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Asymptotic behavior of least energy solutions
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1 Introduction

In this note, we concern the asymptotic behavior of blowing-up solutions to
the fourth order semilinear problem

A%y = oK (z)uPe in ,
(PE,K) u>0 inQ,
u=Au=0 on o5

as ¢ — +0. Here, Q is a smooth bounded domain in R¥(N > 5), ¢y =
(N — 4)(N — 2)N(N + 2), € > 0 is a small positive parameter, p. = p — ¢,
p=(N+4)/(N —4) is the critical Sobolev exponent from the view point of
the Sobolev embedding H? N H}(Q) — LPt(Q), and K € C?(Q) is a given
positive function.

When K = 1, Chou and Geng [1] obtained a result corresponding to the
one of Han [5] on a strictly convex domain Q for solutions u. minimizing the
Sobolev quotient:
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Here

1/2
Il = ( [ 18ufdz)

is the norm of the Hilbert space H* N Hj(Q), and S = inf{ [, |Au|?*dz|u €
H? N H}(Q), ||ul|zr+1(0) = 1} is the best Sobolev constant of the embedding
H? N H}(Q) — LPY(Q). In particular, they proved that the blow up point
of solutions minimizing the Sobolev quotient is a critical point of the Robin
function associated with the Green function under the Navier boundary con-
dition.

Also when K # 1, there always exists a function %, satisfying

Jo 18T Pdz _ Jo | Auf?dz
(fyy K (@) lpet1de) @D wemnmy@ ([ K (z)[ufpe+idz) > ®FD

We may assume %. > 0 by solving the equation —Av = |A%.|,v € H? N
H}(Q); see [9]. Thus, an appropriate constant multiple of 7, is a solution of
(P.,x), which we call a least energy solution to (P. k). In the following, we
will treat only least energy solutions to (P k).

For non constant K, least energy solutions {u.} are known to blow up at
one point xo, which is a maximum point of K in Q:

luell Lo () = ue(ze) = 00 and z. — zo € K"l(mﬁaxK). (1.1)

In what follows, we assume the function K satisfies

Assumption (K) K € C?(Q), 0 < K(z) < 1, K attains maxg K at the
unique interior point zo € 2 with K(zo) = 1, and z¢ is a nondegenerate
critical point of K.

In the sequel, let G = G(z,y) denote the Green function of A% under the
Navier boundary condition: |

A%G(-,y) =46, inQ,
G(-,y) = AG(-,y) =0 on 99,

and let T'(z,y) be the fundamental solution of A2:

1 T — 4~N,
F(ﬂ:, ,y) — {(N—4)(N—-2)0‘N| yl

N>
- log |z —y|™, N =

5,
4,
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here oy is the volume of the (N — 1) dimensional unit sphere in RY. Finally,
let R(z) = lim,_,,[I'(z,y) — G(z,y)] denote the Robin function of A? with
the Navier boundary condition. By the maximum principle, we see R > 0
on 2 and R(z) — +o00 as z tends to the boundary of Q.

Main result of this note reads as follows.

Theorem 1 Let @ C RN, N > 5 be a smooth bounded domain. Let u. be a
least energy solution to (P. ) for € > 0 and let x. € Q be a point such that

Ue(Te) = ||te||Loq). Assume (K). Then after passing to a subsequence, we
have
(1) {lme — To| = O(“”E”[,eo(a)) N =35,
|Ze — zo| = O(HUEHLoo(Q)) N 26,

(2)||Ue“L°°(Q) —1 ase—0,
(3)llutell Lo Ue () — 2(N — 4)(N — 2)0‘NG(CE Tog) ase —
lim,o €”uEHLoo(Q) = S mR(Zo) N =5,
(4) { lim,_,o EHUGH%“(Q) ZAK(iEo) + 48073 R(x0) N =6,
N>7

lim,_,¢ 5|lue”Loo(n) rz)z(NTzi)AK(xo)

