \mathcal{F}, P)$ , and $a(\cdot),$ $b(\cdot)$ are real coefficients, measurable in $(t,\omega)$ and square
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integrable in $t$ over $[0, T]$ .

We also suppose that the $b(\cdot,\omega)$ is adapted to an increasing family of $\sigma- fields$

$\{\mathcal{F}_{t}\}$ such that for any $t,$ $\mathcal{F}_{t}\supset\sigma\{W_{s};s\leq t\},$ $\mathcal{F}_{t}$ is independent of the
natural $\sigma- fields\sigma\{W_{u}-W_{t};u\geq t\}$ . Moreover we suppose that,

$A’= \sup_{t}\sqrt{E[|a(t)|^{2}]}<\infty$ , and $B:= \sup_{t\in[0,T]}E[b^{4}(t)|<\infty$ . (2)

We will establish a numerical scheme for the estimation of the temporal
values $b^{2}(t_{k}, \omega)$ , at some specified set of points $T_{e}=\{t_{k}\}\in[0, T]$ by using a
finite number of observed data of the process $p(t_{k}’)$ at the points $t_{k}’$ in a set
$T_{o}$ somehow richer than $T_{e}$ , namely $[0, T]\supset T_{o}\supset T_{e}$ . As for this problem,
we would like to mention that in many situations the price process $p(t)$ is
always observed with a noise $Z(t)$ , namely the prices of stocks are observed
in the form of a random process $X(t)$ given in (3) below, where the noise
$Z(t)$ is a random process of very high frequency.

$X(t)=p(t)+Z(t)$ , $0\leq t\leq T$ . (3)

For the noise process we suppose that it has the following properties,

Hypothesis 1 $Z(t)$ is a real process such that,

$(Z)$ $\{\begin{array}{l}(a) E[Z]=0, \sup_{t}E[Z_{t}^{2}]=A^{2}<\infty(A=unknown positiveconstant).(b) For any n and any set of observation epoques \{t_{1}, t_{2}, \cdots,t_{n}\}the mndom variables \{Z(t_{k}), 1\leq k\leq n\} are independent.\end{array}$

Remark 2.1 As for the characterization of the noise process $Z(t)$ , when
looking at the literature $(e.g$ . see the references given in [2], $t4])_{f}$ it seems
customary to suppose that the process $Z(t)$ is independent of the $pri$ce process
$p(t)$ ; However we do not need this hypothesis in our discussion.

The existence of such noise in a real situation could be simply recognized
when we attempt to estimate the realized volatility by techniques based on
quadratic variation analysis. In fact in such a situation it is visibly clear that
the estimator would explode as the number of observations increases.
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It may be thought that in reality this noise is due to many causes such as
the error produced in quantification process of price figures or by other micro-
structural causes of the system. Whatever the causes may be there arises as
a mathematical subject the problem of how to make efficient estimation of
the spot volatilities for the case of noise.

For the case that there is no such noise a large amount of researches
has been done (see for example J.Jacod $[1|$ , J.Jacod et al [2], S.Sanfelici-
M.Mancino [4] etc), among these we like to refer to our recent result [3] where
we have aimed to make an estimation of the temporal (not the integrated)
values of volatility and presented a scheme that can perform in a real-time
manner. The reason for this advantageous property is the fact that it is based
only on the idea of quadratic variation in its simplest form and nothing else is
required from theory or tdchnique. However because of this reason we readily
notice that the method of quadratic variation does not work in the new
situation, unless being coupled with some auxiliary procedure to eliminate
the influence of noise. The present note aims to propose such a scheme.

3 Regularization
First we have to do something to reduce the noise and we intend to apply to
the observed process the regularization procedure by the kernel method. For
this purpose we need to collect more data than the original set $\{X(t_{k})\}$ . So
let us introduce the set of observation points $\{t_{k}^{i}, 0\leq k\leq N, 0\leq i\leq 2M\}$ ,
finer than the originally given po\’ints set $\{t_{k}\}$ , in such way that;

$t_{k}= \frac{T}{N}k=k\Delta$ , $(0\leq k\leq N)$ $\Delta=\frac{T}{N}$

(4)
$t_{k}^{i}=t_{k}+( \frac{i}{2M}-\frac{1}{2})\Delta$ , $(0\leq i\leq 2M)$ .

