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Abstract

A linearly parameterized polymatroid intersection problem appears in the context
of principal partitions. We consider a submodular intersection problem on a pair of
strong-map sequences of submodular functions, which is an extension of the linearly
parameterized polymatroid intersection problem to a nonlinearly parameterized one.
We introduce the concept of a basis-frame on a finite nonempty set $V$ that gives a
mapping from the set of all base polyhedra in $\mathbb{R}^{V}$ into $\mathbb{R}^{V}$ such that each base polyhe-
dron in $\mathbb{R}^{V}$ is mapped to one of its bases. We show the existence of a simple universal
representation of all optimal solutions of the parameterized submodular intersection
problem by means of basis-frames.

1 Introduction

The submodular intersection problem has been recognized as one of the most fundamental
unifying problems in combinatorial optimization. It includes the (poly)matroid intersec-
tion problem [1] and the submodular function minimization problem [7, 10], and has a lot
of applications [12, 15]. This paper deals with a nonlinearly parameterized submodular
intersection problem and presents a structure theorem for it.

As an extension of monotone parametric maximum flow problems [2, 4, 9, 11], Iwata,
Murota, and Shigeno [8] developed an algorithm for an intersection problem on a pair of
nondecreasing and nonincreasing finite-length strong-map sequences of submodular func-
tions, and they clarified an algorithmic advantage of the concept of a strong map. More
generally, we consider a nonlinearly parameterized submodular intersection problem that
is continuous in the parameter. Many problems related to principal partitions (see [3,
Section 7] $)$ , including a lexicographically optimal base problem [2], can be reduced to lin-
early parameterized submodular intersection problems. Iri and Nakamura [5, 6, 13, 14]
developed the principal partition of a pair of polymatroids. In [13], it is shown that there
exists a fixed pair of vectors, called a universal pair of bases, in terms of which optimal so-
lutions to the linearly parameterized polymatroid intersection problem for all parameters
are given in a simple form. The aim of this paper is to extend this result $\dot{t}0$ a nonlinearly
parameterized submodular intersection problem.
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For a base polyhedron $B(f)\subseteq \mathbb{R}^{V}$ associated with a submodular function $f$ defined
on the power set $2^{V}$ of a finite set $V$ of cardinality $n$ , each total order $\prec$ on $V$ generates
an extreme point $y^{\prec}$ of $B(f)$ by the greedy algorithm [1, 17]. Thus, any point $x$ in the
base polyhedron can be generated by a set $\mathcal{O}=\{\prec i:i\in I\}$ of total orders on $V$ and a
coefficient vector $\lambda=$ $(\lambda(i)\in \mathbb{R} : i\in I)$ of a convex combination as $x= \sum_{i\in I}\lambda(i)y^{\prec i}$ ,
where $I$ is a finite set of indices. We call such a triple $(I, \mathcal{O}, \lambda)$ a basis-frame on $V$ . In
this paper we will show that there exists a pair of basis-frames which provides us with
a simple representation of optimal solutions to the parametric submodular intersection
problem given in a nonlinear parametric form.

2 Preliminaries
This section is devoted to basic properties about submodular functions. For more infor-
mation on submodular functions, refer to, $e.g.,$ $[3]$ .

2.1 Basic Definitions
Let $V=\{1, \cdots, n\}$ for a positive integer $n$ and $f$ : $2^{V}arrow \mathbb{R}$ be a submodular function,
i.e., we have

$f(X)+f(Y)\geq f(X\cup Y)+f(X\cap Y)$

for each pair of subsets $X,$ $Y\subseteq V$ . Additionally, we assume that $f(\emptyset)=0$ . If $f(X)\leq f(Y)$

holds for all $X$ and $Y$ with $X\subseteq Y\subseteq V$ , then $f$ is called a polymatroid $mnk$ function.
For a vector $x\in \mathbb{R}^{V}$ we denote the component of $x$ on $v\in V$ by $x(v)$ . The submodular

polyhedron $P(f)$ and the base polyhedron $B(f)$ associated with $f$ are given by

$P(f)=\{x\in \mathbb{R}^{V}:x(X)\leq f(X)(\forall X\subseteq V)\}$,
$B(f)=\{x\in \mathbb{R}^{V}:x(X)\leq f(X)(\forall X\subseteq V), x(V)=f(V)\}$,

where $x(X)= \sum_{v\in X}x(v)$ for any $X\subseteq V$ . For any vector $y\in \mathbb{R}^{V}$ we write $P(y)=$
$\{x\in \mathbb{R}^{V} : x\leq y\}$ . A point in $P(f)$ is called a subbase, a point in $B(f)$ a base, and an
extreme point of $B(f)$ an extreme base. For any base $x\in B(f)$ and any $v\in V$ we have
$f(V)-f(V\backslash \{v\})\leq x(v)\leq f(\{v\})$ . Therefore, $B(f)$ is bounded. Consider any total order
$\prec$ on $V$ . The greedy algorithm [1, 17] finds an extreme base $y^{\prec}\in \mathbb{R}^{V}$ given by

$y^{\prec}(v)=f(\{u\in V:u\prec v\}\cup\{v\})-f(\{u\in V:u\prec v\})(v\in V)$ . (1)

Conversely, every extreme base can be obtained in this way. We say that vector $y^{\prec}$ defined
by (1) is the extreme base generated $by\prec$ . Let arg min $f\subseteq 2^{V}$ denote the collection of
all the minimizers of $f$ . It can easily be shown that arg min $f$ forms a distributive lattice,
i.e., arg min $f$ is closed under the operations of set union and intersection. So there is the
unique minimal (maximal) minimizer of $f$ with respect to set inclusion.