215

Thus, the above theorem corresponds to the one proved by Hebey [6]
for the second order Laplacian case problem. Our starting point of proof
is to establish a key pointwise estimate for u.; see Lemma 2 below. To do
this, we rely on the blow up analysis with the Navier boundary condition
performed by Geng [4]. Although Geng assumed the strict convexity of the
domain and K = 1 in [4], his blow up analysis works well if the solution
sequence considered is known a priori to blow up at the unique interior point
of . Note that in our case, the boundary blow up cannot occur since we
know z, — xz9 € (Q, the unique maximum point of K, for least energy
solutions. Therefore, we confirm that the blow up point zg is indeed an
isolated simple blow up point in the sense of [4], without any restriction of
the domain dimension. The needed pointwise estimate can be derived from
this fact. For local blow up analysis (without any boundary condition) for
any solution sequence of subcritical biharmonic equations with nearly critical
growth, see the works of Djadli, Malchiodi and Ahmedou [2] and Felli [3].
See also the original work of YanYan Li [10] for the Laplacian case.
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In Theorem 1, we observe that the asymptotics depend sensitively on the
dimension of the domaln The geometric effect (the Robin function R(z)) is
dominant in the lowest dimension IV = 5, the effect of the coefficient function
(AK(zo)) is dominant when N > 7, and they are mixed when N = 6. This
phenomenon was also observed in the second order Laplacian case by Hebey

[6].

2 Proof of Theorem 1

In this section, we will show the sketch of proof of Theorem 1. We will treat
the case N > 6 only for the sake of simplicity. Detailed arguments including
the case N = 5 can be found in the forthcoming paper [8].

First, we recall the Pohozaev type identity for a biharmonic equation with
the Navier boundary condition. Let u € C"‘(Q) N C3(9) be a solution of the
following equation

Aty = f(z,u) inQ,
u=Au=0 on 0f},

where f is in C1(Q2 x R). Denote F(z,u) = [} f(z,s)ds for any z € Q. Then
we have an identity:

/ NF(z,u) — (N — 4)uf(z:,u) +(z—y) Vo F(z,u)dz
Q
ov
= Tr — -Vu —dSz : (2‘1)
| (@=v)-vug , }
for any y € RY, where v = —Au and v = v(z) is an outer unit normal at
x € 0.
For a least energy solution . of (P ), the identity (2.1) becomes
co(N — / pe+1
=Tid
2N — s(N )¢ ), K@ de
—y) - eTidr = —1vy) - Vu,)—d
+ 2N—-5(N—4) Q(w y) - VK (z)ul"dz aQ((fc y) - Ve) 5 ~ds

(2.2)
where v, = —Au,. Also by differentiating (2.2) with respect to y;, we have

€ = - id T 2.3
2N—e(N 4 DueTde = | 55 5, v (2:3)
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foralli =1,---,N. Note that u.,v, > 0 in 2 and Vu, = ~|Vu€|1), Vv, =
—|Vv.|v on O9.
Next, define the scaled function
- 1 ]
Ue(y) == Ue — +z.|, ye. (2.4)
e [[uel| ™4
where 2, = ||u€||2‘f‘1‘ (Q— :v;), and in the following, we abbreviate || - || =

| -l Leo()- It holds that 0 < @, < 1,%.(0) = 1, and 4. satisfies

A%, = coK.(y)ipe  in €,
Ue = At =0 on 0.,

where K. (y) = K (ﬂyé;__q— + 235). By (1.1) and (K), we know
Ue

lue|| = 00, 2e—>20€QN ase—0,

thus 2, — RY and K. — K(zo) = 1 compact uniformly on RN as ¢ — 0.
By standard elliptic estimates and the uniqueness of the limit, we have

@ie — U compact uniformly in RY (2.5)

as € — 0, where
N—-4

- 1 =
W) = <1+lyl2)
is the unique solution of

AZU = CoUp in RN,
0<U<1, U0 =1,
lim|y|~_.°o U(y) = 0.

