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In this paper, using the Bondi coordinates, we discuss the angular momentum at null
infinity in five dimensions and address the Poincare covariance of the Bondi mass
and angular momentum. We also show the angular momentum loss/gain law due to
gravitational waves. In four dimensions, the angular momentum at null infinity has
the supertranslational ambiguity and then it is known that we cannot construct well-
defined angular momentum there. On the other hand, we would stress that we can
define angular momentum at null infinity without any ambiguity in higher dimensions.
This is because of the nonexistence of supertranslations in higher dimensions. C© 2011
American Institute of Physics. [doi:10.1063/1.3559917]

I. INTRODUCTION

Inspired by the recent progress of the string theory, the importance of the gravity theory in
higher dimensional space-times is steadily growing. However, there are still many remaining issues
to be investigated in higher dimensions. One issue among them is the asymptotic structure. For
asymptotically flat space-times, the asymptotic structure is defined at spatial and null infinities. The
asymptotic structure at spatial infinity (spi) is well defined by conformal embedding in four1–3 and
higher dimensions.4 The asymptotic structure at null infinity in four dimensions is well studied by
many authors.2, 5–12 On the other hand, there are only a few works about the asymptotic structure
at null infinity in higher dimensions. Indeed, asymptotic flatness has been defined by using confor-
mal completion method in only even dimensions13–15 and by using the Bondi coordinates in five
dimensions.16

In four dimensions, asymptotic structure at null infinity is often studied by using the conformal
embedding.8 In this method, we introduce the conformal factor � ∼ 1/r and use � as a coordinate
near null infinity � = 0. In four dimensions, this method provided us successful results for the
analysis of asymptotic structure. However, it is turned out that this method does not work well in
higher dimensions. In fact, we cannot guarantee the smoothness of gravitational fields at null infinity
in the coordinate of �, particularly in odd dimensions.13–15, 17 This is because gravitational wave
behaves 1/r (D−2)/2 near null infinity in D dimensions. This means that the conformal completion
method might not be the best way to study the issue. Then we must solve the Einstein equations
directly to study how the gravitational field is expanded near null infinity in odd dimensions. By
introducing the Bondi coordinates instead, we can study the asymptotic structure at null infinity even
in odd dimensions without assuming the smoothness of the gravitational fields. Indeed, in this way,
we can derive the Bondi mass loss law by gravitational waves in five dimensions. We can also show
that the regularity of gravitational field at null infinity and that asymptotic symmetry is the Poincare
group, i.e., there are no supertranslations at null infinity in five dimensions16 while there are always
supertranslations in four dimensions.
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The asymptotic symmetry at null infinity in four dimensions is semidirect product of the Lorentz
group and the supertranslational group, which is an infinite dimensional translational group. The
presence of supertranslations implies the infinite number of the direction of translation, while the
Poincare group has only four directions in four dimensions. Because of this infinite directions of
translation, we cannot construct well-defined angular momentum in four dimensions. There are
many attempts to define of angular momentum at null infinity in four dimensions, whereas all those
definitions are suffered from supertranslational ambiguity.18–24 On the other hand, in five dimensions,
since asymptotic symmetry is the Poincare group, we can expect that angular momentum at null
infinity can be defined without any ambiguities. The purpose of this paper is to discuss angular
momentum at null infinity in five dimensions. We will see that angular momentum can be defined
well and show the Poincare covariance of the Bondi mass and angular momentum. We also look at
the angular momentum loss/gain properties due to gravitational waves.

The rest of this paper is organized as follows. In Sec. II, we review our previous work.16 Therein
we introduce the Bondi coordinates and solve the Einstein equations near null infinity. In Sec. III,
we define the Bondi mass and the Bondi angular momentum and derive the Bondi mass loss law
and angular momentum loss/gain law by gravitational waves. In Sec. IV, we show the Poincare
covariance of the Bondi mass and angular momentum. In Sec. V, we summarize our paper and
discuss the extension to higher dimensions than seven. In the Appendix, for comparison, we will
consider the angular momentum at null infinity in four dimensions using the Bondi coordinates. This
is because we cannot find references which address angular momentum using the Bondi coordinate.
We will show that there is always the supertranslational ambiguity in the angular momentum.

II. THE BONDI COORDINATES AND THE EINSTEIN EQUATIONS

In this section we review our previous work of Ref. 16 on the asymptotic structure at null
infinity in five dimensions. Therein we used the Bondi coordinates, which will be useful to study
the behavior of gravitational fields via solving of the Einstein equation.

A. Bondi coordinates

In the Bondi coordinates xa = (u, r, θ, φ, ψ) the metric can be written as

ds2 = − V eB

r2
du2 − 2eBdudr + r2h AB(dx A + U Adu)(dx B + U Bdu), (1)

where x A = (θ, φ,ψ) and

h AB =

⎛
⎜⎝

eC1 sin θ sinh D1 cos θ sinh D2

sin θ sinh D1 eC2 sin2 θ sin θ cos θ sinh D3

cos θ sinh D2 sin θ cos θ sinh D3 eC3 cos2 θ

⎞
⎟⎠ , (2)

and we adopted the gauge condition satisfying det h AB = sin2 θ cos2 θ . u = const. are null hyper-
surfaces and the periods of the coordinates θ , φ, and ψ are π/2, 2π, and 2π , respectively. From the
gauge condition, eC3 can be written as

eC3 = 1 + eC2 sinh2 D2 + eC1 sinh2 D3 − 2 sinh D1 sinh D2 sinh D3

eC1+C2 − sinh2 D1
. (3)

Then h AB have five functional freedom. In the following we will identify C1, C2, D1, D2, D3 as
those freedom. In this coordinate system, null infinity is represented by r = ∞ and the metric at
null infinity is

ds2 = −du2 − 2dudr + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2). (4)
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B. The Einstein equations

To investigate the asymptotic structure at null infinity, we have to solve the Einstein equations
near null infinity. Here note that five-dimensional space-times have five degree of freedom of
gravitational fields. If we identify h AB as the freedom of gravitational field, C1, C2, D1, D2, D3 can
be expanded as

C1(u, r, x A) = C11(u, x A)

r
√

r
+ C12(u, x A)

r2
+ C13(u, x A)

r2
√

r
+ C14(u, x A)

r3
+ O(r−7/2), (5)

C2(u, r, x A) = C21(u, x A)

r
√

r
+ C22(u, x A)

r2
+ C23(u, x A)

r2
√

r
+ C24(u, x A)

r3
+ O(r−7/2), (6)

