<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>HAAGERUP PROPERTY FOR WREATH PRODUCTS (Problems in theory of operator algebras)</td>
</tr>
<tr>
<td>著者</td>
<td>CORNULIER, YVES DE</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1627: 70-71</td>
</tr>
<tr>
<td>発行年</td>
<td>2009-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140329</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
HAAGERUP PROPERTY FOR WREATH PRODUCTS

YVES DE CORNULIER

If H and G are any discrete groups, the standard wreath product of H by G is the semidirect product

$$H \wr G = H^{(G)} \rtimes G,$$

where $H^{(G)}$ denotes the direct sum of copies of H indexed by G, and G acts by shifting. If H and G are finitely generated, so is the wreath product $H \wr G$.

A discrete group Γ has the Haagerup Property if the constant function 1 can be pointwise approximated by positive definite functions on Γ. When Γ is countable, Akemann and Walter [AW] proved that this holds if and only if there exists a metrically proper action of Γ on a Hilbert space by affine isometries.

A nice feature about Haagerup groups is that they satisfy the strongest form of the Baum-Connes conjecture, namely the conjecture with coefficients [HK].

On the other hand, in known examples, there was a striking coincidence between the class of groups with the Haagerup Property and the class of groups with the complete metric approximation property [CH], and it was conjectured by Cowling that the two properties are actually equivalent.

Then it was proved by Ozawa and Popa that [OP] if H is any non-trivial group and G is any non-amenable group, then $H \wr G$ does not satisfy the complete metric approximation property.

In contrast, we prove, disproving one implication in Cowling's conjecture

Theorem 1 (joint with Y. Stalder and A. Valette). *Let H, G be any groups with the Haagerup Property. Then the wreath product $H \wr G$ has the Haagerup Property as well.*

This applies in the case of the wreath product of a non-trivial finite cyclic group and a non-abelian free group, so that Ozawa-Popa's result shows that it does not satisfy the complete metric approximation property. The Haagerup Property for this example is established in [CSV], and the redaction for the general case is currently in preparation. In both cases, the proof relies on a characterization of the Haagerup Property by the existence of a proper action on a space with walls, or a space with measured walls. It is currently unknown how to translate the proof of the stability of the Haagerup Property by wreath products, in terms of unitary representations.

REFERENCES

YVES DE CORNULIER

IRMAR, CAMPUS DE BEAULIEU, 35042 RENNES CEDEX, FRANCE

E-mail address: yves.decornulier@univ-rennes1.fr