We denote by $\mathcal{F}_{n}$ the collection of all submodular set functions $\tilde{f}:2^{V}arrow \mathbb{R}$ such that
$\tilde{f}(\emptyset)=0$ . Recall that $V=\{1, \cdots, n\}$ . Suppose $f_{1},$ $f_{2}\in \mathcal{F}_{n}$ . If $V\supseteq Y\supseteq X$ implies

$f_{1}(Y)-f_{1}(X)\geq f_{2}(Y)-f_{2}(X)$ (2)

for all $X$ and $Y$ , we denote this relation by $f_{1}arrow f_{2}$ or $f_{2}arrow f_{1}$ and we call the relation
$fiarrow f_{2}$ a strong map. It is easy to show the following property.
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Lemma 1 (Topkis [18]) Suppose $f_{1}arrow f_{2}$ . Then the minimal (maximal) minimizer of
$f_{1}$ is contained in the minimal (maximal) minimizer of $f_{2}$ .

Let $y_{1}^{\prec}$ and $y_{2}^{\prec}$ denote, respectively, the extreme bases of $B(f_{1})$ and $B(f_{2})$ generated by a
total order $\prec$ on $V$ . In view of (1) and (2), for any total order $\prec$ on $V$ we have $y_{1}^{\prec}\geq y_{2}^{\prec}$

if $f_{1}arrow f_{2}$ . Conversely, the relation $f_{1}arrow f_{2}$ can be characterized by the positional
relationship between $y_{1}^{\prec}$ and $y_{2}^{\prec}$ for all $\prec$ .

Lemma 2 (Iwata, Murota and Shigeno [8]) The relation $f_{1}arrow f_{2}$ holds if and only
if $y_{1}^{\prec}\geq y_{2}^{\prec}$ holds for all total $orders\prec on$ $V$ .

For any $X\subseteq V$ we define submodular functions $f^{X}$ : $2^{X}arrow \mathbb{R}$ and $fx$ : $2^{V\backslash X}arrow \mathbb{R}$ by

$f^{X}(Y)=f(Y)$ $(Y\subseteq X)$ ,
$f_{X}(Y)=f(Y\cup X)-f(X)$ $(Y\subseteq V\backslash X)$ .

We call $f^{X}$ and $f_{X}$ the restriction of $f$ to $X$ and the contmction of $f$ by $X$ , respectively.
For any $X,$ $Y\subseteq V$ with $X\subset Y$ define a function $f_{X}^{Y}$ : $2^{Y\backslash X}arrow \mathbb{R}$ by

$f_{X}^{Y}=(f^{Y})x$ .

Clearly, $f_{\emptyset}^{X}=f^{X}$ and $f_{X}^{V}=f_{X}$ .
For any $X\subseteq V$ and $x\in \mathbb{R}^{V}$ we denote by $x^{X}$ the subvector $(x(v) : v\in X)\in \mathbb{R}^{X}$ .

Suppose that we are given disjoint finite sets $U_{1}$ and $U_{2}$ . For vectors $x_{1}\in \mathbb{R}^{U_{1}}$ and
$x_{2}\in \mathbb{R}^{U_{2}}$ , the direct sum $x_{1}\oplus x_{2}\in \mathbb{R}^{U_{1}\cup U_{2}}$ is defined by $(x_{1}\oplus x_{2})(v)=x_{1}(v)$ if $v\in U_{1}$

and $x_{2}(v)$ if $v\in U_{2}$ . For sets $B_{1}\subseteq \mathbb{R}^{U_{1}}$ and $B_{2}\subseteq \mathbb{R}^{U_{2}}$ , define their direct sum $B_{1}\oplus B_{2}=$

$\{x_{1}\oplus x_{2} : x_{1}\in B_{1}, x_{2}\in B_{2}\}\subseteq \mathbb{R}^{U_{1}\cup U_{2}}$ . We shall use the following two lemmas about
basic properties of submodular polyhedra and base polyhedra (see, e.g., [3]).

Lemma 3 For $X\subseteq Y\subseteq Z\subseteq V,$ $B(f_{X}^{Y})\oplus B(f_{Y}^{Z})\subseteq B(f_{X}^{Z})$ .
More specifically, $B(f_{X}^{Y})\oplus B(f_{Y}^{Z})$ is a face of $B(f_{X}^{Z})$ , which can be represented as

$B(f_{X}^{Y})\oplus B(f_{Y}^{Z})=B(f_{X}^{Z})\cap\{\tilde{x}\in \mathbb{R}^{Z\backslash X}:\tilde{x}(Y\backslash X)=f_{X}^{Z}(Y\backslash X)\}$.
Lemma 4 Suppose that $X\subseteq V$ and $x\in \mathbb{R}^{V}$ satisfy $x^{X}\in B(f^{X})$ . Then, $x\in P$ (ノ) ザ and
only if $x^{V\backslash X}\in P(f_{X})$ .