D1(u, r, x A) = D11(u, x A)

r
√

r
+ D12(u, x A)

r2
+ D13(u, x A)

r2
√

r
+ D14(u, x A)

r3
+ O(r−7/2), (7)

D2(u, r, x A) = D21(u, x A)

r
√

r
+ D22(u, x A)

r2
+ D23(u, x A)

r2
√

r
+ D24(u, x A)

r3
+ O(r−7/2), (8)

D3(u, r, x A) = D31(u, x A)

r
√

r
+ D32(u, x A)

r2
+ D33(u, x A)

r2
√

r
+ D34(u, x A)

r3
+ O(r−7/2). (9)

The Einstein equations Rrr = 0, Rr A = 0, and the trace part of RAB = 0 determine the behavior of
B, U A, and V near null infinity as

V

r2
= 1 + V1(u, x A)

r
√

r
− m(u, x A)

r2
+ O(r−5/2), (10)

B = B1(u, x A)

r3
+ O(r−4), (11)

U A = U A
1 (u, x A)

r2
√

r
+ U A

2 (u, x A)

r3
+ U A

3 (u, x A)

r3
√

r
+ U A

4 (u, x A)

r4
+ O(r−9/2), (12)

h AB = h(0)
AB + 1

r
√

r
h(1)

AB + 1

r2
h(2)

AB + 1

r2
√

r
h(3)

AB + O(r−5/2), (13)

where

h(0)
AB =

⎛
⎜⎝

1 0 0

0 sin2 θ 0

0 0 cos2 θ

⎞
⎟⎠ , (14)

and

h(n)
AB =

⎛
⎜⎝

C1n(u, x A) sin θ D1n(u, x A) cos θ D2n(u, x A)

sin θ D1n(u, x A) C2n(u, x A) sin2 θ sin θ cos θ D3n(u, x A)

cos θ D2n(u, x A) sin θ cos θ D3n(u, x A) −(C1n(u, x A) + C2n(u, x A)) cos2 θ

⎞
⎟⎠, (15)

for n = 1, 2, 3. The coefficients in these expansions are all written by the gravitational fields
C1, C2, D1, D2, D3. From Rrr = 0, we have

B1(u, x A) = −1

8
(C2

11 + C11C21 + C2
21 + D2

11 + D2
21 + D2

31). (16)
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From Rr A = 0,

U θ
1 = 2

5

[
1

sin θ cos2 θ

∂

∂θ
(sin θ cos2 θC11) + 1

sin θ

∂

∂φ
D11 + 1

cos θ

∂

∂ψ
D21 − 1

sin θ cos θ
C21

]
,

(17)

sin2 θUφ

1 = 2

5

[
1

sin θ cos θ

∂

∂θ
(sin2 θ cos θ D11) + ∂

∂φ
C21 + tan θ

∂

∂ψ
D31

]
, (18)

cos2 θUψ

1 = 2

5

[
1

sin θ cos θ

∂

∂θ
(sin θ cos2 θ D21) + cot θ

∂

∂φ
D31 − ∂

∂ψ
(C11 + C21)

]
, (19)

U θ
2 = 2

3

[
1

sin θ cos2 θ

∂

∂θ
(sin θ cos2 θC12) + 1

sin θ

∂

∂φ
D12 + 1

cos θ

∂

∂ψ
D22 − 1

sin θ cos θ
C22

]
,

(20)

sin2 θUφ

2 = 2

3

[
1

sin θ cos θ

∂

∂θ
(sin2 θ cos θ D12) + ∂

∂φ
C22 + tan θ

∂

∂ψ
D32

]
, (21)

cos2 θUψ

2 = 2

3

[
1

sin θ cos θ

∂

∂θ
(sin θ cos2 θ D22) + cot θ

∂

∂φ
D32 − ∂

∂ψ
(C12 + C22)

]
, (22)

and

U θ
3 = 10

7

[
1

sin θ cos2 θ

∂

∂θ
(sin θ cos2 θC13) + 1

sin θ

∂

∂φ
D13 + 1

cos θ

∂

∂ψ
D23 − 1

sin θ cos θ
C23

]
,

(23)

sin2 θUφ

3 = 10

7

[
1

sin θ cos θ

∂

∂θ
(sin2 θ cos θ D13) + ∂

∂φ
C23 + tan θ

∂

∂ψ
D33

]
, (24)

cos2 θUψ

3 = 10

7

[
1

sin θ cos θ

∂

∂θ
(sin θ cos2 θ D23) + cot θ

∂

∂φ
D33 − ∂

∂ψ
(C13 + C23)

]
. (25)

From the trace part of RAB = 0, we can obtain

V1(u, x A) = −2

3

(
1

sin θ cos θ

∂

∂θ
(sin θ cos θU θ

1 ) + ∂

∂φ
Uφ

1 + ∂

∂ψ
Uψ

1

)
. (26)

These solutions will be needed when we define the Bondi mass and angular momentum in Sec. III
and confirm the Poincare covariance of the Bondi mass and angular momenta in Sec. IV.

The equations in the traceless part of RAB = 0 describe the evolution of h(n)
AB(n > 1) along

the u-direction. Since ∂h(1)
AB/∂u does not appear in those equations, we may set it arbitrarily on

each u = const. hypersurfaces. This degree of freedom can be regarded as the degree of freedom
of gravitational waves. Furthermore, we can see that h(2)

AB are time independent ∂h(2)
AB/∂u = 0.16

This fact will play a key role when showing the Poincare covariance of the Bondi momentum.
The functions m(u, x A) and U A

4 (u, x A) appear as the integration constants of r -integration of the
equations for each (u, x A), that is, they are free functions on u = const. hypersurfaces. As seen later,
these functions represent the energy and angular momenta contained in u = const. hypersurfaces.

