goooboooogn
0 1626 O 20090 7-14 7

Quasiconformal extension of univalent functions
and Becker’s theorem

IKKEI HOTTA

Abstract

This is a reserch for a subclass of univalent holomorphic functions on the unit disc
normalized by f(z) = z + 32, a,z", which can be extended to k-quasiconformal map-
pings on the disc {z | Izl < R} where R > 1. Such a subclass is denoted by S(k, R). In this
note, the class S(k, R) is introduced through the observation of Becker’s theorern which
ensures a k-quasiconformal extendibility of univalent holomorphic functions on the disc
to the Riemann sphere with Léwner chains.

1 Motivation

LetD = {z | |z| < 1} and

S={f I S is holomorphic and univalent on D, £(0) = f/(0) - 1 = 0},
Sk) = {f ] f €S, f can be extended to a k-quasiconformal mapping on C},
Sok) = {f | f € S(k), the extended mappings fix oo},

respectively, where k € [0,1). The class S(k) has been studied by numerous authors in
connection with the theory of Teichmiiller spaces. In those investigations, an interesting
method for quasiconformal extension of univalent functions was obtained by Becker ([1], see
also [5]) which relies on the Léwner chains described by the Léwner equation

of@z, 1) _ of(z 1)
= zp(z, t)--é-z——- 1)

forz € D and ¢ € [0, 0). This equation determines an expanding flow. Here, the function
@1 =ez+ Zinw2 Gn(1)Z" is holomorphic in |z| < 1 for each 7 € [0, o0), absolutely continuous
in t € [0, c0) for each |z| < rp and satisfies the inequality |f(z, )] < Koe' (2l < ro,t < 0)
for some positive constants Ky and r9. Also a function p(z, 7) is measurable on D X [0, o),
holomorphic in |z] < 1, and satisfies Re p(z, ) > 0 and the partial differential equation (1) for



a.e. t.
Theorem 1 ([1]). If f(z, 1) is a univalent solution to (1) with p(z, t) satisfying the condition

piz,)—-1

ml$k<l 2)

then, for each t > O, the function f(z) = f(z,1) maps D onto a Jordan domain bounded by a
k-quasiconformal image of 8D, and the map f(z) defined by

f(re,0) r<i

A rei®y =
FeeD {f(e‘”,logr) r>1

is a k-quasiconformal extension of f(z,0) onto C with f (00) = oo (thus f (2) € So(k)).

Observe that p(D, ) must be contained in the disc |z — (1 + k2)/(1 — k)| < 2k/(1 - k)
for all ¢ € [0, oo) so that we can apply Theorem 1 to the Léwner chains (Fig.1). This strong
assumption can be weakened by restricting the range of the parameter ¢. In fact, the following
is true;
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Figure 1 : p(z, ) must be in this circle for all z € D and ¢ € [0, 00).



Corollary 2. If f(z,t) is a univalent solution to (1) and there exists ty > O such that for all
t € [0, 0] p(z, ) satisfies the condition

pz,0)—-1

D+ 1 <k<l, 3

then the map f(z) is a k-quasiconformal extension of f(z,0) defined on {z | Izl < e®} with
f # 0.

Now we shall introduce the classes S(k, R) and So(k, R); namely

Sk,R) = {f | f € S, f can be extended to a k-quasiconformal mapping £ on {lz| < R})

and

So(k, R) = {f | f € S(k, R), the extended mapping f doesn’t take co on {iz| < R}}

respectively, where R > 1.

2 Properties of the class S(k, R)

The class S(k, R) was studied by some authors in another context. We shall give some

known results for the classes S(k, R) and X(k, r), where Z(k, r) is a family of univalent holo-

morphic functions on {z € C- D} which can be extended to a k-quasiconformal mapping on
{lzl >r},r<1.

McLeavey [8] (see also [9]) first considered the subclass of £ with K(Jz])-quasiconformal
extensions into the interior of D where K(|z]) is a piecewise continuous function of bounded
variation on [r, 1], 0 < r < 1. She obtained for this class the analogs of the classical Grunsky
and Goluzin inequalities and sharp estimates for the coefficients by and b; of Z(k,r) and az
of So(k, R) with extremal function as follow;

Theorem 3 ([8]). Ifg € Z(k,r) and g(2) = z + Z baz ™" for Izl > 1, then
n=0

k+r

oil= T
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Equality occurs if and only if
k+r? e
. Z+bo+(1+kr2)'? IzZl=21
i ( ! )(+iei:+ke“"+ﬁz- r<iz<1
1+ )\*7 2 T3 )
Corollary 4 ([8]). Suppose f € S(k,R) and f(z) = z + Za,,z" forz € D. Then
n=2
1 + kR?
las ~ a3l < k+R
If, in addition, extend mappings do not take oo on {|z] < R}, then
1+ kR
Ia2'52k+R' @)

Kihnau [6] also proved similar results of those through introducing the class
2(Q1, -, On) of K(lz})-quasiconformal mapping of the plane which are conformal on
{z;ldd > 1} with a development f(z) = z + Y., b, and which have piecewise bounded
dilataton inD K(lzZ) < Qi (@i 2 )inR; < |zl < Ry (i=1,--- ,n), withRy = L, R, = 0.
Schober [9] mentioned above results in his book, Chap.14. He also gave some more results,
for instance, generalized Gronwall’s area theorem for Z(k, r);