2.2 The submodular intersection problem

Suppose $\rho,$
$\sigma\in \mathcal{F}_{n}$ . The submodular intersection problem associated with $\rho$ and $\sigma$ is to find

a maximum common subbase, i.e., a common subbase $x\in P(\rho)\cap P(\sigma)$ that maximizes
$x(V)$ . If $\rho$ and $\sigma$ are polymatroid rank functions, the problem is called a polymatroid
intersection problem. For any common subbase $x\in P(\rho)\cap P(\sigma)$ and any subset $X\subseteq V$ ,
we have $x(V)=x(X)+x(V\backslash X)\leq\rho(X)+\sigma(V\backslash X)$ . The inequality is tight for some $x$

and $X$ , i.e.,

Theorem 5 (Edmonds [1]) For $\rho,$
$\sigma\in \mathcal{F}_{n}$ ,

$\max\{x(V) : x\in P(\rho)\cap P(\sigma)\}=\min\{\rho(X)+\sigma(V\backslash X) : X\subseteq V\}$ . (3)
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Define $\sigma\#:2^{V}arrow \mathbb{R}$ by $\sigma\#(X)=\sigma(V)-\sigma(V\backslash X)(X\subseteq V)$. Since $\rho-\sigma\#$ is submodular,
the minimizers of the right hand side of (3) form a distributive lattice. The following
lemma gives a sufficient condition for optimality of the submodular intersection problem.

Lemma 6 Suppose that a pair of $x\in \mathbb{R}^{V}$ and $X\subseteq V$ satisfies $x^{X}\in B(\rho^{X})\cap P(\sigma_{V\backslash X})$

and $x^{V\backslash X}\in P(\rho_{X})\cap B(\sigma^{V\backslash X})$ . Then, $x$ is optimal for $\max\{x(V) : x\in P(\rho)\cap P(\sigma)\}$ and
$X\in$ arg min$(\rho-\sigma\#)$ .

PROOF: By Lemma 4 we have $x\in P(\rho)\cap P(\sigma)$ . Moreover, $x(V)=x(X)+x(V\backslash X)=$
$\rho(X)+\sigma(V\backslash X)$ . It follows from Theorem 5 that $x$ maximizes $x(V)$ over $P(\rho)\cap P(\sigma)$ and
$X$ minimizes $\rho(X)-\sigma\#(X)$ . ロ

The next theorem describes the structure of the optimal solutions of the submodular
intersection problem.

Theorem 7 (Iri and Nakamura [5, 6, 13, 14]) Let $S_{1}\subset\cdots\subset S_{k}$ be any chain of
arg min$(\rho-\sigma\#)$ for an integer $k\geq 1$ . For $x\in \mathbb{R}^{V}$ , the following two statements (7.a) and
(7.b) are equivalent:

(7.a) $x$ is an optimal solution to $\max\{x(V):x\in P(\rho)\cap P(\sigma)\}$ .
(7.b) $x$ satisfies:

$x^{S_{1}}$
$\in$ $B(\rho^{S_{1}})\cap P(\sigma_{V\backslash S_{1}})$ ,

$x^{S\ell+1\backslash S_{\ell}}$
$\in$ $B(\rho_{S_{\ell}}^{S_{\ell+1}})\cap B(\sigma_{V\backslash Sp+1}^{V\backslash S_{\ell}})$ for each $\ell=1,$ $\cdots,$ $k-1$ , (4)

$x^{V\backslash S_{k}}$
$\in$ $P(\rho_{S_{k}})\cap B(\sigma^{V\backslash S_{k}})$ .

In the following, we mainly deal with the case where $k=2$ in Theorem 7.

3 The Parametric Submodular Intersection Problem
Suppose that we are given an interval $K$ in $\mathbb{R}$ and two collections of submodular functions
$\{\rho_{\tau}\in \mathcal{F}_{n}:\tau\in K\}$ and $\{\sigma_{\tau}\in \mathcal{F}_{n};\tau\in K\}$ indexed by $K$ such that

$\bullet$ for all $\tau\in K$ and $\tau’\in K$ with $\tau<\tau^{f}$ , we have $\rho_{\tau}arrow\rho_{\tau’}$ and $\sigma_{\tau}arrow\sigma_{\tau}/$ ;. for each $X\subseteq V,$ $\rho_{\tau}(X)$ and $\sigma_{\tau}(X)$ are continuous in $\tau$ .
Based on Theorem 5, for all $\tau\in K$ we consider the parametric submodular intersection
problem

$\max\{x(V) : x\in P(\rho_{\tau})\cap P(\sigma_{\tau})\}$ (5)

and the associated submodular function minimization problem

$\min\{\rho_{\tau}(X)+\sigma_{\tau}(V\backslash X):X\subseteq V\}$. (6)

The parametric submodular intersection problem and related problems have appeared
in the literature as follows.

Lexicographically optimal base problems. Consider a submodular function $\rho\in \mathcal{F}_{n}$
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and a positive vector $w\in \mathbb{R}^{V}$ . The lexicographically optimal base [2] for $\rho$ and $w$ is the
base in $B(\rho)$ that attains the lexicographic maximum among the sequences obtained from
$(x(v)/w(v) : v\in V)$ arranged in the order of nondecreasing magnitude for all bases $x$ . It
is also the optimal solution to

$\min\{\sum_{v\in V}x(v)^{2}/w(v):x\in B(\rho)\}$
.