III. ASYMPTOTIC QUANTITY

In this section, we define the Bondi mass and angular momenta. The normalization factors are
determined so that these quantities coincide to Arnowitt–Deser–Misner (ADM) quantities at spatial
infinity.25
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A. The Bondi mass and the Bondi momentum

We firstly define the Bondi mass and momentum from the asymptotic behaviors of metric
components. Since guu is expanded near null infinity as

guu = −1 − V1(u, x A)

r
√

r
+ m(u, x A)

r2
+ O(r−5/2), (27)

it is natural to define Bondi mass and momentum as

MBondi(u) = 3

16π

∫
S3

m(u, x A)d�, (28)

and

Pi
Bondi(u) = 3

16π

∫
S3

m(u, x A)x̂ i d�, (29)

respectively. In the above x̂ i = (x̂, ŷ, ẑ, ŵ) = (sin θ cos φ, sin θ sin φ, cos θ cos ψ, cos θ sin ψ),
which are l = 1 modes of the scalar harmonics on S3 and d� = sin θ cos θdθdφdψ . The Bondi
five-momentum Pa

Bondi are defined by Pa
Bondi = (MBondi, Pi

Bondi).
From the Einstein equation of Ruu = 0, we can obtain the Bondi mass loss law such as

d

du
MBondi = 3

16π

∫
S3

∂m(u, x A)

∂u
d�

= − 1

16π

∫
S3

{(
∂C11

∂u

)2

+ ∂C11

∂u

∂C21

∂u
+

(
∂C21

∂u

)2

+
(

∂ D11

∂u

)2

+
(

∂ D21

∂u

)2

+
(

∂ D31

∂u

)2

− 2

sin θ cos θ

∂

∂θ

(
sin θ cos θ

∂U θ
2

∂u

)

−2
∂2

∂φ∂u
Uφ

2 − 2
∂2

∂ψ∂u
Uψ

2

}
d�

= − 1

16π

∫
S3

{(
∂C11

∂u

)2

+ ∂C11

∂u

∂C21

∂u
+

(
∂C21

∂u

)2

+
(

∂ D11

∂u

)2

+
(

∂ D21

∂u

)2

+
(

∂ D31

∂u

)2
}

d�

≤ 0. (30)

Thus, it is turned out that the Bondi mass always decreases due to gravitational waves. The total
derivative terms in this integral have no contributions to the Bondi mass loss.

We comment on the finiteness of the Bondi mass. In the conformal completion method, we
usually define the Bondi mass M at null infinity using Weyl tensor Cabcd as M ∼ ∫

rCurur d S with
d S = r3 sin θ cos θdθdφdψ . Since Eq. (27) implies that Curur ∼ V1/r7/2 near null infinity, M seems
to diverge. Such a singular behavior of the Bondi mass has been pointed out in Ref. 15. However,
the solution of Eq. (26) implies that the leading part of the integral

∫
rCurur d S vanishes. That is to

say, the finiteness of the Bondi mass is shown by solving the Einstein equations explicitly. Using the
solutions of Eqs. (17)–(19) and (26), indeed, we can show the finiteness of the Bondi momentum.

B. The Bondi angular momentum

Next, let us define the Bondi angular momentum from u A components of the metric. Near null
infinity, guφ and guψ are expanded as

guφ = 1√
r

sin2 θUφ

1 + 1

r
sin2 θUφ

2 + 1

r
√

r
sin2 θUφ

3 + 1

r2
jφ + O(r−5/2), (31)
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guψ = 1√
r

cos2 θUψ

1 + 1

r
cos2 θUψ

2 + 1

r
√

r
cos2 θUψ

3 + 1

r2
jψ + O(r−5/2), (32)

where

jφ = sin θ D11U θ
1 + sin2 θC21Uφ

1 + sin θ cos θ D31Uψ

1 + sin2 θUφ

4 , (33)

jψ = cos θ D21U θ
1 + sin θ cos θ D31Uφ

1 − cos2 θ (C11 + C21)Uψ

1 + cos2 θUψ

4 . (34)

Since Uφ

1 , Uψ

1 , Uφ

2 , Uψ

2 , Uψ

3 , and Uφ

3 contain only total derivative terms on S3 [see Eqs. (17)−(25)],
they cannot contribute to the definition of the global quantities. Therefore we define the Bondi
angular momenta, Jφ

Bondi and Jψ

Bondi, will be naturally defined by

Jφ

Bondi(u) = − 1

4π

∫
S3

jφd�, (35)

Jψ

Bondi(u) = − 1

4π

∫
S3

jψd�. (36)

From Ruφ = 0, we can derive the evolution equation for the angular momentum Jφ

Bondi(u) by
gravitational waves as

d

du
Jφ

Bondi(u) = − 1

4π

∫
S3

[(
∂ jφ

∂u

)
radiation

+
(

∂ jφ

∂u

)
total derivative

]
d�, (37)

where (∂ jφ/∂u)radiation is the radiation part given by(
∂ jφ

∂u

)
radiation

= −1

4

∂C11

∂φ

∂C11

∂u
− 1

8

∂C21

∂φ

∂C11

∂u
− 1

8

∂C11

∂φ

∂C21

∂u
− 1

4

∂C21

∂φ

∂C21

∂u
− 1

4

∂ D21

∂φ

∂ D21

∂u

+ 1

10
tan θ

∂ D31

∂u

(
∂C11

∂ψ
+ ∂C21

∂ψ

)
+ 3

20
tan θ

∂ D31

∂ψ

∂C11

∂u
+ 2

5
tan θ

∂ D31

∂ψ

∂C21

∂u

−1

4

∂ D11

∂φ

∂ D11

∂u
+ 3

20
tan θ

∂ D11

∂u

∂ D21

∂ψ
− 3

20
tan θ

∂ D11

∂ψ

∂ D21

∂u
− 1

4
tan θ

∂C11

∂ψ

∂ D31

∂u

− 1

10
tan θ

∂C21

∂u

∂ D31

∂ψ
− 2

5
tan θ

∂ D31

∂u

∂C21

∂ψ
− 1

4

∂ D31

∂u

∂ D31

∂φ

+ 3

20 cos2 θ

∂ D31

∂u

∂

∂θ
(sin θ cos2 θ D21) − 3

20
cos θ

∂

∂θ
(tan θ D31)

∂ D21

∂u

+ 3

20 cos2 θ

∂ D11

∂u

∂

∂θ
(sin θ cos2 θC11) − 3

20
cos θ

∂C11

∂u

∂

∂θ
(tan θ D11)

+ 3

20 sin θ cos θ

∂C21

∂u

∂

∂θ
(sin2 θ cos θ D11)

− 3

20
sin θ

∂C21

∂θ

∂ D11

∂u
− 3

20 cos θ

∂

∂u
(C21 D11), (38)

and (∂ jφ/∂u)total derivative is the total derivative part, which has no contribution to the evolution for
the angular momentum by gravitational waves. The explicit form is given by(

∂ jφ

∂u

)
total derivative

= 1

4
[3 sin2 θUφ

2 − tan2 θ
∂2

∂ψ2
Uφ

2 − cot θ
∂

∂φ
U θ

2

− tan θ
∂

∂φ
U θ

2 + ∂2

∂φ∂θ
U θ

2 + ∂

∂φ
m

+ ∂2

∂φ∂ψ
Uψ

2 − 1

sin θ cos θ

∂

∂θ

(
sin3 θ cos θ

∂

∂θ
Uφ

2

)
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+ 1

sin θ cos θ

∂

∂θ

(
sin2 θ cos θ

∂ D14

∂u

)

