<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of traveling waves for a nonlocal monostable equation (Problems in the Calculus of Variations and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yagisita, Hiroki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1628: 101-108</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140339</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Existence of traveling waves
for a nonlocal monostable equation

Hiroki Yagisita
Department of Mathematics, Faculty of Science, Kyoto Sangyo University

July 24, 2008

Abstract We consider the nonlocal analogue of the Fisher-KPP equation

$$u_t = \mu * u - u + f(u),$$

where μ is a Borel-measure on \mathbb{R} with $\mu(\mathbb{R}) = 1$ and f satisfies $f(0) = f(1) = 0$ and $f > 0$ in $(0, 1)$. We do not assume that μ is absolutely continuous. The equation may have a standing wave solution (a traveling wave solution with speed 0) whose profile is a monotone but discontinuous function. We show that there is a constant c_* such that it has a traveling wave solution with monotone profile and speed c when $c \geq c_*$ while no periodic traveling wave solution with average speed c when $c < c_*$. In order to prove it, we modify a recursive method for abstract monotone discrete dynamical systems by Weinberger. We note that the monotone semiflow generated by the equation does not have compactness with respect to the compact-open topology.

Keywords: discontinuous profile, convolution model, integro-differential equation, discrete monostable equation, nonlocal evolution equation, Fisher-Kolmogorov equation.

AMS Subject Classification: 35K57, 35K65, 35K90, 45J05.

1 Introduction

We consider the following nonlocal analogue of the Fisher-KPP equation:

$$u_t = \mu * u - u + f(u).$$
Here, \(\mu \) is a Borel-measure on \(\mathbb{R} \) with \(\mu(\mathbb{R}) = 1 \) and the convolution is defined by
\[
(\mu * u)(x) = \int_{y \in \mathbb{R}} u(x - y) d\mu(y)
\]
for a bounded and Borel-measurable function \(u \) on \(\mathbb{R} \). The nonlinearity \(f \) is a Lipschitz continuous function with \(f(0) = f(1) = 0 \) and \(f > 0 \) in \((0, 1)\). Then, we would show that there is a constant \(c_* \) such that the nonlocal monostable equation has a traveling wave solution with monotone profile and speed \(c \) when \(c \geq c_* \) while it has no periodic traveling wave solution with average speed \(c \) when \(c < c_* \), if there is a positive constant \(\lambda \) satisfying
\[
\int_{y \in \mathbb{R}} e^{\lambda|y|} d\mu(y) < +\infty.
\]
Here, we say that the solution \(u(t, x) \) is a periodic traveling wave solution with average speed \(c \), if \(u(t + \tau, \cdot) \equiv u(t, \cdot + c\tau) \) holds for some positive constant \(\tau \) with \(0 \leq u(t, \cdot) \leq 1 \), \(u(t, +\infty) = 1 \) and \(u(t, \cdot) \neq 1 \) for all \(t \in \mathbb{R} \). In order to prove this result, we employ the recursive method for monotone dynamical systems introduced by Weinberger [22] and Li, Weinberger and Lewis [14]. We note that the semiflow generated by the nonlocal monostable equation does not have compactness with respect to the compact-open topology. In fact, there is a smooth and monostable nonlinearity \(f \) such that the equation has a standing wave solution (i.e., a traveling wave solution with speed 0) whose profile is a monotone but discontinuous function, if \(\mu \) satisfies the extra condition \(\int_{y \in \mathbb{R}} y d\mu(y) > 0 \). In our results, we do not assume that \(\mu \) is absolutely continuous with respect to the Lebesgue measure. For example, not only the integro-differential equation
\[
\frac{\partial u}{\partial t}(t, x) = \int_0^1 u(t, x - y) dy - u(t, x) + f(u(t, x))
\]
but also the discrete equation
\[
\frac{\partial u}{\partial t}(t, x) = u(t, x - 1) - u(t, x) + f(u(t, x))
\]
satisfies all the assumptions for the measure \(\mu \).