By (2.5), we easily see that there exists a constant M > 1 independent of ¢
such that for any e sufficiently small, there holds

1< luell® < M. (2.6)

See [5]: Corollary 1, or [1]: Lemma 4.1.
Also we have the following crucial pointwise estimate for u. through the
theory of isolated simple blow up points in [4]; see also [2] and (3].
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Lemma 2 There exists a constant C' > 0 independent of € such that for any
R, — oo with r. = R.||uc||~*5 — 0, the following estimates hold true:

u(z) < C e > Jorl|r — x| < e (2.7)
- i
(1+ el ™2 — zc2)
C 1

ue(z) < Tl e =z for{|lz — x| >r:} NQ. - (2.8)

Proof. As stated in Introduction, we appeal to the blow up analysis in [4]
to prove Lemma. We will see that the interior blow up point zg is indeed an
isolated simple blow up one. We refer [4] for the definition of isolated, and
isolated simple blow up points. See also the original work by YanYan Li [10]
for the Laplacian case problem. '

First, by a standard argument originally due to R. Schoen (for example,
[7] Lemma 3.1), we know that any interior blow up point is an isolated one:
see [4] Proposition 2.1. Note that though the convexity of the domain is
assumed in [4], the assumption is used only to assure that any blow up point
is in the interior of the domain 2. Also since u. makes one point blow up in
our case, we do not need an argument using the Pohozaev identity to deal
with multiple blow up points and their interactions. Therefore, the coefficient
function K does not have any effect on the validity of the proofs in [4]. Thus,
by Proposition 2.2 in [4], we have the estimate - |

() — (L + |y~ <6

C4(Bre(0))
for any R, — oo with Re||lu.] — 0 and 4, — 0. By taking §, <
(1+ R2)~"F*, (2.7) holds when |z — z.| < 7. = Re|lu||~*7".

Next, Proposition 4.1 in [4] is valid for least energy solutions of (P ) for
any N > 5, when K is a positive function satisfying (K). Thus we have that
any interior isolated blow up point is an isolated simple one by Proposition
4.1 in [4], and by Proposition 3.2 in [4], we have the estimate

C 1

|ue|| |z — 2|V

|...BE;_1.
4

Ue(z) < (2.9)

for any r. < |z — z.| < p, where C and p are positive constants independent
of €. From this, we check that the estimate

C 1
ue(r) <
@) < a7

for {|z — zc| > p} N Q2 (2.10)
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holds true. Indeed, from (2.9) we have

u(z) < ¢ 1

S m—’w—_—i for ‘.’l? —_ IEsl = p. (211)

If there exists a point =’ € {|z — zc| > p} N Q such that u.(z') > TI«%HEWI:T’
we would have a maximum point in the region {|z — z.| > p} N 2. But this
and (2.11) would contradict the fact that zo is an isolated simple blow up
point. Finally, (2.8) follows easily from (2.9), (2.10) and the boundedness of
the domain. 0O

In terms of @, in (2.4), the above lemma reads

W =\Cpi= for {lyl > R}N A,

v

(2.12)

where R, — o0 is any sequence as in Lemma 2.
From Lemma 2, we also obtain the following:

Lemma 3 There exists a constant C > 0 independent of € such that
/ V|| Vue|ds < Clluel|~2
a0

holds true.

Proof. This is done by using Lemma 2 and the fact: Let u solve

—Au=f in €,
u=0 on 0R2,

and let w' CC w be a neighborhood of 02. Then

lullwra@) + lulloraw) < C (Ifllizr@) + 1 fllzew) (2.13)

holds for ¢ < %5, € (0,1). See [5] Lemma 2; there the left hand side of
the claimed estimate is ||ulw1e(q)+ || Vu||coa(r), however the estimate (2.13)

is indeed proved in the proof.
We apply (2.13) to

—Au, = v, in €2,
—Av, = oK (z)uPe in Q,
U =V =0 on 0f.
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As a consequence, it appears that we need to estimate ||coK (z)uP®||11(q) and
l|co K ()uPe || Lo () to control both [ Vte || Lo 90y and || Ve[ Lo a0
By (2.6) and the fact 0 < K(z) < 1, we have

/ coK ()uedz < C / WP da = Clug|[Pem DN / e (y)dy
Q Q

Qe
= Cluclp=# ([ oy + o))
RN
< Ol |71+ ETH < Ol ||

if € > 0 is sufficiently small. Here we have used (2.5), (2.12) and the Lebesgue
convergence theorem.