+ tan θ
∂

∂ψ

∂ D34

∂u
+ ∂

∂φ

∂C24

∂u
− ∂

∂φ

∂ B1

∂u

−3

5
tan θ

∂

∂ψ

(
D31

∂C11

∂u

)
− 8

5
tan θ

∂

∂ψ

(
D31

∂C21

∂u

)

+3

5

∂

∂φ

(
C21

∂C21

∂u

)
− tan θ

∂

∂ψ

(
D21

∂ D11

∂u

)

−2

5

∂

∂φ

(
D11

∂ D11

∂u

)
+ 3

5
tan θ

∂

∂ψ

(
D11

∂ D21

∂u

)

+ tan θ
∂

∂ψ

(
C11

∂ D31

∂u

)
+ 8

5
tan θ

∂

∂ψ

(
C21

∂ D31

∂u

)
− 2

5

∂

∂φ

(
D31

∂ D31

∂u

)

− 1

sin θ cos θ

∂

∂θ

(
sin2 θ cos θ D21

∂ D31

∂u

)

+ 3

5 sin θ cos θ

∂

∂θ

(
sin2 θ cos θ D31

∂ D21

∂u

)

− 1

sin θ cos θ

∂

∂θ

(
sin2 θ cos θ D11

∂C21

∂u

)

+ 3

5 sin θ cos θ

∂

∂θ

(
sin2 θ cos θ D11

∂C11

∂u

)

− 1

sin θ cos θ

∂

∂θ

(
sin2 θ cos θC11

∂ D11

∂u

)

+ 3

5 sin θ cos θ

∂

∂θ

(
sin2 θ cos θC21

∂ D11

∂u

)
] . (39)

Then the evolution equation for angular momentum Jφ

Bondi(u) is expressed as

d

du
Jφ

Bondi(u) = − 1

4π

∫
S3

(
∂ jφ

∂u

)
radiation

d�. (40)

there (∂ jφ/∂u)total derivative plays an important role when showing the Poincare covariance of angular
momentum Jφ

Bondi in Sec. IV. Note that d Jφ

Bondi/du = 0 if there is no gravitational wave, i.e.,
∂h(1)

AB/∂u = 0.
Similarly, from Ruψ = 0, we can see

d

du
Jψ

Bondi(u) = − 1

4π

∫
S3

[(
∂ jψ

∂u

)
radiation

+
(

∂ jψ

∂u

)
total derivative

]
d�, (41)

where(
∂ jψ

∂u

)
radiation

= −1

4

∂C11

∂ψ

∂C11

∂u
− 1

4

∂C21

∂ψ

∂C21

∂u

−1

8

∂C21

∂ψ

∂C11

∂u
− 1

8

∂C11

∂ψ

∂C21

∂u
− 3

20
cos θ

∂ D21

∂θ

∂C11

∂u

−1

4
cos θ

∂C11

∂θ

∂ D21

∂u
− 1

4
cot θ

∂C21

∂φ

∂ D31

∂u

+ 3

20
cot θ

∂C21

∂φ

∂ D31

∂u
− 3

20
cot θ

∂ D31

∂φ

∂C21

∂u
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−1

4

∂ D11

∂ψ

∂ D11

∂u
+ 3

20
cot θ

∂ D11

∂φ

∂ D21

∂u

− 3

20
cot θ

∂ D21

∂φ

∂ D11

∂u
− 1

4

∂ D21

∂ψ

∂ D21

∂u
− 1

4

∂ D31

∂ψ

∂ D31

∂u

− 3

20
cot θ

∂ D31

∂φ

∂

∂u
(C11 + C21) + 3

20
cot θ

∂C11

∂φ

∂ D31

∂u
+ 2

5
cot θ

∂C21

∂φ

∂ D31

∂u

+ 3

20 sin θ cos θ

∂

∂θ
(sin θ cos2 θC11)

∂ D21

∂u
+ 3

20 sin2 θ

∂

∂θ
(sin2 θ cos θ D11)

∂ D31

∂u

− 3

20
sin θ

∂

∂θ
(cot θ D31)

∂ D11

∂u
+ 2

5
cos θ

∂C11

∂θ

∂ D21

∂u
+ 3

20
cos θ

∂C21

∂θ

∂ D21

∂u

− 3

20 sin θ

∂

∂u
(D21C21) − 3

20 sin θ cos θ

∂

∂θ
(sin θ cos2 θ D21)

∂

∂u
(C11 + C21),

(42)

and(
∂ jψ

∂u

)
total derivative

= 3

4
cos2 θUψ

2 + csc 2θ

2

∂

∂ψ
U θ

2 + 1

4

∂2

∂φ∂ψ
Uφ

2

−cot2 θ

4

∂2

∂φ2
Uψ

2 + 1

4

∂2

∂θ∂ψ
U θ

2 + 1

4

∂m

∂ψ

− 1

4 sin θ cos θ

∂

∂θ

(
sin θ cos3 θ

∂

∂θ
Uψ

2

)

+ 1

4 sin θ cos θ

(
∂

∂θ
sin θ cos2 θ

∂ D24

∂u

)
+ cot θ

4

∂2

∂φ∂u
D34

−1

4

∂2

∂ψ∂u
(C14 + C24) − 1

4

∂2

∂ψ∂u
B1 + 3

20

∂

∂ψ

(
(C11 + C21)

∂

∂u
(C11 + C21)

)

+1

4

∂

∂φ

(
cot θ D31

∂

∂u
C11

)
+ 2

5

∂

∂φ

(
cot θ D31

∂

∂u
C21

)
+ 1

2

∂

∂ψ

(
D11

∂

∂u
D11

)

+ 3

20

∂

∂φ

(
cot θ D21

∂

∂u
D11

)
+ 2

5

∂

∂ψ

(
D21

∂

∂u
D21

)
− 1

4

∂

∂φ

(
cot θ D11

∂

∂u
D21

)

+2

5

∂

∂ψ

(
D31

∂

∂u
D31

)
− 3

20

∂

∂φ

(
cot θC11

∂

∂u
D31

)
− 2

5

∂

∂φ

(
cot θC21

∂

∂u
D31

)

+ 2

5 sin θ cos θ

∂

∂θ

(
sin θ cos2 θ D21

∂

∂u
C11

)

+ 1

4 sin θ cos θ

∂

∂θ

(
sin θ cos2 θ D21

∂

∂u
C21

)

+ 3

20 sin θ cos θ

∂

∂θ

(
sin θ cos2 θ D31

∂

∂u
D11

)

− 2

5 sin θ cos θ

∂

∂θ

(
sin θ cos2 θC11

∂

∂u
D21

)

− 3

20 sin θ cos θ

∂

∂θ

(
sin θ cos2 θC21

∂

∂u
D21

)

− 1

4 sin θ cos θ

∂

∂θ

(
sin θ cos2 θ D11

∂

∂u
D31

)
. (43)
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Then the evolution equation for the angular momentum Jψ

Bondi(u) is given by

d

du
Jψ

Bondi(u) = − 1

4π

∫
S3

(
∂ jψ

∂u

)
radiation

d�. (44)

IV. ASYMPTOTIC SYMMETRY

In this section, we consider asymptotic symmetry at null infinity. Following our previous work,16

we first discuss the asymptotic symmetry. See Ref. 16 for the details. Then we will show the Poincare
covariance of the Bondi mass and angular momentum.