Associated with this we employ the following symbols;

$\Delta_{k}^{i}X=X(t_{k+1}^{i})-X(t_{k}^{i})$ , $\Delta_{k}X=\Delta_{k}^{M+1}X$ .

Also $\Delta_{k}^{i}.p$ , $\Delta_{k}^{\dot{9}}Z$ are given in the same way, and for the smoothing
operation we use the following notation:

$7^{M}(t_{k})= \frac{1}{2M+1}\sum_{i=0}^{2M}X(t_{k}^{i})$ ,

41



or very simply by the notation, $\overline{X}$ .
similar way.

The quantities $\overline{p},$

$\overline{Z}$ are defined in a

Remark 3.1 (Causal Form) The smoothing opemtion, $Xarrow\overline{X}^{M}$ given
above is constructed in a symmetric form around each point $t_{k}$ in question,
but it can be given in a causal $\overline{X}^{(-)}$ or an advanced form $\overline{X}^{(+)}$ which are
given below:

$\overline{X}^{(+)}=\frac{1}{2M+1}\sum_{i=0}^{2M}X(t_{k}+\frac{i}{2M}\Delta)$

$or$

$\overline{X}^{(-)}=\frac{1}{2M+1}\sum_{i=0}^{2M}X(t_{k}-\frac{i}{2M}\Delta)$ .

In this article we mainly discuss the estimator of the symmetric form, just
for $\omega nciseness$ reasons. However it should be remarked that if we use a
smoothing of the causal type $F^{(-)}$ the estimator, that we are going to establish
now, can be a proper real-time estimator.

Let us apply a smoothing procedure to all quantities in equation (3) to
obtain the followings,

$\overline{X}^{M}(t)=\overline{p}^{M}(t)+\overline{Z}^{M}(t)$ . (5)

Notice at this stage that,

$E[\overline{Z}^{M}]=0$ , $E[( \overline{Z}^{M})^{2}]\leq\frac{A^{2}}{2M+1}$ . (6)

Now take the increment over the subinterval $[t_{k}, t_{k+1})$ of all quantities in
equation (5),

$\Delta_{k}\overline{X}=\Delta_{k}\overline{p}+\Delta_{k}\overline{Z}$, (7)
where

$\Delta_{k}\overline{X}=\overline{X}(t_{k+1})-\overline{X}(t_{k})=\frac{1}{2M+1}\sum_{;=0}^{2M}\Delta_{k}^{i}X$. (8)

Here the symbol $\Delta_{k}^{i}$ stands for the difference operation over the sub-
interval $[t_{k}^{i}, t_{k+1}^{i})$ , for example,

42



$\Delta_{k}^{i}X=X(t_{k+1}^{i})-X(t_{k}^{i})$ .

Thus we have,

$\Delta_{k}\overline{X}=\frac{1}{2M+1}\sum_{i=0}^{2M}\Delta_{k}^{i}p+\Delta_{k}\overline{Z}$. (9)

By definition of the price process $p(t)$ , we have,

$\Delta_{k}^{i}p=\int_{t_{k}^{i}}^{t_{k+1}^{i}}\{a(s)ds+b(s)dW_{s}\}$ ,

and by applying the Euler-Maruyama scheme this can be expressed in
the discrete form as follows;

$\Delta_{k}^{i}p=a(t_{k}^{i})\Delta+b(t_{k}^{i})\Delta_{k}^{i}W+\epsilon_{k}^{i}$ (10)

with,

$\epsilon_{k}^{i}=/_{t_{k}^{i}}t_{k+1}^{i}\{(a(s)-a(t_{k}^{i}))ds+(b(s)-b(t_{k}^{i}))dW_{s}\}$ .