This quadratic minimization problem was shown to be equivalent to the parametric opti-
mization problem

$\max\{x(V) : x\in P(\rho)\cap P(\tau w)\}(\tau\in \mathbb{R})$ ,

which is a special case of problem (5) in which $\rho_{\tau}=\rho$ and $\sigma=\tau w$ for all $\tau\in K$

Linearly parameterized polymatroid intersection problems. Suppose that func-
tions $\rho,$

$\sigma\in \mathcal{F}_{n}$ are polymatroid rank functions. Note that if $0\leq\tau\leq\tau’$ , then we have
a strong map relation $\tau\sigmaarrow\tau’\sigma$ . Iri and Nakamura [5, 6, 13, 14] studied the following
polymatroid intersection problem with a parameter $\tau$ that appears linearly:

$\max\{x(V) : x\in P(\rho)\cap P(\tau\sigma)\}$ $(\tau\geq 0)$ . (7)

For vectors $r,$
$s\in \mathbb{R}^{V}$ , we denote by $r\wedge s$ the vector in $\mathbb{R}^{V}$ defined by

$(r \wedge s)(v)=\min\{r(v), s(v)\}$ $(v\in V)$ .
It is known that the set of optimal solutions to the linearly parameterized polymatroid
intersection problem has a simple representation as follows.

Theorem 8 (Nakamura [13]) There $e$ tists a pair of bases $r\in B(\rho)$ and $s\in B(\sigma)$ such
that for any $\tau\geq 0,$ $r\wedge(\tau s)$ is an optimal solution to (7).

The pair $(r, s)\in B(\rho)\cross B(\sigma)$ in Theorem 8 is called a universal pair of bases. In the next
section, we will give a further generalization of this result.

Discrete parametric submodular intersection problems. Suppose that we are given
two sequences of submodular functions $\rho_{1},$ $\cdots,$ $\rho_{q}\in \mathcal{F}_{n}$ and $\sigma_{1},$ $\cdots,$ $\sigma_{q}\in \mathcal{F}_{n}$ such that
$\rho_{1}arrow\cdotsarrow\rho_{q}$ and $\sigma_{1}arrow\cdotsarrow\sigma_{q}$ . The associated base polyhedra when $n=2$ and
$q=4$ are illustrated in Figure 1 by thick lines. Iwata, Murota, and Shigeno [8] treated the
problem of finding a maximum common subbase $x\in P(\rho_{\ell})\cap P(\sigma_{\ell})$ for each $\ell=1,$ $\cdots,$ $q$ .

Set $K$ $:=[1, q]=\{\tau\in \mathbb{R} : 1 \leq\tau\leq q\}$ . For any $\ell\in\{1, \cdots, q-1\}$ and any $\tau\in K$

with $\ell\leq\tau\leq\ell+1$ define functions $\rho_{\tau}$ : $2^{V}arrow \mathbb{R}$ and $\sigma_{\tau}$ : $2^{V}arrow \mathbb{R}$ by

$\rho_{\mathcal{T}}=(\ell+1-\tau)\rho\ell+(\tau-\ell)\rho\ell+1$ ,
$\sigma_{\tau}=(\ell+1-\tau)\sigma\ell+(\tau-\ell)\sigma\ell_{+1}$ .

Base polyhedra $B(\rho_{\tau})$ and $B(\sigma_{\tau})$ for all $\tau\in[1, q]$ are illustrated in Figure 1. The given
discrete problems for $B(\rho_{\ell})\cap B(\sigma\ell)$ for $\ell=1,$ $\cdots,$ $q$ are thus embedded in the continuous
problems of the form of (5).

4 Structure Theorem

We present a structure theorem for the parametric submodular intersection problem (5).
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Figure 1: $B(\rho_{\tau})$ and $B(\sigma_{\tau})$ for all $\tau\in[1, q]$

4.1 Main Result
Consider a pair of triples $T_{1}=(I_{1}, O_{1}, \lambda_{1})$ and $T_{2}=(I_{2}, O_{2}, \lambda_{2})$ satisfying the following
properties:. $I_{1}$ and $I_{2}$ are finite index sets;

$\bullet$ $\mathcal{O}_{1}=\{\prec\{:i\in I_{1}\}$ and $\mathcal{O}_{2}=\{\prec!:j\in I_{2}\}$ are sets of total orders on $V$ ;
$\bullet$ $\lambda_{1}\in \mathbb{R}^{I_{1}}$ and $\lambda_{2}\in \mathbb{R}^{I_{2}}$ satisfy $\lambda_{1}\geq 0,$ $\lambda_{2}\geq 0$ and $\lambda_{1}(I_{1})=\lambda_{2}(I_{2})=1$ .

For all $\tau\in K$ , the triples $T_{1}$ and $T_{2}$ , respectively, generate the vectors

$r_{\tau}= \sum_{i\in I_{1}}\lambda_{1}(i)y_{\tau}^{\prec}*$
, $s_{\tau}= \sum_{j\in I_{2}}\lambda_{2}(j)z_{\tau^{j}}^{\prec}$ , (8)

where $y_{\tau}^{\prec:}$ is an extreme base of $B(\rho_{\tau})$ generated by $\prec i\in O_{1}$ and $z_{\tau^{j}}^{\prec}$ is an extreme base
of $B(\sigma_{\tau})$ generated by $\prec j\in \mathcal{O}_{2}$ . Since $r_{\tau}$ is a convex combination of extreme bases of
$B(\rho_{\tau})$ , we have $r_{\tau}\in B(\rho_{\tau})$ . Similarly, $s_{\tau}\in B(\sigma_{\tau})$ holds. Thus we can say that $T_{1}$ and
$T_{2}$ , respectively, define mappings $B(\rho_{\tau})\mapsto r_{\tau}\in B(\rho_{\tau})$ and $B(\sigma_{\tau})\mapsto s_{\tau}\in B(\sigma_{\tau})$ for
each $\tau\in K$ , through (8). We call such triples $T_{1}=(I_{1}, O_{1}, \lambda_{1})$ and $T_{2}=(I_{2}, O_{2}, \lambda_{2})$

basis-frames on $V$ .
Lemma 9 For vectors $r_{\tau}(\tau\in K)$ and $s_{\tau}(\tau\in K)$ defined in (8), the inequality $\tau<\tau^{l}$

implies that $r_{\tau}\geq r_{\tau’}$ and $s_{\tau}\leq s_{\tau’}$ .
PROOF: The present lemma follows from (8) and Lemma 2. 口