A. Preliminary

Asymptotic symmetry is defined as the transformation group which preserve the boundary con-
ditions of Eqs. (5)–(9) at null infinity. By infinitesimal transformations ξ a , the metric is transformed
as gab → gab + δgab, where

δgab = ∇aξb + ∇bξa . (45)

To preserve the boundary conditions, the metric variation δgab should satisfy the following condi-
tions:

δgrr = 0 , δgr A = 0 , g ABδgAB = 0, (46)

δguu = O(r−3/2) , δgu A = O(r−1/2) , δgAB = O(r1/2). (47)

The conditions of Eq. (46) comes from the definition of the Bondi coordinates. Next the conditions of
Eq. (47) are required from the behavior of gravitational fields near null infinity. From the condition
of Eq. (46), we can see that the infinitesimal transformation ξ a can be written as

ξr = f (u, x A)eB, (48)

ξB g AB = f A(u, x A) − f (u, x A)U A +
∫ ∞

r
dr ′eB ∂ f

∂x B
g AB, (49)

ξu = −reB

3

(
− ∂ξA

∂x B
+ ξC
C

AB + ξr

r
AB

)
g AB, (50)

where f (u, x A) and f A(u, x A) are functions which satisfy

∂ f A

∂u
= 0, (51)

DA fB + DB f A = −2
∂ f

∂u
h(0)

AB, (52)

DADB f = 1

3
D2 f h(0)

AB . (53)

In the above, DA is the covariant derivative with respect to h(0)
AB . From Eqs. (51) and (52), we can

see that f A should be conformal Killing vector on S3. Since such transformation group (conformal
Killing group on S3) is isomorphic to the Lorentz group, f A corresponds to the generator of
the Lorentz transformations. The function f can be written by f = −F(x A)u/3 + α(x A), where
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F(x A) = DA f A. We would guess that α(x A) is the generator of translations. From Eq. (53), we can
see that the function α(x A) can be written as

α(x A) = au + ax sin θ cos φ + ay sin θ sin φ + az cos θ cos ψ + aw cos θ sin ψ. (54)

This α has only five parameters which correspond to five directions of translations. Thus, the
asymptotic symmetry generated by ξ at null infinity is the Poincare group which is semidirect of the
Lorentz group and the translation group. On the other hand, in four dimensions, there is no conditions
on f like Eq. (53). This means that α(x A) in f generates the infinite dimensional translation group,
that is, the supertranslation group in four dimensions.

In our previous work,16 we have not discussed the asymptotic symmetry in terms of global
charges. Hence we will address this point in Secs. IV B and IV C.

B. Poincare covariance of the Bondi mass

Asymptotic quantities such as the Bondi mass and angular momentum should be global charges
associated with the asymptotic symmetry. To confirm this, in this section, we will consider transla-
tions generated by ξ with

f = α(x A) , f A = 0. (55)

This transformation implies u → u − f (x A).
The global charges associated with asymptotic symmetry (the Poincare group) are energy-

momentum vector Pa and angular momentum Mab. And they should be transformed under transla-
tions of Eq. (55) as

Pa → Pa , Mab → Mab + 2P[aωb], (56)

where f = x̂ aωa and x̂ a = (1, x̂ i ). However, we are considering dynamical space-times which has
no exact timelike Killing vector. This means that the quantities Pa and Mab would change due to
gravitational waves under translations (u → u − f (x A)). Then, the expected transformations of Pa

and Mab under translation of Eq. (55) are

Pa(u) → Pa(u − f ) = Pa(u) −
(

f
d

du
Pa(u)

)
radiation

, (57)

Mab(u) → Mab(u − f ) + 2P[a(u)ωb] = Mab(u) + 2P[a(u)ωb] −
(

f
d

du
Mab(u)

)
radiation

. (58)

In Eq. (58), note that the argument of the second term 2P[aωb] is u, not u − f . This is because this
term corresponds to the orbital angular momentum generated by translations. The purpose of this
section is to confirm this property. First, we check the relation of Eq. (57). Under the translations of
Eq. (55), m(u, x A) in guu transforms as

m → m − α(x A)
∂m

∂u
− 2

3

∂α

∂θ

∂U θ
2

∂u
− 2

3

∂α

∂φ

∂Uφ

2

∂u
− 2

3

∂α

∂ψ

∂Uψ

2

∂u
+ (total derivative terms). (59)

Here we do not write down the explicit form of the total derivative terms in this equation because it
is slightly complicated and not important for our purpose. From the above equation, we find that the
Bondi energy momentum Pa

Bondi transforms under the translations as

Pa
Bondi → Pa

Bondi + 3

16π

∫
S3

x̂ a

[
−α(x A)

∂m

∂u
− 2

3

∂α

∂θ

∂U θ
2

∂u
− 2

3

∂α

∂φ

∂Uφ

2

∂u
− 2

3

∂α

∂ψ

∂Uψ

2

∂u

]
d�

= Pa
Bondi + 1

16π

∫
S3

x̂ a

{
α

[(
∂C11

∂u

)2

+ ∂C11

∂u

∂C21

∂u
+

(
∂C21

∂u

)2

+
(

∂ D11

∂u

)2

+
(

∂ D21

∂u

)2

+
(

∂ D31

∂u

)2
]
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−
[

2

sin θ cos θ

∂

∂θ

(
α sin θ cos θ

∂U θ
2

∂u

)
+ 2

∂2

∂φ∂u
(αUφ

2 ) + 2
∂2

∂ψ∂u
(αUψ

2 )

]}
d�

= Pa
Bondi + 1

16π

∫
S3

α x̂ a

{(
∂C11

∂u

)2

+ ∂C11

∂u

∂C21

∂u
+

(
∂C21

∂u

)2

+
(

∂ D11

∂u

)2

+
(

∂ D21

∂u

)2

+
(

∂ D31

∂u

)2
}

d�. (60)

In the above, we used the fact that U A
2 are time independent. This can be shown using

Eqs. (20)–(22) and ∂h(2)
AB/∂u = 0. As seen in Sec. III, the integral part in Eq. (60) can be inter-

preted as the energy momentum loss by gravitational wave ( f d Pa/du)radiation. Then, the Bondi
energy momentum satisfies the Poincare covariance of Eq. (57).