Now for the evaluation of the intensity of this error $\epsilon_{k}^{i}$ we need the following
assumption (H) on the regularity of the coefficients $a(\cdot),b(\cdot)$ ,

Hypothesis 2 The coefficient $b(\cdot)$ is Holder continuous of order $\alpha\in(0,1|$

in the $L^{2}(\Omega)$ -sense,

$(H)$ There $e$ cists a constant $L_{B}$ such that $E|b(t)-b(s)|^{2}\leq L_{B}^{2}|t-s|^{2\alpha}$ .

Then under this condition it is almost immediate to see the following

Lemma 3.2 The error term $\epsilon_{k}^{i}$ satisfies the estimate below uniformly in
$i,$ $k$ ”,

$E[|\epsilon_{k}^{i}|^{2}]\leq C_{\epsilon}$ I $\Delta|^{2(\alpha\wedge 1/2)+1}$ (11)

where
$C_{\epsilon}= \frac{L_{B}^{2}}{2\alpha+1}+4A^{\prime 2}$

and the symbol $’\alpha\wedge 1/2$
“ stands for the minimum of the two arguments.
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4 Second Regularization
We have employed the regularization procedure to reduce the power of the
noise. As there still remains a fluctuating component in the quadratic vari-
ation $(\Delta_{k}\overline{X})^{2}$ we need again another regularization procedure which we will
explain in this section.

Firom equation (9) we have,

$( \Delta_{k}\overline{X})^{2}=\frac{1}{(2M+1)^{2}}\sum_{i_{\dot{l}}=0}^{2M}\Delta_{k}^{i}p\Delta_{k}^{j}p+(\Delta_{k}\overline{Z})^{2}+2\Delta_{k}\overline{Z}\Delta_{k}\overline{p}$

and $hom$ equation (10) we also have,

$\Delta_{k}^{i}p\Delta_{k}^{j}p=\{a(t_{k}^{i})\Delta+b(t_{k}^{i})\Delta_{k}^{i}W+\epsilon_{k}^{i}\}\{a(\dot{\theta}_{k})\Delta+b(t_{k}^{j})\Delta_{k}^{j}W+\dot{d}_{k}\}$

$=b(t_{k}^{i})b(t_{k}^{j})\Delta_{k}^{i}W\Delta_{k}^{j}W+\delta_{k}^{ii}$

where

$f\dot{f}_{k}^{j}$ $=a(t_{k}^{i})a(\dot{\theta}_{k})\Delta^{2}+\{a(t_{k}^{i})b(\dot{\theta}_{k})\Delta_{k}^{j}W+a(\dot{\theta}_{k})b(t_{k}^{i})\Delta_{k}^{i}W\}\Delta$

$+\epsilon_{k}^{i}\{a(t_{k}^{i})\Delta+b(t_{k}^{i})\Delta_{k}^{i}W\}+\dot{d}_{k}\{a(\dot{\theta}_{k})\Delta+b(\dot{\theta}_{k})\Delta_{k}^{j}W\}$

$+\epsilon_{k}^{i}\dot{d}_{k}$ .

As for the quantity $\delta_{k}^{i_{l}j}$ we easily get the next estimate from Lemma 3.2,

Lemma 4.1
$E|f\dot{f}_{k}^{i}|\leq C_{\delta}\Delta^{(\alpha\wedge 1/2)+1}$

where
$C_{\delta}=2 \sqrt{BC_{\epsilon}}+1=2\{B(\frac{L_{B}^{2}}{2\alpha+1}+4A^{\prime 2})\}^{1/2}+1$ .

Proof We have

$E[|\epsilon_{k}^{i}(a(t_{k}^{i})\Delta+b(t_{k}^{i})\Delta_{k}^{i}W)||\leq\{E[|\epsilon_{k}^{i}|^{2}|(A^{l2}\Delta+\sqrt{B})\Delta\}^{1/2}$

$\leq C_{\epsilon}\Delta^{(\alpha\wedge 1/2)+1/2}\cdot\{(\sqrt{B}+1)\Delta\}^{1/2}$

$=\sqrt{C_{\epsilon}(\sqrt{B}+1)}\Delta^{(\alpha+1/2)+1}$ .
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On the other hand, it is immediate to see that the contribution from other
terms appearing in the expression of the $\delta_{k}^{i,j}$ is of the order $O(\Delta^{2(\alpha\wedge 1/2)+1})$ .
Thus, taking

$C_{\delta}=2\sqrt{C_{\epsilon}(\sqrt{B}+1)}+1$ ,

we confirm the validity of the estimate given above. q.e.d.