For the nonlocal monostable equation, Schumacher [18, 19] proved that there is the minimal speed \(c_* \) and the equation has a traveling wave solution with speed \(c \) when \(c \geq c_* \), if the nonlinearity \(f \) satisfies the extra condition
\[
f(u) \leq f'(0)u.
\]
Recently, Coville, Dávila and Martínez [5] showed that if the monostable nonlinearity $f \in C^1(\mathbb{R})$ satisfies $f'(1) < 0$ and the Borel-measure μ has a density function $J \in C(\mathbb{R})$ with

$$\int_{y \in \mathbb{R}} (|y| + e^{-\lambda y}) J(y) dy < +\infty$$

for some positive constant λ, then there is a constant c_* such that the nonlocal monostable equation has a traveling wave solution with monotone profile and speed c when $c \geq c_*$ while it has no such solution when $c < c_*$. The approach employed in [5] is not of dynamical systems, but they directly solved the stationary problem

$$J \ast u - u - cu_x + f(u) = 0, \quad u(-\infty) = 0, \quad u(+\infty) = 1.$$

When "1. Introduction and main results" in [5] was read, it might be misunderstood that Schumacher [18] and Weinberger [22] assumed the isotropy of dynamical systems. The nonlocal equation is isotropic if and only if μ is symmetric with respect to the origin. Here, to make sure, we note that the isotropy is not assumed in the results by [18] and [22]. Further, the result by [22] is not limited at a linear determinate. If $f(u) \leq f'(0)u$ holds, then it is a linear determinate. See, e.g., [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 23, 24] on traveling waves and long-time behavior in various monostable evolution systems, [1, 3] nonlocal bistable equations and [17] Euler equation.

The proof of our results is given in [25] or [26], and it is self-contained. We would believe that it might be rather simple than in [5].

2 Abstract theorems for monotone semiflows

In the abstract, we would treat a monostable evolution system. Put a set of functions on \mathbb{R};

$$\mathcal{M} := \{u \mid u \text{ is a monotone nondecreasing and left continuous function on } \mathbb{R} \text{ with } 0 \leq u \leq 1\}.$$

The followings are our basic conditions for discrete dynamical systems:

Hypotheses 1 Let Q_0 be a map from \mathcal{M} into \mathcal{M}.
(i) Q_0 is continuous in the following sense: If a sequence $\{u_k\}_{k \in \mathbb{N}} \subset \mathcal{M}$ converges to $u \in \mathcal{M}$ uniformly on every bounded interval, then the sequence $\{Q_0[u_k]\}_{k \in \mathbb{N}}$ converges to $Q_0[u]$ almost everywhere.

(ii) Q_0 is order preserving; i.e.,

$$u_1 \leq u_2 \implies Q_0[u_1] \leq Q_0[u_2]$$

for all u_1 and $u_2 \in \mathcal{M}$. Here, $u \leq v$ means that $u(x) \leq v(x)$ holds for all $x \in \mathbb{R}$.

(iii) Q_0 is translation invariant; i.e.,

$$T_{x_0}Q_0 = Q_0T_{x_0}$$

for all $x_0 \in \mathbb{R}$. Here, T_{x_0} is the translation operator defined by $(T_{x_0}[u])(\cdot) := u(\cdot - x_0)$.

(iv) Q_0 is monostable; i.e.,

$$0 < \alpha < 1 \implies \alpha < Q_0[\alpha]$$

for all constant functions α.

The following states that existence of suitable super-solutions of the form $\{v_n(x + cn)\}_{n=0}^{\infty}$ implies existence of traveling wave solutions with speed c in the discrete dynamical systems on \mathcal{M}:

Proposition 2 Let a map $Q_0 : \mathcal{M} \to \mathcal{M}$ satisfy Hypotheses 1, and $c \in \mathbb{R}$. Suppose there exists a sequence $\{v_n\}_{n=0}^{\infty} \subset \mathcal{M}$ with $(Q_0[v_n])(x-c) \leq v_{n+1}(x)$, $\inf_{n=0,1,2,\ldots} v_n(x) \neq 0$ and $\liminf_{n \to \infty} v_n(x) \neq 1$. Then, there exists $\psi \in \mathcal{M}$ with $(Q_0[\psi])(x-c) \equiv \psi(x)$, $\psi(-\infty) = 0$ and $\psi(+\infty) = 1$.