C. Poincare covariance of the Bondi angular momentum

Next, we show the Poincare covariance of the Bondi angular momentum Jφ

Bondi. By the transla-
tions of Eq (55), jφ is transformed as

jφ → jφ − α(x A)
∂ jφ

∂u
+ (δ jφ)nonradiation + (total derivative terms), (61)

where

(δ jφ)nonradiation = 2

3

∂2α

∂θ∂φ
U θ

2 − 1

3

∂α

∂θ

∂U θ
2

∂φ
+ 1

3
tan2 θ

∂2α

∂ψ2
Uφ

2 + ∂2α

∂φ2
Uφ

2

+1

6
(6 + 8 cos 2θ ) tan θ

∂α

∂θ
Uφ

2

+1

3
sin2 θ

∂2α

∂θ2
Uφ

2 + tan2 θ
∂α

∂ψ

∂Uφ

2

∂ψ
+ 2

3

∂α

∂φ

∂Uφ

2

∂φ

+ sin2 θ
∂α

∂θ

∂Uφ

2

∂θ
+ 2

3

∂2α

∂φ∂ψ
Uψ

2 − 1

3

∂α

∂ψ

∂Uψ

2

∂φ

−m
∂α

∂φ
+ 1

4

∂α

∂φ

∂ B1

∂u
− 1

4

∂α

∂φ

∂C24

∂u
− 1

4

∂α

∂θ

∂ D14

∂u

−1

4
tan θ

∂α

∂ψ

∂ D34

∂u
+ 3

20
tan θ D31

∂α

∂ψ

∂C11

∂u

− 3

20
sin θ D11

∂α

∂θ

∂C11

∂u
+ 2

5
tan θ D31

∂α

∂ψ

∂C21

∂u

− 3

20
C21

∂α

∂φ

∂C21

∂u
+ 1

4
sin θ D11

∂α

∂θ

∂C21

∂u

+1

4
tan θ D21

∂α

∂ψ

∂ D11

∂u
+ 1

10
D11

∂α

∂φ

∂ D11

∂u

+1

4
sin θC11

∂α

∂θ

∂ D11

∂u
− 3

20
sin θC21

∂α

∂θ

∂ D11

∂u

− 3

20
tan θ D11

∂α

∂ψ

∂ D21

∂u
− 3

20
sin θ D31

∂α

∂θ

∂ D21

∂u

−1

4
tan θC11

∂α

∂ψ

∂ D31

∂u
− 2

5
tan θC21

∂α

∂ψ

∂ D31

∂u

+ 1

10
D31

∂α

∂φ

∂ D31

∂u
+ 1

4
sin θ D21

∂α

∂θ

∂ D31

∂u
. (62)
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Then, under the translations of Eq. (55), the Bondi angular momentum at null infinity transforms as

Jφ

Bondi → Jφ

Bondi − 1

4π

∫
S3

[
−α(x A)

∂ jφ

∂u
+ (δ jφ)nonradiation

]
d�

= Jφ

Bondi−
1

4π

∫
S3

[
−α(x A)

(
∂ jφ

∂u

)
radiation

−α(x A)

(
∂ jφ

∂u

)
total derivative

+(δ jφ)nonradiation

]
d�.

(63)

Now, the straightforward calculations tells us

− α(x A)

(
∂ jφ

∂u

)
total derivative

+(δ jφ)nonradiation =−3

4
m

∂α

∂φ
+ (supermomentum)φ + (total derivative),

(64)
where supermomentum term is given by

(supermomentum)φ = α

4

[
5 cot θ

∂

∂φ
U θ

2 − 3 tan θ
∂

∂φ
U θ

2 + 3
∂2

∂θ∂φ
U θ

2

]

+ α

12

[
23 sin2 θUφ

2 − 32 cos2 θUφ

2 − 31 cos θ sin θ
∂

∂θ
Uφ

2 + 5
sin3 θ

cos θ

∂

∂θ
Uφ

2

− 5 sin2 θ
∂2

∂θ2
Uφ

2 + 4
∂2

∂φ2
Uφ

2 − 5 tan2 θ
∂2

∂ψ2
Uφ

2

]

+ 3

4
α

∂2

∂φ∂ψ
Uψ

2 . (65)

In the above α(x A) has only l = 0 and l = 1 modes of scalar harmonics on S3. Using the solution
of the Einstein equations (20)−(22), then, we can show that these supermomentum terms become
total derivative. Then, taking these results altogether, we see

Jφ

Bondi → Jφ

Bondi − 1

4π

∫
S3

[
−α(x A)

(
∂ jφ

∂u

)
radiation

]
d� + 3

16π

∫
S3

m(u, x A)
∂α

∂φ
d�. (66)

This transformation is equivalent to Mx̂ ŷ → Mx̂ ŷ + 2P[x̂ωŷ] − ( f d Mx̂ ŷ/du)radiation. This stands for
the Poincare covariance of the Bondi angular momentum. In the same way, we can show the Poincare
covariance of angular momentum Jψ

Bondi. Under translations, Jψ

Bondi transforms as

Jψ

Bondi → Jψ

Bondi − 1

4π

∫
S3

[
−α(x A)

(
∂ jψ

∂u

)
radiation

+ (supermomentum)ψ

]
d�

+ 3

16π

∫
S3

m(u, x A)
∂α

∂ψ
d�, (67)

where the supermomentum term is

(supermomentum)ψ = α

4

[
3 cot θ

∂

∂ψ
U θ

2 − 5 tan θ
∂

∂ψ
U θ

2 + 3
∂2

∂θψ
U θ

2

]
− 3

4
α

∂2

∂φ∂ψ
Uφ

2

+ α

12

[
−32 sin2 θUψ

2 + 23 cos2 θUψ

2 + 31 cos θ sin θ
∂

∂θ
Uψ

2 − 5
cos3 θ

sin θ

∂

∂θ
Uψ

2

−5 cos2 θ
∂2

∂θ2
Uψ

2 + 4
∂2

∂ψ2
Uψ

2 − 5 cot2 θ
∂2

∂φ2
Uφ

2

]
. (68)

For the l = 0 and l = 1 modes in α, these supermomentum terms become total derivative. Finally,
we obtain the Poincare transformations of angular momentum as

Jψ

Bondi → Jψ

Bondi − 1

4π

∫
S3

[
−α(x A)

(
∂ jψ

∂u

)
radiation

]
d� + 3

16π

∫
S3

m(u, x A)
∂α

∂ψ
d�. (69)
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This transformation is equivalent to Mẑŵ → Mẑŵ + 2P[ẑωŵ] − ( f d Mẑŵ/du)radiation.
Since α contains all l mode of scalar harmonics on S2 in four dimensions, the supermomentum

does not vanish in general. Thus we cannot show the Poincare covariance of angular momentum in
four dimensions (see the Appendix for the details).