Theorem 5 ([9]). Ifge X(k,r)and g(2) =z + Z b,z™ for|z| > 1, then
n=0

2 [k+7
Zmlbml (1+kr2) ®)

m=]

Under the more general case, Lehto [7] showed a majorant principle for a holomorphic
functional as follow;

Let A be a domain in C which is bounded by a quasicircle, B be a domain whose closure
BcAandF,0<k<l,bea family of functions which are k-quasiconformal on A and
conformal on B. Denote by F; the family of all conformal mappings on B.

We introduce four different normalizations to cover a large number of cases appearing in
applications. Let z;, z2,z3 be distinct points of B and «, «, @3, 8 are complex numbers, the
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a’s are different from each other and 8 # 0. The families 73 and #; are called normalized if
all the functions f of A contained in F; or F; have one of the following conditions;

L f@z)=a:, i=1,2,3,

2. f@)=ay, i=1,2,and f(z) + oo in A,
3. f@)=ay, f'(z1) =Pand f(z) # o in A,
4. fooe€ B, then f(z)~z—0asz — oo.

We shall suppose here F; and ¥, are normalized. Remark that normalized #; and F; are
closed normal families.

Let ¥ be a holomorphic functional defined on the family F; or Fi, ie. Y(f) =
(f(zo), f'@1)r- -+ » F™(zn)), Where  is a complex-valued holomorphic function of the
variables fO(z;),i = 1,2,-- -, each f1(z;) being the value at fixed point z; € B.

Set

M(k) = sup [P(f)), 0<kx<l.
feFi

Since F% is a closed normal family, there exists an extremal function maximizing [¥(f)| in
F.

Theorem 6 ([7]). For a holomorphic functional in ¥,

+ 3D

k
M) < M(Q1)

— ©)
M1

1+ kb—,%

This result contains some coefficient estimates as corollaries; for the class X(k, r)
k+ r'“‘l
I}:‘%ka% lbll| S krn,‘,l lbnl' n= 1’ 21 MY
which imply
k+r 2 k + r3

The Grunsky type inequalities for Z(k, r) also follow easily from the general inequality (6).
For f € X, let Ay, myn = 1,2,-- - , be the numbers determined by

oy 1O f({) = 3 At

mn=1
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Then for any complex numbers x;, x3, - , XN,
N N '
k+r a2
2 Amntm¥nl S T3 D Q)
mn n
and 5
N |N 2 N
k+r |x2
A —_.
Z" 2 S s(1+kr2) é n ®)

Remark that (7) and (8) is not sharp (see {8]).

Deiermann treats several similar problems of those in [2] and [3] with the method of
extremal length. Recently, Krushkal gives a short mention for those reserches in his survey
[4], Chap.6.3.

3 Main Results

Now the more applications of Theorem 6 are given to So(k, R) and X(k, r) (again remark
that these results are not sharp because (7) and (8) is not sharp) ;

Theorem 7.

“ 'a|<n1+kR"“
s MERTT R

Proof. Let us take F; = So(k, R), then F, is the well-known class S. Choose ¥(f) = a,.
Then M(1) = n, and M(0) = n/R™! because Rf(z/R) € S for arbitrary f € Fo. Hence the
inequality (6) follow the theorem.

Theorem 8 (Generalized Goluzin inequality). If g € Z(k,r)andz, € C—-D, 5, € C (v =
1,2,---,n),n=1,2,---, then

8z) - 8@)| _ k+r? — 1
;Zymlog e |STeE72 }y_-:?mlog et ®)

Proof. We shall apply the inequality (7) with xn = I¥, %02;™, m = 1,2,---. In fact, we



have

Z Z'yﬂy‘ , 8(2.;:) S(Zv) __ Z Z AmVi "

m;n pyv
= - ZA,,.,.x,,,x,,.
mn
Hence (7) shows that the left-hand side of (9) is
1+ kr? 1, 1+ kr? &k
ST Ll = T L o'

1+kr2 — 1
SR LR T

This completes the proof of the theorem.

Theorem 9. For f € So(k,R) and z € D,

2| 1 +kR 1+
A R T T

llog

Proof. In(9)letn=2, vy, =1, y» = ~1, then

g @g' )z -)? k+r? log l2Z - 1]
(8@ - g

log = T+kr B = DR -

We want to appply (9) to the function f € Sp(k, R). If we put

8 =1/,
then g € E(k, 1/ VR). Since g is odd function, it follows from (10) with z = —¢ that

Q| k+ /R @P+1
P“’g 2@ | T+ RU/R)Z B p=1

If we choose z = {2 and use (11) we obtain the desire inequality. o

1> .

Corollary 10. For f € So(k,R) and z € D,

(1 - !Zl (1+kR)[(k+R)
1+

2@ (1 +1z] )(1+kR)/(k+R)

s' 7o | S\To1

(z,{eE-—D).

13
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