To analyze the main term $b(t_{k}^{i})b(\dot{\theta}_{k})\Delta_{k}^{i}W\Delta_{k}^{j}W$ , we first notice by a simple
computation the validity of the following equality for the case $i\geq j$ ;

$\Delta_{k}^{i}.W\Delta_{k}^{j}W=(1-\frac{i-j}{2M})\Delta+\theta_{k}^{i_{l}j}$ (12)

where,

$\theta_{k}^{i_{l}j}=2/t_{k}^{i}(W_{s}-W_{t_{k}^{i}})dW_{s}\mathscr{S}_{k+1}$

$+\{W(t_{k+1}^{i})-W(\dot{\theta}_{k+1})\}\Delta_{k}^{j}W+\{W(t_{k}^{i})-W(\dot{\theta}_{k})\}\{W(\dot{\theta}_{k+1})-W(t_{k}^{i})\}$ .

Hence,

$(\Delta_{k}\overline{p})^{2}$
$= \frac{1}{(2M+1)^{2}}\sum_{i_{\iota}j}\Delta_{k}^{i}p\Delta_{k}^{j}p$

$= \frac{1}{(2M+1)^{2}}\sum_{i_{i}j}\delta_{k}^{i_{2}j}+b(t_{k}^{i})b(\dot{\theta}_{k})(1-\frac{|i-j|}{2M})\Delta+\eta_{k}^{i_{1}j}$
(13)

where $\eta_{k}^{ij}=b(t_{k}^{i})b(\dot{\theta}_{k})\theta_{k}^{ij}$ .

From Lemma 4.1 and the expression (13) we see that

$E[(\Delta_{k}\overline{p})^{2}]\leq C_{p}\Delta$ , $C_{p}=C_{\delta}\Delta^{\alpha\wedge 1/2}+2\sqrt{B}$ , (14)

thus for a sufficiently large $M$ , the inequality (14) holds for such $C_{p}=3\sqrt{B}$ .

Notice also that,

$\frac{(\triangle_{k}\overline{X})^{2}}{\Delta}$
$= \frac{1}{(2M+1)^{2}}\sum_{i,j}\{b(t_{k}^{i})b(\dot{\theta}_{k})(1-\frac{|i-j|}{2M})+\frac{\delta_{k}^{ij}}{\Delta}+\frac{\eta_{k}^{ij}}{\Delta}\}$

(15)
$+2 \frac{\Delta_{k}\overline{p}}{\sqrt{\Delta}}\frac{\Delta_{k}\overline{Z}}{\sqrt{\Delta}}+\frac{(\Delta_{k}\overline{Z})^{2}}{\Delta}$ .
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By Hypothesis (Z) and the definition of the $\Delta_{k}\overline{Z}$ we see that,

$E \frac{(\Delta_{k}\overline{Z})^{2}}{\Delta}\leq 2\frac{A^{2}}{2M+1}\frac{1}{\Delta}$ .

In other words, with the constant $C_{z}= \frac{2A^{2}}{T}$ we have

$E[ \frac{(\Delta_{k}\overline{Z})^{2}}{\Delta}]\leq C_{z}\frac{N}{M}$ , $E[ \frac{|\Delta_{k}\overline{p}\Delta_{k}\overline{Z}|}{\Delta}|\leq C_{pz}\sqrt{\frac{N}{M}}$ (16)

where $C_{pz}=\sqrt{C_{p}C_{z}}$ and

$E \frac{(\Delta_{k}\overline{Z})^{2}}{\Delta}\leq C_{z}\frac{N}{M}$ .
.