On the other hand, since we may take a neighborhood of Q2 small such
that zo ¢ w, we see by Lemma 2 |

[[uel| 7P
I;I; —‘xOI(N—‘l)Pe

< COlluel| ™7 < C“us“_l

coK(z)ube(z) < C

for any z € w, ifé > 0 small such that 1 < p.. Thus we have ||co K (z)uf* || o () <
Cllue||~*. These estimates with (2.13) leads to

Vel o2) < Clluel|™ and [|[Voe ||z o) < Clluel™,
from which we obtain Lemma 3. ]
Now, we will prove the estimates
12 — 20| = ol[lue]|"75), N >6 (2.14)

under the assumption (K).
Indeed, by Taylor expansion, we have

1 N
K(z)=1+3 D bij(mi — 29)(z; — 23) + O(lz — zo*), (2.15)
i,j=1 :
and
0K

a2, (?) = 2 b2 = ) + Oe — ol (216)
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foralli=1,---, N, where we set b;; = 52—:%(330). Inserting (2.16) into (2.3),
we have
Co(N —4) / ﬁ:b(x — 2uPtdx + / O(lz — zo|?)uPetldx
2N —e(N —4) Jozg ¥V7 707 Q o e
Oue Ove

= 0 5y o Vidsx (217)

for ¢ = 1,--- , N. The right hand side of (2.17) is O(||u.||=?) by Lemma 3.
Now, by the change of variables (2.4), we have

2

) aPet1dy.

/O(|$—$o|2)u§‘+ld9«" = ||U5Hp‘+l—(mf—l)N/ O (
Q e

Splitting the integral as

%.°
(---)dy

/ 1 (. . )dy .+. / - .
{yeQe:lyl<llue | T |we—zol} {yeQe:ly|>lluel| T |z —zol}
= Il + IZ>

Y

T T % — To
[lue ™

Yy
— +Zc — Zo

Y a}:s+1dy
[luell ™2

and estimating
I = O(|ze — zol?),

-1 -
I < Clfue |55 f ez dy

= Cfue |77 (/RN ly|*UP* dy + 0(1)) = O(Jluc[|7¥=%),
e [Pt 1= EFON — 1, |52 = O(1)

by (2.6), (2.5), (2.12) and the Lebesgue convergence theorem, we have

/ O(|z — zo|2)u2* dz = O(|z. — zo|2) + O(||ue||~7%). (2.18)
Q



The same argument leads to

.0 = 2o puzedz = Ol — mof?) + Ol 7).
Q
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(2.19)

Now,
N
Zbij/(xj — z)ultldz
=t 7@
N y | .
j ~ —(Be=l
=3 b [ (W + (20 = ) (el ) e |~y
j:]_ € (3
N
___Zbij”us”pﬁl—(a%l)N—(%“—l)/ y iR+ dy
j=1 Qe

N
..1 ~
+ 3 byl [PH=CFIN (), — 29) / Py

By (2.5), (2.12) and the Lebesgue convergence theorem, we see

/ y P dy = / y;UP (y)dy + o(1) = o(1)
] Qe RN
for any j = 1,--. , N. Therefore, J; in (2.20) is

Ji = Ollue||" 0+  6(1) = o ||ue ||~ 73)

by (2.6). Similarly, we have

(2.20)

N N
o = [luell TN by () — 9) / @ty = O(1) x 3 b ((ze); — 7).
j=1 < Jj=1

Returning to (2.17) with these, we get that

N
D biy((@e)s = 2) + 01z = 2ol*) = O(luel| ) + o{Juel] 7). (2.21)
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By our assumption that zg is a nondegenerate critical point of K, the matrix
2