V. SUMMARY AND DISCUSSION

In this paper, we defined the Bondi angular momentum at null infinity in five-dimensions
and showed the Poincare covariance of the Bondi mass and angular momentum. In addition, we
successfully confirmed the Bondi mass loss and angular momentum loss/gain due to gravitational
wave.

Asymptotic symmetry at null infinity is an infinite dimensional translational group (super-
translations) in four dimensions, not a four dimensional group. Then this implies that the angular
momentum at null infinity has always ambiguities. Contrasted with this, it is shown that asymptotic
symmetry at null infinity is the Poincare group in five dimensions. Then we can define the Bondi
angular momentum at null infinity in a Poincare covariant way without any ambiguities.

There are remaining issues. In this paper we focused on the five-dimensional space-times. We
would expect that our approach can be extended to higher dimensions than five. However, there is
a critical point, that is, we had to introduce the concrete angular coordinate to solve the Einstein
equation. On the other hand, one does not want to use the concrete angular coordinates when one is
interested in higher dimensions. We have to resolve this troublesome issue. It is also interesting to
study the asymptotic structure at null infinity in even dimensions using the Bondi coordinate because
the finiteness has not been shown in even dimensions. They are left for future works.
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APPENDIX: ANGULAR MOMENTUM AT NULL INFINITY IN FOUR DIMENSIONS

In this Appendix, we discuss the angular momentum at null infinity in four dimensions using
the Bondi coordinates. This will be useful for the comparison with five-dimensional cases. We
could not find old studies on angular momentum based on the Bondi coordinate. Here we will
show that the angular momentum has always supertranslational ambiguities, which is represented
by supermomentum.

1. Bondi coordinate and Einstein equations in four dimensions

In this section, we introduce the Bondi coordinates and solve the Einstein equations in four
dimensions.5, 6 In the Bondi coordinates (u, r, θ, φ) the metric can be written as

ds2 = − V eB

r
du2 − 2eBdudr + r2h AB(dx A + U Adu)(dx B + U Bdu), (A1)

where

h AB =
(

eC sin θ sinh D

sin θ sinh D eE sin2 θ

)
. (A2)
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There is a gauge condition such that det h AB = sin2 θ , and then eE can be written by C and D as

eE = e−C (1 + sinh2 D). (A3)

As in five dimensions, the functions C and D represent the degree of freedom of gravitational field.
Given the function C and D on u = const. hypersurfaces, the other metric functions B, U A, and
V are determined by the Einstein equations. To solve the Einstein equations near null infinity, we
expand the function C and D as

C(u, r, x A) = C1(u, x A)

r
+ C2(u, x A)

r2
+ O(r−3), (A4)

D(u, r, x A) = D1(u, x A)

r
+ D2(u, x A)

r2
+ O(r−3). (A5)

Then, using the Einstein equations Rab = 0, the metric functions V , B, and U A can be written by C
and D. From Rrr = 0,

B(u, r, x A) = B1(u, x A)

r2
+ O(r−3), (A6)

B1(u, x A) = −1

8
(C2

1 + D2
1). (A7)

From Rr A = 0,

U A(u, x A) = U A
1 (u, x A)

r2
+ U A

2 (u, x A)

r3
+ O(r−4), (A8)

U θ
1 = 1

2 sin2 θ

(
∂

∂θ
(sin2 θC1) + ∂

∂φ
(sin θ D1)

)
, (A9)

sin2 θUφ

1 = 1

2

(
1

sin θ

∂

∂θ
(sin2 θ D1) − ∂

∂φ
C1

)
. (A10)

From h AB RAB = 0,

V

r
= 1 − m(u, x A)

r
+ O(r−2). (A11)

Since the functions U A
2 (u, x A) and m(u, x A) are the integration constants in the r -integration, they

are free functions of (u, x A).

2. Bondi mass and angular momentum

Now, guu is expanded as

guu = − 1 + m(u, x A)

r
+ O(r−2), (A12)

and then we define the Bondi mass MBondi and the Bondi momentum Pi
Bondi in four dimensions as26

MBondi(u) = 1

8π

∫
S2

m(u, x A)d�, (A13)

Pi
Bondi(u) = 1

8π

∫
S2

m(u, x A)x̂ i d�, (A14)

where d� = sin θdθdφ and x̂ i = (x̂, ŷ, ẑ) = (sin θ cos φ, sin θ sin φ, cos θ ).
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From the Einstein equation Ruu = 0, we can obtain the Bondi mass loss law by gravitational
waves as

d

du
MBondi(u) = − 1

16π

∫
S2

[(
∂C1

∂u

)2

+
(

∂ D1

∂u

)2

− 1

sin θ

∂

∂θ

(
sin θ

∂U θ
1

∂u

)
− ∂2

∂φ∂u
Uφ

1

]
d�.