In order to keep these quantities small by letting $N,$ $Marrow\infty$ we need to
introduce some condition on these two parameters $M,$ $N$ ;

$(C)$ $N,M arrow\inftym\frac{N}{M}=0$ , $i$ . $e$ . $\frac{1}{M}=o(\frac{1}{N})$ .

To estimate the effect caused by the quantity $\eta_{k}^{ij}$ we remark that,

$E[\eta_{k}^{ij}]=0$ , $E[(\eta_{k}^{ij})^{2}]\leq B\Delta^{2}$ $(B= \sup_{t}E[b^{4}(t)|)$

hence we see that the random variables $\frac{\eta_{k}^{ij}}{\Delta}$ are bounded in $L^{2}(\Omega)$ , but we
have no reason to expect that,

$\lim_{Narrow}\sup_{\infty}E[\frac{|\eta_{k}^{ij}|}{\Delta}]=0$ .

However we should also notice that they have the following property,

Lemma 4.2 For each fixed $(i,j)$ the family of random variables $karrow\{\eta_{k}^{ij}\}$

are almost uncorrelated, that is;

$E[\eta_{k}^{ij}\eta_{l}^{ij}]=0$ for $|k-l|\geq 2$ .

Based on this observation we apply again the regularization procedure to

the quantities $\frac{(\Delta_{k}\overline{X})^{2}}{\Delta}$ , and we are led to propose the next scheme as our
estimator;
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Definition 4.3 (Estimator)

$\hat{b}^{2}(t_{k})=\frac{G(M)^{-1}}{2L+1}\sum_{l=0}^{2L}\frac{(\Delta_{k+l-L}\overline{X})^{2}}{\Delta}$ (17)

. where

$G(M)= \frac{1}{(2M+1)^{2}}\sum_{i,j}^{2M}(1-\frac{|i-j|}{2M})=\frac{8M^{2}+6M+1}{3(2M+1)^{2}}$.

Remark 3 The estimator that can be computed in real time should be given
in the following form;

$\hat{b}^{2}(t_{k})=\frac{G(M)^{-1}}{2L+1}\sum_{i=0}^{2L}\frac{(\Delta_{k+i-2L}\overline{X}^{(-)})^{2}}{\Delta}$. (18)

As for the efficiency of this estimator (17) we have the following result,

Theorem 4.4 For some positive constants $C_{1},$ $C_{2},$ $C_{3},$ $C_{4}$ , independent of the
parameters $L,$ $M,$ $N$ the following estimate holds at $eve7^{v}y$ point $t_{k}=k\Delta$

$E[| \hat{b}^{2}(t_{k})-b^{2}(t_{k})|]\leq C_{1}(\frac{L}{N}I^{\alpha}+C_{2}\frac{1}{N^{\alpha\wedge 1/2}}+c_{3}\sqrt{\frac{N}{M}}+C_{4}\frac{1}{\sqrt{L}}$ .

This statement may be seen from the discussion done up to here, however
we win give its proof for sure in the following section and give especially some
concrete candidates for the constants.
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5 Proof of the Theorem
$\mathbb{R}om$ the expression (15) we have,

$\hat{b}^{2}(t_{k})-b^{2}(t_{k})$

$= \frac{G^{-1}}{2L+1}\sum_{l=0}^{2L}\{\frac{(\Delta_{k+l-L}\overline{X})^{2}}{\Delta}-G(M)b^{2}(t_{k})\}$

$= \frac{G^{-1}}{2L+1}\sum_{l=0}^{2L}\frac{1}{(2M+1)^{2}}\sum_{i,j}^{2M}[\{b(t_{k+l-L}^{i})b(\dot{\theta}_{k+l-L})-b^{2}(t_{k})\}(1-\frac{|i-j|}{2M})+\frac{\delta_{k+l-L}^{ij}}{\Delta}]$

$+ \frac{G^{-1}}{(2M+1)^{2}}\sum_{i_{l}j}\frac{1}{2L+1}\sum_{l=0}^{2L}\frac{\eta_{k+l-L}^{ij}}{\Delta}$

$+ \frac{G^{-1}}{2L+1}\sum_{l=0}^{2L}[2(\frac{\Delta_{k+l-L}\overline{p}}{\sqrt{\Delta}})(\frac{\Delta_{k+l-L}\overline{Z}}{\sqrt{\Delta}})+\frac{(\Delta_{k+l-L}\overline{Z})^{2}}{\Delta}]$ .

