A Hardy type inequality and application to the stability of degenerate stationary waves (Mathematical Analysis in Fluid and Gas Dynamics)

Author(s)
Kawashima, Shuichi; Kurata, Kazuhiro

Citation
数理解析研究所講究録 (2009), 1631: 34-46

Issue Date
2009-02

URL
http://hdl.handle.net/2433/140413

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
A Hardy type inequality
and application to the stability
of degenerate stationary waves

Shuichi Kawashima
Faculty of Mathematics, Kyushu University
Fukuoka 812-8581, Japan

Kazuhiro Kurata
Department of Mathematics and Information Sciences
Tokyo Metropolitan University
Hachioji, Tokyo 192-03, Japan

1 Introduction

This note is a survey of our joint paper [2] on the stability problem of degenerate stationary waves for viscous conservation laws in the half space $x > 0$:

\begin{align}
 u_t + f(u)_x &= u_{xx}, \\
 u(0, t) &= -1, \quad u(x, 0) = u_0(x).
\end{align} \tag{1.1}

Here $u_0(x) \to 0$ as $x \to \infty$, and $f(u)$ is a smooth function satisfying

\begin{equation}
 f(u) = \frac{1}{q}(-u)^{q+1}(1 + g(u)), \quad f''(u) > 0 \text{ for } -1 \leq u < 0,
\end{equation} \tag{1.2}

where q is a positive integer (degeneracy exponent) and $g(u) = O(|u|)$ for $u \to 0$. Notice that $1 + g(u) > 0$ for $-1 \leq u \leq 0$. It is known that the corresponding stationary problem

\begin{align}
 \phi_x &= f(\phi), \\
 \phi(0) &= -1, \quad \phi(x) \to 0 \text{ as } x \to \infty,
\end{align} \tag{1.3}
admits a unique solution $\phi(x)$ (called degenerate stationary wave) which verifies $\phi(x) \sim -(1 + x)^{-1/q}$. In particular, we have $\phi(x) = -(1 + x)^{-1/q}$ when $g(u) \equiv 0$.

To discuss the stability of the degenerate stationary wave $\phi(x)$, it is convenient to introduce the perturbation v by $u(x, t) = \phi(x) + v(x, t)$ and rewrite the problem (1.1) as

\begin{align*}
u_t + (f(\phi + v) - f(\phi))_x &= v_{xx}, \\
v(0, t) = 0, \quad v(x, 0) &= v_0(x), \tag{1.4}
\end{align*}

where $v_0(x) = u_0(x) - \phi(x)$, and $v_0(x) \to 0$ as $x \to \infty$. The stability of degenerate stationary waves has been studied recently in [14, 2]. The paper [14] proved the following stability result: If the initial perturbation $v_0(x)$ is in the weighted space L^2_α, then the perturbation $v(x, t)$ decays in L^2 at the rate $t^{-\alpha/4}$ as $t \to \infty$, provided that $\alpha < \alpha_*(q)$, where

$$\alpha_*(q) := (q + 1 + \sqrt{3q^2 + 4q + 1})/q.$$

The decay rate $t^{-\alpha/4}$ obtained in [14] would be optimal but the restriction $\alpha < \alpha_*(q)$ was not very sharp. This restriction has been relaxed to $\alpha < \alpha_c(q) := 3 + 2/q$ in our joint paper [2] by employing the space-time weighted energy method in [14] and by applying a Hardy type inequality with the best possible constant. Notice that $\alpha_*(q) < \alpha_c(q)$. This new stability result will be reviewed in this note.

It is interesting to note that a similar restriction on the weight is imposed also for the stability of degenerate shock profiles (see [9]). We remark that our stability result for degenerate stationary waves is completely different from those for non-degenerate case. In fact, for non-degenerate stationary waves, we have the better decay rate $t^{-\alpha/2}$ for the perturbation without any restriction on α. See [4, 5, 13, 15] for the details. See also [6, 8, 10] for the related stability results for stationary waves.

To check the validity of our restriction $\alpha < \alpha_c(q) := 3 + 2/q$, it is important to discuss the dissipativity of the following linearized operator associated with (1.4):

$$Lv = v_{xx} - (f'(\phi)v)_x.$$ \hspace{1cm} \tag{1.5}

In a simpler situation including the case $g(u) \equiv 0$ in (1.2), we showed in [2] that the operator L is uniformly dissipative in L^2_α for $\alpha < \alpha_c(q)$ but can not be dissipative for $\alpha > \alpha_c(q)$. This suggests that the exponent $\alpha_c(q)$ is the critical exponent of the stability problem of degenerate stationary waves. This result on the characterization of the dissipativity of L is an improvement on the previous one in [14] and has been established again by using a Hardy
type inequality with the best possible constant. This result will be also reviewed in this note.