A typical example of a basis-frame appears in game theory. Let $\mathcal{O}=\{\prec i:i\in I\}$ be the set
of all total orders on $V$ and hence the index set $I$ has cardinality $n!$ . Define $\lambda(i)=1/n!$

for all $i\in I$ . Then $T=(I, O, \lambda)$ is a basis-frame on $V$ , which gives a base for each base
polyhedron that is known as the Shapley-value vector ([16, 17]) in cooperative n-person
(convex) games. Note that base polyhedra are exactly cores in convex games (see [17]).
It should be noted here that the basis-frames required in the sequel have index sets $I$ of
cardinality at most $n=|V|$ .

We will show the existence of a pair of basis-frames $T_{1}$ and $T_{2}$ on $V$ which generates
optimal solutions to (5) for all $\tau\in K$ . For some basis-frames $T_{1}$ and $T_{2},$ $r_{\tau}\wedge s_{T}$ is always
a maximum common subbase of $P(\rho_{\tau})$ and $P(\sigma_{\tau})$ for all $\tau\in K$ , which is our main result
given as follows.
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Theorem 10 There exists a pair of basis-frames $T_{1}=(I_{1}, O_{1}, \lambda_{1})$ and $T_{2}=(I_{2}, O_{2}, \lambda_{2})$

on $V$ such that $|I_{1}|\leq n,$ $|I_{2}|\leq n$ , and for all $\tau\in Kr_{\tau}\wedge s_{\tau}$ is a maximum common subbase
of $P(\rho_{\tau})$ and $P(\sigma_{\tau})$ , i. e., an optimal solution to $\max\{x(V) : x\in P(\rho_{\tau})\cap P(\sigma_{\tau})\}$ , where

$r_{\tau}$ and $s_{\tau}$ are defined by (8).

This is a natural generalization of Theorem 8 for the linearly parameterized polymatroid
intersection problem. When specified to problem (7), basis-frames $T_{1}$ and $T_{2}$ in Theo-
rem 10, respectively, give $r_{\tau}$ and $s_{\tau}$ such that for all $\tau\geq 0$ we have $r_{\tau}=r$ and $s_{\tau}=\tau s$

for fixed bases $r\in B(\rho)$ and $s\in B(\sigma)$ . The proof of Theorem 10 will be given in \S 4.2.

4.2 Representation of optimal solutions

Now we present a constructive proof of Theorem 10.

Minimizers of the parameterized minimization problem

We begin with an investigation into the parameterized minimization problem (6). W.l.$0.g$ .
we assume that $K\subseteq \mathbb{R}$ is of the form $(\kappa_{1}, \kappa_{2}]=\{\tau\in \mathbb{R} : \kappa_{1}<\tau\leq\kappa_{2}\}$. For all $\tau\in K$ ,
define a parameterized submodular function $f_{\tau}$ : $2^{V}arrow \mathbb{R}$ as $f_{\tau}=\rho_{\tau}-\sigma_{\tau}^{\#}$ , that is,

$f_{\tau}(X)=\rho_{\tau}(X)+\sigma_{\tau}(V\backslash X)-\sigma_{\tau}(V)(X\subseteq V)$ .
By assumption, for each $X\subseteq Vf_{\tau}(X)$ is continuous in $\tau$ . For all $\tau\in K$ , let $\mathcal{L}(\tau)=$

arg min $f_{\tau}\subseteq 2^{V}$ and let $M_{\tau}\subseteq V$ be the unique minimal minimizer of $f_{\tau}$ .
Lemma 11 For $\tau,$

$\tau’\in K$ with $\tau^{l}\leq\tau$ we have $M_{\tau’}\subseteq M_{\tau}$ .

PROOF: It is easy to see that $f_{\tau^{l}}arrow f_{\tau}$ So, it follows from Lemma 1 that $M_{\mathcal{T}’}\subseteq M_{\tau}$ . ロ

Lemma 12 For any $\tau\in K$ there exists some real number $\epsilon>0$ such that for all $\tau$
‘ with

$\tau-\epsilon<\tau’<\tau$ we have $M_{\tau}/=M_{\tau}$ . That is to say, $M_{\tau}$ is left-continuous in $\tau$ .
PROOF: Choose any $\tau\in K$ . If $M_{\tau}=\emptyset$ , the assertion follows from Lemma 11. So, we
assume that $M_{\tau}\neq\emptyset$ . Define

$\delta=\min\{f_{\tau}(X)-f_{\tau}(Y):X, Y\subseteq V, f_{\tau}(X)-f_{\tau}(Y)>0\}$ .
Then, since $f_{\tau}(M_{\tau})\neq f_{\tau}(\emptyset)$ , we have $\delta>0$ . Because of the continuity of $f_{\tau}(X)$ in $\tau$ , we
can choose a real number $\epsilon>0$ such that for all $\tau^{l}$ with $\tau-\epsilon<\tau’<\tau$ and any $X\subseteq V$ ,
it holds that $|f_{\tau^{f}}(X)-f_{\tau}(X)|<\pi^{\delta}1$ . Thke $\tau’\in K$ with $\tau-\epsilon<\tau’<\tau$ . Then we have