Since
$|t_{k+l-L}^{i}-t_{k}|\leq L\Delta$ $\forall_{i,k,l}$ ,

thus by assumption (H) we have the inequality,

$E[|b(t_{k+l-L}^{i})b(\dot{\theta}_{k+l-L})-b^{2}(t_{k})|]$

$\leq E[|b(t_{k+l-L}^{i})||b(t_{k+l-L}^{i})-b(t_{k})|+|b(t_{k})||(b(t_{k+l-L}^{i})-b(t_{k})|]$

$\leq 2B^{1/4}L_{B}^{1/2}(L\Delta)^{\alpha}$

$=C_{1}( \frac{L}{N})^{\alpha}$

where, $C_{1}=2B^{1/4}L_{B}^{1/2}T^{\alpha}$ which implies that

$\frac{G^{-1}}{2L+1}\sum_{l=0}^{2L}\sum_{i,j}^{2M}E|\{b(t_{k+l-L}^{i})b(\theta_{k+l-L})-b^{2}(t_{k})\}(1-\frac{|i-j|}{2M})|\leq C_{1}(\frac{L}{N})^{\alpha}$ . (19)

On the other hand, from Lemma 4.1 we have,

$E|\delta_{k+l-L}^{ij}|\leq C_{\delta}$$A$
$(\alpha\wedge 1/2)+1$

so taking the trivial estimate, $G^{-1}\leq 3(M\geq 3)$ , into account we see that,

$\frac{G^{-1}}{2L+1}\sum_{l=0}^{2L}\frac{1}{(2M+1)^{2}}\sum_{i,j}^{2M}E|\frac{\delta_{k+l-L}^{ij}}{\Delta}|\leq C_{2}\frac{1}{N^{\alpha\wedge 1/2}}$

(20)
with $C_{2}=3C_{\delta}$ .
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For the remaining 2 terms in the inequality, it is almost immediate to
obtaint the following estimates,

$\frac{G^{-1}}{(2M+1)^{2}}\sum_{i,j}E|\frac{1}{2L+1}\sum_{l=0}^{2L}\frac{\eta_{k+l-L}^{ij}}{\Delta}|\leq C_{4^{\frac{1}{\sqrt{L}}}}$ $(C_{4}=2\sqrt{3B})$ (21)

and

$\frac{1}{2L+1}\sum_{l=0}^{2L}\frac{G^{-1}}{(2M+1)^{2}}\sum_{i,j}E|\frac{2\Delta_{k+l-L}\overline{Z}\cdot\Delta_{k+l-L}\overline{p}}{\Delta}+\frac{(\Delta_{k+l-L}\overline{Z})^{2}}{\Delta}|$

(22)
$\leq C_{3}\sqrt{\frac{N}{M}}$ with $C_{3}=3(C_{pz}+C_{z})$ .

Now summing up all inequalities (19),(20),(21), (22) we confirm the valid-
ity of the desired inequality with appropriately chosen constants as follows;

$C_{1}=2B^{1/4}L_{B}^{1/2}T^{\alpha}$

$C_{2}=3C_{\delta}=6\{\sqrt{B^{1/2}(\frac{L}{2\alpha}s+\overline{1}+4A^{\prime 2})2}+1\}$

(23)
$C_{3}=3( \sqrt{C_{p}C_{z}}+C_{z})\geq 3\frac{A^{2}}{T}(\sqrt{B}+1/2)$

$C_{4}=2\sqrt{3B}$

q.e.d.