(bij)i<ijen = (%:afi—j(xo)) is invertible. Hence from (2.21), we have (2.14).
Next we prove Theorem 1 (2):

ucll® — 1, ase—0 (2.22)

by using (2.14).
In fact, inserting (2.15) and (2.16) into (2.2), we have

co(N — 4)2 / Pe+1
SGN — sV D) J, %

co(N — 4) cwo(N—-4)? ¢ v N
e 2 /QJZ: big (i = 2)(z; = )b de

+ /Q O(|z — zo?)utetdz = /an |Vue|| Vel ((z — zo) - v)dsy (2.23)
when N > 6. Hence by (2.23), (2.18), (2.19) and Lemma 3, we have
O(1) x & + O(|ze — zol*) + O(l|uell7=%) = O(lJue| ).
This in turn implies
£ < Cllu.||"™=, when N >6 (2.24)

for some constant C > 0, here we have used (2.14). By the mean value
theorem, it holds
Nuell® = 11 = [lluel*e log [luel]

for some t € (0,1). Therefore by (2.6) and (2.24), it holds
luell® = 1] = O(lluell "% log |[uell), N > 6.

Thus we obtain (2.22).
Once (2.22) is established, we can check that the following lemma along
the line of [1]: Proposition 5.1, or [5]: Proposition 1.

Lemma 4 We have

20‘N

2 —\ e ————
A (”ue“ue) CON(N + 2)5330
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in the sense of Radon measures of 0, and

e ||ue — co—meG( zo) in C*%(w),
v, — ]—V-(—f-vi—aj( _AG)(m0) inCre(w)

for some a € (0,1), where w is any open neighborhood of 02, not containing
To.

Finally, we will prove Theorem 1 (4) when N > 6.

By (2.5), (2.12), (2.14), (2.22) and the Lebesgue convergence theorem,
we have the followings:

on T(3)°
2 T(N)’

/ wPetlder — | UPHdy = (2.25)
0 R

Z sz/ i — x?)(xj — z?)uﬁ‘“dw

zJ-l
= Z bij lue | T x
i,5=1
0
Y Yi\\Te )j — T +y((w i— & ) -
/ ( by, U@l = 7))+ 5@k Z ) | 000, — 2 ) @iy
”'U'EH 2 “us“ ‘
N ‘ 4 N;2 4
= 3 bl T [ ygamtiay o (lud ) (29)
i,j=1 Qe
if N> 6, and
o 1 |
/ yz-yjug‘“dy-—»/ yiijp"'ldy:—/ ly[PUPH dyd;;
c ) ]RN N ]RN
_on [ rNtl on I'(§)?

T(Sij =

i (2.27)

N Jo (1+r2)Nd 2(N —=2) T(N)

where §;; is Kronecker’s delta.
Furthermore, Lemma 4 leads to

e[| 7 / Ve | [Vve| (2 — 30) - v)dsg — 0, N >T, (2.28)
o - '
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and

= /a 1Vl Vel (@ — 7o) - v)ds

2C0 N 2
- (m) /6 _IVGIVAGI((z - 20) - v)dss

2C00’ 2 2 ‘ : —

where we have used a formula in [1] Lemma 3.1:
/ VGI[VAG|((z — z0) - v)ds, = (N — 4)R(zo)
B
for any x4 € Q.

Thus, multiplying (2.23) by ||u.||¥ when N > 6, using (2.25), (2.26),
(2.27), and (2.28) or (2.29), we obtain

(N—4)e )3 N
T 2N 02(1@[-2) 1“(?\1) Zi:l bii
CO(N"4)2 oON F(%)z
4N 2 T(N)

2 .
= —(N—Z)(N—4)AK(xO)’ ifN >7,

lim e|u|| 73 =
e—0

2971 R(zo) — £m3AK (z0)

163
157

lim &|ue || =7 =
e—0
— 4807° R(zo) — iAK(ayo), if N = 6.

N/2 ' .
Recall oy = ‘1%’ in particular, g = 73.

This proves Theorem 1 when N > 6. O
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