$f_{\tau}(M_{\tau’})_{\mathfrak{T}}^{1}- \delta<f_{\tau’}(M_{\tau’})\leq f_{\tau’}(M_{\tau})<f_{\tau}(M_{\tau})+\frac{1}{2}\delta$,
which implies $M_{\tau’}\in \mathcal{L}(\tau)$ . Therefore, we have $M_{\tau’}\supseteq M_{\tau}$ . On the other hand,

$M_{\tau’}\subseteq M_{\tau}$ follows from Lemma 11. Hence we obtain $M_{\tau^{l}}=M_{\tau}$ . $[]$

By Lemma 11, there exist finitely many distinct $M_{\tau}(\tau\in K)$ , which we suppose are given
by

$X_{0}\subset X_{1}\subset\cdots\subset X_{d}$ .
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From Lemmas 11 and 12, $K\subseteq \mathbb{R}$ is divided into the intervals

$K_{0}=(\kappa_{1}, \tau_{1}],$ $K_{1}=(\tau_{1}, \tau_{2}])\ldots,$ $K_{d-1}=(\tau_{d-1}, \tau_{d}],$ $K_{d}=(\tau_{d}, \kappa_{2}]$

such that for any $\ell=0,$ $\cdots,$
$d$ and any $\tau\in K_{\ell}$ we have $M_{\tau}=X_{\ell}$ . We call $\mathcal{T}\ell(\ell=1, \cdots, d)$

lower critical values. To avoid messy discussions, we assume that $X_{0}=\emptyset$ and $X_{d}=V$ .

Lemma 13 For any $\ell=1,$ $\cdots,$ $d,$ $X_{\ell-1}\subset X_{\ell}$ is a chain of $\mathcal{L}(\tau\ell)$ .

PROOF: Thke any $\ell\in\{1, \cdots, d\}$ . Since $\tau_{\ell}\in K_{\ell-1}$ , we have $X_{\ell-1}\in \mathcal{L}(\tau\ell)$ . For a
sufflciently small $\epsilon>0,$ $M_{\mathcal{T}\ell+\epsilon}=X_{\ell}\in \mathcal{L}(\tau_{\ell}+\epsilon)$. Due to the continuity of $f_{\tau}(X)$ in $\tau$ for
all $X\subseteq V$ , we obtain $X_{\ell}\in \mathcal{L}(\tau_{\ell})$ by a similar argument as in the proof of Lemma 12. ロ

Construction and correctness
We first present a way of constructing $r_{\tau},$ $s_{\tau},$ $T_{1}$ , and $T_{2}$ in Theorem 10, whose correctness
will be verified later.

Take any $\ell\in\{1, \cdots, d\}$ . For all $\tau\in K$ , we define functions $\rho_{\tau}^{(\ell)}$ : $2^{X\ell\backslash X_{\ell-1}}arrow \mathbb{R}$ and
$\sigma_{\tau}^{(\ell)}:2^{X\ell\backslash X_{l-1}}arrow \mathbb{R}$ by

$\rho_{\tau}^{(\ell)}=(\rho_{\tau})_{X_{\ell-1}}^{X_{\ell}}$ , $\sigma_{\tau}^{(\ell)}=(\sigma_{\tau})_{V\backslash X\ell}^{V\backslash X_{\ell-1}}$ .

Recall that $X_{\ell-1}\subset X_{\ell}$ is a chain of $\mathcal{L}(\tau\ell)=$ argmin$(\rho_{\tau_{\ell}}-\sigma_{\tau_{\ell}}^{\#})$ (see Lemma 13). By
Theorem 7 with $k=2$, there exists a vector $w^{(\ell)}\in \mathbb{R}^{X\ell\backslash X_{\ell-1}}$ such that

$w^{(\ell)}\in B(\rho_{\tau_{\ell}}^{(\ell)})\cap B(\sigma_{\tau_{\ell}}^{(\ell)})$ .

$ofB(\rho_{\tau_{\ell}}^{(\ell)})(re8pB(\sigma_{\tau p}^{(\ell)})).Wecangiveapairofbasis- hamesT_{1}\}_{\ell)}^{x_{\ell}\backslash X_{\ell-1}|extremebases}=(I_{1}^{(\ell)},O_{1}^{(\ell)},\lambda_{1}^{(\ell)})andThenw^{(\ell)}canb.eexpressedbyaconvexcombination\circ fatmost$

$T_{2}^{(\ell)}=(I_{2}^{(\ell)}, O_{2}^{(l)}, \lambda_{2}^{(\ell)})$ on $X_{\ell}\backslash X_{\ell-1}$ which generates the vectors $r_{\tau}^{(\ell)}\in B(\rho_{\tau}^{(\ell)})(\tau\in K)$

and $s_{\tau}^{(\ell)}\in B(\sigma_{\tau}^{(\ell)})(\tau\in K)$ such that $r_{\mathcal{T}\ell}^{(\ell)}=s_{\mathcal{T}\ell}^{(\ell)}=w^{(\ell)}$ , where $|I_{1}^{(\ell)}|\leq|X_{\ell}\backslash X_{\ell-1}|$ and
$|I_{2}^{(l)}|\leq|X_{\ell}\backslash X_{\ell-1}|$ .