6 Discussion
We would like to give two comments about our estimator.

6.1 Is it optimal?
In our method, the procedure of smoothing plays a very important role. So
for the mathematical interest on the optimality of the estimator, we might as
well start our discussion with candidates of a more general form as follows;

Let $\{w_{i};0\leq i\leq 2L\}$ be a window of width $2L$ , namely the noimegative
numbers such that, $\sum_{i}w_{i}=1$ . Given this we may think of the estimator in

the following form.
$\hat{b}_{w}^{2}(t_{k})=\sum_{l=0}^{2L}w_{l}\frac{(\Delta_{k+l-L}\overline{X})^{2}}{\Delta}$ . (24)
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The complete way of discussion is of course to determine the optimal window
$\{w_{i}\}$ by searching for one that will make the estimation error a minimum,
but in this note we have not followed this approach. One reason is that we
have discussed this question in the previous article [3] and we know that the
smoothing operation given in this note is almost optimal. Another reason
is that we are interested in such practical scheme that is simple enough to
compute rapidly so that it can work in a real-time manner. The scheme
which is proved mathematically optimal in the above sense may not satisfy
this constraint.

6.2 How to determine the parameters
Theorem 4.4 tells us how to determine the parametres $L,$ $M,$ $N$ . For sim-

plicity let us take the case where $\alpha\leq 1/2$ . Then we have

$Er=E[| \hat{b}^{2}(t_{k})-b^{2}(t_{k})|]\leq O((\frac{L}{N})^{\alpha})+O(\sqrt{\frac{N}{M}})+O(\frac{1}{\sqrt{L}})$ .

Notice for this case, the three parameters should obey the following con-
straint;

$L<<N<<M$
and that the total number of points we need for the estimator is $2M\cross N$ .

Thus their determinations will be carried in the following procedure;

1. Fix the precision level $\epsilon_{0}$ .

2. The third term on the right hand side of the inequality being inde-
pendent of the other parameters $M,$ $N$ , the parameter $L$ should be
determined by the constraint,

$\frac{1}{\sqrt{L}}\leq\epsilon_{0}arrow L\geq\frac{1}{\epsilon_{0}^{2}}$ .

3. Three terms on the right hand side should be of the same order, and
thus the parameters $L,$ $M,$ $N$ should satisfy the constraints,

$( \frac{L}{N})^{\alpha}=\sqrt{\frac{N}{M}}=\frac{1}{\sqrt{L}}$ .
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4. From this we obtain the following expressions for $M,$ $L$ in terms of $N$ ,

$( \frac{L}{N})^{\alpha}=\frac{1}{\sqrt{L}}arrow L=N^{\frac{2\alpha}{2\alpha+1}}$

and
$\sqrt{\frac{N}{M}}=\frac{1}{\sqrt{L}}=\frac{}{N^{\frac{1_{\alpha}}{2\alpha+1}}}arrow M=N^{\frac{2\alpha+1}{2\alpha}}=N^{1+\frac{1}{2\alpha}}$.

5. In this case, the relation $\frac{N}{M}=N^{-\frac{1}{\alpha}}$ fits to the $conditioi_{1}(E)$ .

6. In this case, we have the estimate; $N \geq(\frac{1}{\epsilon_{0}})^{2+\frac{1}{\alpha}}$ and

$Er \leq 3\epsilon_{0}=O(\frac{}{N^{\frac{1_{\alpha}}{2\alpha+1}}})$ .

7. Statisticians like to measure the labor spent for the estimation proce-
dure by the amount of data used. In our case, the number of data points
necessary for the estimation at one epoque $t_{k}$ is $2ML$ , while the total
number of data points for the estimation at all points $t_{k}(0\leq k\leq N)$

is $2MN$ .

In particular when $\alpha=1/2$ we expect the following precision level;

$L=\sqrt{N}$ , $M=N^{3/2}$ , $Er=O( \frac{1}{\sqrt[4]{N}})$ .

Though we see by numerical experiments that our estimator works well,
the condition $N<<M$ seems restrictive. We might relax this condition so
as to make our estimator still work with less labor for computation. This
problem will be discussed in future work.
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