In the discrete dynamical system on \mathcal{M} generated by a map Q_0 satisfying Hypotheses 1, if there is a periodic traveling wave super-solution with average speed c, then there is a traveling wave solution with speed c:

Theorem 3 Let a map $Q_0 : \mathcal{M} \to \mathcal{M}$ satisfy Hypotheses 1, and $c \in \mathbb{R}$. Suppose there exist $\tau \in \mathbb{N}$ and $\phi \in \mathcal{M}$ with $(Q_0^\tau[\phi])(x-c\tau) \leq \phi(x)$, $\phi \neq 0$ and $\phi \neq 1$. Then, there exists $\psi \in \mathcal{M}$ with $(Q_0[\psi])(x-c) \equiv \psi(x)$, $\psi(-\infty) = 0$ and $\psi(+\infty) = 1$.

The infimum c_* of the speeds of traveling wave solutions is not $-\infty$, and there is a traveling wave solution with speed c when $c \geq c_*$.
Theorem 4 Suppose a map \(Q_0 : \mathcal{M} \to \mathcal{M} \) satisfies Hypotheses 1. Then, there exists \(c_* \in (-\infty, +\infty] \) such that the following holds:

Let \(c \in \mathbb{R} \). Then, there exists \(\psi \in \mathcal{M} \) with \((Q_0[\psi])(x - ct) \equiv \psi(x) \), \(\psi(-\infty) = 0 \) and \(\psi(+\infty) = 1 \) if and only if \(c \geq c_* \).

We add the following conditions to Hypotheses 1 for continuous dynamical systems on \(\mathcal{M} \):

Hypotheses 5 Let \(Q^t \) be a map from \(\mathcal{M} \) to \(\mathcal{M} \) for \(t \in [0, +\infty) \).

(i) \(Q \) is a semigroup; i.e., \(Q^t \circ Q^s = Q^{t+s} \) for all \(t \) and \(s \in [0, +\infty) \).

(ii) \(Q \) is continuous in the following sense: Suppose a sequence \(\{t_k\}_{k \in \mathbb{N}} \subset [0, +\infty) \) converges to 0, and \(u \in \mathcal{M} \). Then, the sequence \(\{Q^{t_k}[u]\}_{k \in \mathbb{N}} \) converges to \(u \) almost everywhere.

As we would have Theorems 3 and 4 for the discrete dynamical systems, we would have the following two for the continuous dynamical systems:

Theorem 6 Let \(Q^t \) be a map from \(\mathcal{M} \) to \(\mathcal{M} \) for \(t \in [0, +\infty) \). Suppose \(Q^t \) satisfies Hypotheses 1 for all \(t \in (0, +\infty) \), and \(Q \) Hypotheses 5. Then, the following holds:

Let \(c \in \mathbb{R} \). Suppose there exist \(\tau \in (0, +\infty) \) and \(\phi \in \mathcal{M} \) with \((Q^\tau[\phi])(x - ct) \leq \phi(x) \), \(\phi \not\equiv 0 \) and \(\phi \not\equiv 1 \). Then, there exists \(\psi \in \mathcal{M} \) with \(\psi(-\infty) = 0 \) and \(\psi(+\infty) = 1 \) such that \((Q^t[\psi])(x - ct) \equiv \psi(x) \) holds for all \(t \in [0, +\infty) \).

Theorem 7 Let \(Q^t \) be a map from \(\mathcal{M} \) to \(\mathcal{M} \) for \(t \in [0, +\infty) \). Suppose \(Q^t \) satisfies Hypotheses 1 for all \(t \in (0, +\infty) \), and \(Q \) Hypotheses 5. Then, there exists \(c_* \in (-\infty, +\infty] \) such that the following holds:

Let \(c \in \mathbb{R} \). Then, there exists \(\psi \in \mathcal{M} \) with \(\psi(-\infty) = 0 \) and \(\psi(+\infty) = 1 \) such that \((Q^t[\psi])(x - ct) \equiv \psi(x) \) holds for all \(t \in [0, +\infty) \) if and only if \(c \geq c_* \).