By Lemma 9, the inequality $\tau\leq\tau\ell$ implies $s_{\tau}^{(\ell)}\leq w^{(\ell)}\leq r_{\mathcal{T}}^{(\ell)}$ , and the inequality $\tau_{\ell}\leq\tau$

implies $r_{\tau}^{(\ell)}\leq w\leq s_{r}^{(\ell)}$ . Thus we have

$r_{\tau}^{(\ell)}\wedge s_{\tau}^{(\ell)}=\{\begin{array}{l}s_{\tau}^{(\ell)}\in B(\sigma_{\tau}^{(\ell)}) if \tau\leq\tau\ell,r_{\tau}^{(\ell)}\in B(\rho_{\tau}^{(\ell)}) if \tau\ell\leq\tau.\end{array}$ (9)

For all $\tau\in K$ , we set

$r_{\tau}:=r_{\tau}^{(1)}\oplus\cdots\oplus r_{\tau}^{(d)}\in \mathbb{R}^{V}$, (10)
$s_{\tau}:=s_{\tau}^{(1)}\oplus\cdots\oplus s_{\tau}^{(d)}\in \mathbb{R}^{V}$ , (11)

$x_{\tau}:=r_{\tau}\wedge s_{\tau}\in \mathbb{R}^{V}$ . (12)

Lemma 14 For all $\tau\in K$ , we have $r_{\tau}\in B(\rho_{\tau}),$ $s_{\tau}\in B(\sigma_{\tau})$ , and $x_{\tau}\in P(\rho_{\tau})\cap P(\sigma_{\tau})$ .
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PROOF; By Lemma 3, for all $\tau\in K$ we have $B(\rho_{\tau}^{(1)})\oplus\cdots\oplus B(\rho_{\tau}^{(d)})\subseteq B(\rho_{\tau})$ and
$B(\sigma_{\tau}^{(1)})\oplus\cdots\oplus B(\sigma_{\tau}^{(d)})\subseteq B(\sigma_{\tau})$ . Thus, $r_{\tau}\in B(\rho_{\tau})$ and $s_{\tau}\in B(\sigma_{\tau})$ . Therefore, $x_{\tau}=r_{\tau}\wedge s_{\tau}$

iS a common subbase of $P(\rho_{\tau})$ and $P(\sigma_{\tau})$ 口

The next lemma guarantees that among basis-frames $T_{1}$ and $T_{2}$ on $V$ which generate the
vectors $r_{\tau}$ and $s_{\tau}$ , respectively, we can choose the ones with small index sets.

Lemma 15 There $e$ ttsts a basis-fmme $T_{1}=(I_{1}, O_{1}, \lambda_{1})$ such that $T_{1}$ genemtes $r_{\tau}$ in (10)
for all $\tau\in K$ and $|I_{1}|\leq n$ , and there exists a basis-fmme $T_{2}=(I_{2}, O_{2}, \lambda_{2})$ such that $T_{2}$

generates $s_{\tau}$ in (11) for all $\tau\in K$ and $|I_{2}|\leq n$ .

PROOF: It suffices to show the former statement. (The latter can be shown similarly.) We
will prove the existence of the required basis-frame $T_{1}$ by combining $T_{1}^{(1)}=(I_{1}^{(1)}, \mathcal{O}_{1}^{(1)}, \lambda_{1}^{(1)})$ ,
... , $T_{1}^{(d)}=(I_{1}^{(d)}, \mathcal{O}_{1}^{(d)}, \lambda_{1}^{(d)})$ . Note that

$|I_{1}^{(1)}|+|I_{1}^{(2)}|+\cdots+|I_{1}^{(d)}|\leq|X_{1}|+|X_{2}\backslash X_{1}|+\cdots+|X_{d}\backslash X_{d-1}|=n$ . (13)

For each $v\in V$ , let $h(v)$ be a number in $\{$ 1, $\cdots,$ $d\}$ such that $v\in X_{h(v)}\backslash X_{h(v)-1}$ . Given
$\prec(1)\in O_{1}^{(1)},$

$\cdots,$
$\prec(d)\in \mathcal{O}_{1}^{(d)}$ , the concatenation of $\prec(1),$

$\cdots,$
$\prec(d)$ is a total order $\prec$ on $V$

such that
$u\prec v$ if $h(u)<h(v)$ or if $h(u)=h(v)$ and $u\prec(h(u))v$ .

The following procedure Combine constructs a desired basis-frame $T_{1}=(I_{1}, O_{1}, \lambda_{1})$ .

Procedure Combine $(T_{1}^{(1)}, \cdots, T_{1}^{(d)})$

Initialize $I_{1}$ $:=\emptyset$ and $O_{1}$ $:=\emptyset$ ;
While $I_{1}^{(1)}\neq\emptyset$ do begin

For $\ell;=$ lto $d$ do: Choose an index $i_{\ell}\in I_{1}^{(\ell)}$ ;
Let $i$ be a new index and let $\prec i$ be the concatenation of $\prec_{\dot{*}1}^{(1)},$

$\cdots,$
$\prec!_{d}^{d)}$ ;

Set $I_{1}$ $:=I_{1}\cup\{i\},$ $O_{1}$ $:=O_{1}\cup\{\prec i\}$ and $\mu\iota:=\min\{\lambda_{1}^{(\ell)}(i_{\ell}):1\leq\ell\leq d\}$ ;
For $\ell;=1$ to $d$ do:

Set $\lambda_{1}^{(\ell)}(i_{\ell}):=\lambda_{1}^{(\ell)}(i_{\ell})-\mu_{i}$ ;
If $\lambda_{1}^{(\ell)}(i_{\ell})=0$ then $I_{1}^{(\ell)}:=I_{1}^{(\ell)}\backslash i_{\ell}$ ;

end;
Let $\lambda_{1}\in \mathbb{R}^{I_{1}}$ be a vector such that $\lambda_{1}(i)=\mu_{i}$ for each $i\in I_{1}$ ;
Output $T_{1}$ $:=(I_{1}, \mathcal{O}_{1}, \lambda_{1})$ ;

In the execution of the procedure, observe that $I_{1}^{(1)}$ becomes empty if and only if $I_{1}^{(\ell)}$

becomes empty for all $\ell=1,$ $\cdots,$
$d$ . Let $\gamma=|I_{1}^{(1)}|+\cdots+|I_{1}^{(d)}|$ . At the beginning of

the execution of Combine, we have $\gamma\leq n$ because of (13). Since $\gamma$ decreases by at least
1 in each iteration, finally we obtain $|I_{1}|\leq n$ . In view of (1), the triple $T_{1}$ obtained by
the procedure Combine is really a basis-frame that generates the vector $r_{\tau}$ in (10) for all
$\tau\in K$ . 口

Finally, we show the correctness of $r_{\tau},$ $s_{\tau},$ $T_{1}$ , and $T_{2}$ constructed as above.
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PROOF oF THEOREM 10: To show the assertion, it is sufficient to prove that for all $\tau\in K$

the vector $x_{\tau}$ defined by (12) is optimal for $\max\{x(V) : x\in P(\rho_{\tau})\cap P(\sigma_{\tau})\}$. Therefore,
by Lemma 6 with $X=M_{\tau}$ , it suffices to show that for all $\tau\in K$

$x_{\tau}^{M_{\tau}}\in B(\rho_{\tau}^{M_{\tau}})\cap P((\sigma_{\tau})_{V\backslash M_{\tau}})$ , (14)
$x_{\tau}^{V\backslash M_{r}}\in P((\rho_{\tau})_{M_{\tau}})\cap B(\sigma_{\tau}^{V\backslash M_{r}})$ . (15)

Suppose $\tau\in K_{0}$ . Then $M_{\tau}=\emptyset$ and hence trivially (14) holds. It follows from (9)
that $x_{\tau}=s_{\tau}\in B(\sigma_{\tau})$ . Moreover $x_{\tau}\in P(\rho_{\tau})$ holds, so that (15) also holds. If $\tau\in K_{d}$ , we
obtain (14) and (15) in a similar way.

We assume that $\tau\in K_{\ell}$ for some $\ell\in\{1, \cdots, d-1\}$ . Since

$\tau_{1}\leq\cdots\leq\tau\ell\leq\tau\leq\tau_{\ell+1}\leq\cdots\leq\tau_{d}$ ,

it follows from (9) that

$x_{\tau}^{M_{\tau}}=r_{\tau}^{(1)}\oplus\cdots\oplus r_{\tau}^{(\ell)}\in B(\rho_{\tau}^{(1)})\oplus\cdots\oplus B(\rho_{\tau}^{(\ell)})$ ,
$x_{\tau}^{V\backslash M_{\tau}}=s_{\tau}^{(\ell+1)}\oplus\cdots\oplus s_{\tau}^{(d)}\in B(\sigma_{\tau}^{(\ell+1)})\oplus\cdots\oplus B(\sigma_{\tau}^{(d)})$ .

By Lemma 3, we have $B(\rho_{\tau}^{(1)})\oplus\cdots\oplus B(\rho_{\tau}^{(\ell)})\subseteq B(\rho_{\tau}^{M_{r}})$ and $B(\sigma_{\tau}^{(\ell+1)})\oplus\cdots\oplus B(\sigma_{\tau}^{(d)})\subseteq$

$B(\sigma_{\tau}^{V\backslash M_{\tau}})$ . Hence, $x_{\tau}^{M_{\tau}}\in B(\rho_{\tau}^{M_{r}})$ and $x_{\tau}^{V\backslash M_{\tau}}\in B(\sigma_{\tau}^{V\backslash M_{r}})$ . Recall that $x_{\tau}\in P(\rho_{\tau})\cap$

$P(\sigma_{\tau})$ . By Lemma 4 with $x=x_{\tau},$ $f=\rho_{\tau}$ , and $X=M_{\tau}$ , we have $x_{\tau}^{V\backslash M_{\tau}}\in P((\rho_{\tau})_{M_{r}})$ .
Similarly, by Lemma 4 with $x=x_{\tau},$ $f=\sigma_{\tau}$ , and $X=V\backslash M_{\tau}$ , we have $x_{\tau}^{M_{\tau}}\in P((\sigma_{\tau})_{V\backslash M_{\tau}})$.
We thus obtain (14) and (15) 口

5 Concluding Remarks

We have introduced the new concept of a basis-ffame and have shown that the set of
optimal solutions to a parametric submodular intersection problem for all parameters has
a compact representation by means of basis-frames, which is a natural generalization of
the results of [5, 6, 13, 14] for linearly parameterized polymatroid intersection problems.

Apparently, the nonlinearity in the parameter makes the problem complicated. Hence,
the present paper has reinforced the importance of strong map relations of submodular
functions from a structural viewpoint, where an important r\^ole is played by the concept
of a basis-frame.
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