< 0. (A15)

Thus, the Bondi mass in four dimensions is always decreased by gravitational waves.
guφ are expanded as

guφ = sin2 θUφ

1 + sin θ D1U θ
1 − sin2 θC1Uφ

1 + sin2 θUφ

2

r
+ O(r−2), (A16)

and then we define the Bondi angular momentum in four dimensions as

JBondi(u) = − 3

16π

∫
S2

(sin θ D1U θ
1 − sin2 θC1Uφ

1 + sin2 θUφ

2 )d�. (A17)

From the Einstein equation Ruφ = 0, we can see that the evolution equation for the Bondi angular
momentum becomes

d

du
JBondi = − 3

16π

∫
S2

[(
∂ j

∂u

)
radiation

+
(

∂ j

∂u

)
total derivative

]
d�, (A18)

where (∂ j/∂u)radiation is the radiation part given by(
∂ j

∂u

)
radiation

=− 1

6 sin θ

∂C1

∂u

∂

∂θ
(sin2 θ D1)+ 1

6 sin θ

∂ D1

∂u

∂

∂θ
(sin2 θC1) − 1

3

∂ D1

∂u

∂ D1

∂φ
− 1

3

∂C1

∂u

∂C1

∂φ

− sin θ

6

∂C1

∂u

∂ D1

∂θ
+ sin θ

6

∂ D1

∂u

∂C1

∂θ
, (A19)

and (∂ j/∂u)total derivative is total derivative given by(
∂ j

∂u

)
total derivative

= 1

3

∂

∂φ
m − cot θ

3

∂

∂φ
U θ

1 + 1

3

∂2

∂φ∂θ
U θ

1 + 2 sin2 θ

3
Uφ

1

− 1

3 sin θ

∂

∂θ

(
sin3 θ

∂

∂θ
Uφ

1

)
− 1

3

∂2

∂u∂φ
C2

+ 1

3 sin θ

∂

∂θ

(
sin2 θ

∂ D2

∂u

)
− 1

3

∂2

∂u∂φ
B1

+1

2

∂

∂φ

(
D1

∂

∂u
D1

)
+ 1

6

∂

∂φ

(
C1

∂

∂u
C1

)

− 1

2 sin θ

∂

∂θ

(
sin2 θC1

∂

∂u
D1

)
+ 1

2 sin θ

∂

∂θ

(
sin2 θ D1

∂

∂u
C1

)
. (A20)

Thus, (∂ j/∂u)total derivative has no contribution to the angular momentum loss by gravitational waves.

3. Asymptotic symmetry and supermomentum

Asymptotic symmetry is transformation group which satisfy the conditions given by

δgrr = 0 , δgr A = 0 , g ABδgAB = 0, (A21)

δguu = O(r−1) , δgu A = O(1) , δgAB = O(r ), (A22)

where δgab = ∇aξb + ∇bξa is the infinitesimal transformation by ξ . These are required to keep the
asymptotic behavior of the metric to be unchanged.
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From the conditions (A21), which come from the definition of the Bondi coordinate, we can
check that the components of ξ a should have the following form:

ξr = f (u, x A)eB, (A23)

ξB g AB = f A(u, x A) − f (u, x A)U A +
∫ ∞

r
dr ′eB ∂ f

∂x B
g AB, (A24)

ξu = −reB

2

(
− ∂ξA

∂x B
+ ξC
C

AB + ξr

r
AB

)
g AB . (A25)

From the conditions (A22), which are required from the behavior of the gravitational fields near null
infinity, f A should satisfy

∂

∂u
f A = 0, (A26)

DA fB + DB f A = −2
∂ f

∂u
h(0)

AB, (A27)

where DA is the covariant derivative with h(0)
AB given by

h(0)
AB =

(
1 0

0 sin2 θ

)
. (A28)

f A generate the conformal transformation group on S2 and such group is isomorphic to the Lorentz
group in four dimensions. Then f A stands for the generator of the Lorentz transformations. Con-
trasted with in five dimensions, there are no further conditions on f in four dimensions. Thus
Eq. (A27) tells us that f can be written as f = −(u/2)D A f A + α(x A). α(x A) is arbitrary function
on S2 which is called supertranslations.

Now, we consider the transformation of the Bondi mass MBondi by supertranslations f = α(x A).
MBondi is transformed as

MBondi → MBondi + 1

8π

∫
S2

[
− f

∂m

∂u
− ∂ f

∂θ

∂U θ
1

∂u
− ∂ f

∂φ

∂Uφ

1

∂u

]

= MBondi + 1

16π

∫
S2

f

[(
∂C1

∂u

)2

+
(

∂ D1

∂u

)2
]

. (A29)

This is the Poincare transformation under the presence of gravitational waves. In four dimensions we
cannot show the Poincare covariance of the Bondi momentum because ∂U A

1 /∂u 	= 0 in the presence
of gravitational waves. This means that the Bondi momentum has supertranslational ambiguities in
four dimensions.

Next, we consider the transformations of the Bondi angular momentum by supertranslations.
Angular momentum JBondi is transformed as

JBondi → JBondi − 3

16π

∫
S2

[
− f

∂

∂u
(sin θ D1U θ

1 − sin2 θC1Uφ

1 + sin2 θUφ

2 )

−m
∂ f

∂φ
+ 1

2
U θ

1
∂2

∂θ∂φ
f − 1

2

∂ f

∂θ

∂

∂φ
U θ

1

+1

2

∂ f

∂φ

∂

∂φ
Uφ

1 + sin2 θ
∂ f

∂θ

∂

∂θ
Uφ

1 + 1

2
Uφ

1

∂2 f

∂φ2
+ 2 sin θ cos θUφ

1

∂ f

∂θ
+ 1

3

∂C2

∂u

∂ f

∂φ

−1

3
sin θ

∂ D2

∂u

∂ f

∂θ
+ 1

3

∂ B1

∂u

∂ f

∂φ
− 1

2

∂ f

∂φ
D1

∂ D1

∂u
− 1

6

∂ f

∂φ
C1

∂C1

∂u
+ 1

2
sin θ

∂ f

∂θ
C1

∂ D1

∂u
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−1

2
sin θ

∂ f

∂θ
D1

∂C1

∂u
+ (total derivative term)

]
d�

= JBondi − 3

16π

∫
S2

[
− f

(
∂ j

∂u

)
radiation

+ (supermomentum)

]
d� + 1

8π

∫
S2

m
∂ f

∂φ
d�,

(A30)

where supermomentum term is

(supermomentum) = 2

3
f

(
2 cot θ

∂

∂φ
U θ

1 + ∂2

∂θ∂φ
U θ

1

)

−2

3
f

(
6 cos2 θUφ

1 − 2 sin2 θUφ

1 + 6 sin θ cos θ
∂

∂θ
Uφ

1 + sin2 θ
∂2

∂θ2
Uφ

1

)
.

(A31)

If we take f as l = 1 mode of scalar harmonics on S2, the supermomentum terms become total
derivative form, and then we can obtain the Poincare covariance of the angular momentum Mx̂ ŷ →
Mx̂ ŷ + 2P[x̂ωŷ] − f (d j/du)radiation. However, for l > 1 mode, the supermomentum terms do not
become total derivative form. This means that we cannot obtain the Poincare covariance of angular
momentum. Under the presence of gravitational waves, we cannot restrict f to l = 1 mode. In
general, therefore, the angular momentum has supertranslational ambiguity in four dimensions.
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