3 A key lemma to prove the abstract theorems

To prove the theorems stated in Section 2, we would modify the recursive method introduced by Weinberger [22] and Li, Weinberger and Lewis [14]. At that time, the following lemma becomes a key. It states that Hypotheses 1 imply more strong continuity than Hypothesis 1 (i):
Lemma 8 Let a map $Q_0 : \mathcal{M} \to \mathcal{M}$ satisfy Hypotheses 1 (i), (ii) and (iii). Suppose a sequence $\{u_k\}_{k \in \mathbb{N}} \subset \mathcal{M}$ converges to $u \in \mathcal{M}$ almost everywhere. Then, $\lim_{k \to \infty}(Q_0[u_k])(x) = (Q_0[u])(x)$ holds for all continuous points $x \in \mathbb{R}$ of $Q_0[u]$.

4 The main results for the nonlocal monostable equation

Let a Lipschitz continuous function f on \mathbb{R} be a monostable nonlinearity; $f(0) = f(1) = 0$ and $f(u) > 0$ in $(0, 1)$. Let a Borel-measure μ on \mathbb{R} satisfy $\mu(\mathbb{R}) = 1$. (We do not assume that μ is absolutely continuous with respect to the Lebesgue measure.) Then, we consider the following nonlocal monostable equation:

$$u_t = \mu * u - u + f(u),$$

where $(\mu * u)(x) := \int_{y \in \mathbb{R}} u(x - y) d\mu(y)$ for a bounded and Borel-measurable function u on \mathbb{R}. Then, $G(u) := \mu * u - u + f(u)$ is a map from the Banach space $L^\infty(\mathbb{R})$ into $L^\infty(\mathbb{R})$ and it is Lipschitz continuous. (We note that $u(x - y)$ is a Borel-measurable function on \mathbb{R}^2, and $\|u\|_{L^\infty(\mathbb{R})} = 0$ implies $\|\mu * u\|_{L^1(\mathbb{R})} \leq \int_{y \in \mathbb{R}} (\int_{x \in \mathbb{R}} |u(x - y)| dx) d\mu(y) = 0$.) So, because the standard theory of ordinary differential equations works, we have well-posedness of (4.1) and the equation generates a flow in $L^\infty(\mathbb{R})$. Here, we recall that \mathcal{M} has been defined at the beginning of Section 2.

If the semiflow generated by (4.1) has a periodic traveling wave solution with average speed c (even if the profile is not a monotone function), then it has a traveling wave solution with monotone profile and speed c:

Theorem 9 Let a Borel-measure μ have $\lambda \in (0, +\infty)$ satisfying

$$\int_{y \in \mathbb{R}} e^{\lambda|y|} d\mu(y) < +\infty,$$

and $c \in \mathbb{R}$. Suppose there exist $\tau \in (0, +\infty)$ and a solution $\{u(t, x)\}_{t \in \mathbb{R}} \subset L^\infty(\mathbb{R})$ to (4.1) with $0 \leq u(t, x) \leq 1$, $\lim_{x \to +\infty} u(t, x) = 1$ and $\|u(t, x) - 1\|_{L^\infty(\mathbb{R})} \neq 0$ such that

$$u(t + \tau, x) = u(t, x + ct)$$

holds for all t and $x \in \mathbb{R}$. Then, there exists $\psi \in \mathcal{M}$ with $\psi(-\infty) = 0$ and $\psi(+\infty) = 1$ such that $\{\psi(x + ct)\}_{t \in \mathbb{R}}$ is a solution to (4.1).
The infimum c_* of the speeds of traveling wave solutions is not $\pm \infty$, and there is a traveling wave solution with speed c when $c \geq c_*:

Theorem 10 Let a Borel-measure μ have $\lambda \in (0, +\infty)$ satisfying (4.2). Then, there exists $c_* \in \mathbb{R}$ such that the following holds:

Let $c \in \mathbb{R}$. Then, there exists $\psi \in \mathcal{M}$ with $\psi(-\infty) = 0$ and $\psi(+\infty) = 1$ such that $\{\psi(x+ct)\}_{t \in \mathbb{R}}$ is a solution to (4.1) if and only if $c \geq c_*$.

Acknowledgments. I thank Prof. Hiroshi Matano, Dr. Xiaotao Lin and Dr. Masahiko Shimojo for their discussion.

References