Notations. For $1 \leq p \leq \infty$ and a nonnegative integer s, L^p and $W^{s,p}$ denote the usual Lebesgue space on $\mathbb{R}_+ = (0, \infty)$ and the corresponding Sobolev space, respectively. When $p = 2$, we write $H^s = W^{s,2}$. We introduce weighted spaces. Let $w = w(x) > 0$ be a weight function defined on $[0, \infty)$ such that $w \in C^0[0, \infty)$. Then, for $1 \leq p < \infty$, we denote by $L^p(w)$ the weighted L^p space on \mathbb{R}_+ equipped with the norm

$$\|u\|_{L_p(w)} := \left(\int_0^\infty |u(x)|^p w(x) \, dx \right)^{1/p}. \quad (1.6)$$

The corresponding weighted Sobolev space $W^{s,p}(w)$ is defined by $W^{s,p}(w) = \{u \in L^p(w); \partial_x^k u \in L^p(w) \text{ for } k \leq s \}$ with the norm $\| \cdot \|_{W^{s,p}(w)}$. Also, we denote by $W^{1,p}_0(w)$ the completion of $C^\infty_0(\mathbb{R}_+)$ with respect to the norm

$$\|u\|_{W^{1,p}_0(w)} := \|\partial_x u\|_{L_p(w)} = \left(\int_0^\infty |\partial_x u(x)|^p w(x) \, dx \right)^{1/p}. \quad (1.7)$$

When $p = 2$, we write $H^s(w) = W^{s,2}(w)$ and $H^1_0(w) = W^{1,2}_0(w)$. In the special case where $w = (1 + x)^\alpha$ with $\alpha \in \mathbb{R}$, these weighted spaces are abbreviated as $L^p_\alpha, W^{s,p}_\alpha, W^{1,p}_0, H^s_\alpha$ and $H^{1,0}_\alpha$, respectively.

2 Hardy type inequality

Our Hardy type inequality used in [2] is a simple modification of the original Hardy’s inequality introduced in [1, 7] (see also [12]).

Proposition 2.1. Let $\psi \in C^1[0, \infty)$ and assume either

1. $\psi > 0$, $\psi_x > 0$ and $\psi(x) \to \infty$ for $x \to \infty$; or
2. $\psi < 0$, $\psi_x > 0$ and $\psi(x) \to 0$ for $x \to \infty$.

Then we have

$$\int_0^\infty v^2 \psi_x \, dx \leq 4 \int_0^\infty v_x^2 \psi^2/\psi_x \, dx \quad (2.1)$$

for $v \in C^\infty_0(\mathbb{R}_+)$ and hence for $v \in H^1_0(w)$ with $w = \psi^2/\psi_x$. Here 4 is the best possible constant, and there is no function $v \in H^1_0(w)$, $v \neq 0$, which attains the equality in (2.1).

Proof. The proof is quite simple. Let $v \in C^\infty_0(\mathbb{R}_+)$. A simple calculation gives

$$v^2 \psi_x = v^2 \psi_x + 2uv \psi = \frac{1}{2}v^2 \psi_x + \frac{1}{2}(v + 2v \psi/\psi_x)^2 \psi_x - 2v_x^2 \psi^2/\psi_x. \quad (2.2)$$
Integrating (2.2) in \(x \), we obtain
\[
\int_{0}^{\infty} v^{2} \psi_{x} \, dx + \int_{0}^{\infty} (v + 2v_{x}\psi/\psi_{x})^{2} \, dx = 4 \int_{0}^{\infty} v_{x}^{2} \psi^{2} / \psi_{x} \, dx, \tag{2.3}
\]
which gives the desired inequality (2.1). It follows from (2.3) that the equality in (2.1) holds if and only if \(v + 2v_{x}\psi/\psi_{x} \equiv 0 \). But we find that such a \(v \) in \(H_{0}^{1}(w) \) must be \(v \equiv 0 \).

We show the best possibility of the constant 4 in (2.1). We consider the case (1). Let us fix \(a > 0 \). Let \(\epsilon > 0 \) be a small parameter and put
\[
v^{\epsilon}(x) = \begin{cases}
0, & 0 \leq x < a, \\
(x - a)\psi(x)^{-1/2-\epsilon}, & a < x < a + 1, \\
\psi(x)^{-1/2-\epsilon}, & a + 1 < x.
\end{cases} \tag{2.4}
\]
Then we have after straightforward computations that
\[
\frac{\int_{0}^{\infty}(v^{\epsilon}_{x})^{2} \psi^{2} / \psi_{x} \, dx}{\int_{0}^{\infty}(v^{\epsilon})^{2} \psi_{x} \, dx} = \frac{O(1) + (1/2 + \epsilon)^{2} \frac{1}{2\epsilon} \psi(a + 1)^{-2\epsilon}}{O(1) + \frac{1}{2\epsilon} \psi(a + 1)^{-2\epsilon}} \rightarrow \frac{1}{4}
\]
for \(\epsilon \to 0 \). This shows that 4 in (2.1) is the best possible constant. The case (2) can be treated similarly if we take a test function \(v^{\epsilon}(x) \) as
\[
v^{\epsilon}(x) = \begin{cases}
0, & 0 \leq x < a, \\
(x - a)(-\psi(x))^{-1/2-\epsilon}, & a < x < a + 1, \\
(-\psi(x))^{-1/2-\epsilon}, & a + 1 < x,
\end{cases}
\]
but we omit the details. This completes the proof of Proposition 2.1. \(\square \)

The \(L^{p} \) version of Proposition 2.1 is given as follows.

Proposition 2.2. Let \(\psi \) be the same as in Proposition 2.1. Let \(1 < p < \infty \). Then we have
\[
\int_{0}^{\infty} |v|^{p} \psi_{x} \, dx \leq p^{p} \int_{0}^{\infty} |v_{x}|^{p} |\psi|^{p} / \psi_{x}^{p-1} \, dx \tag{2.5}
\]
for \(v \in C_{0}^{\infty}(\mathbb{R}_{+}) \) and hence for \(v \in W_{0}^{1,p}(w) \) with \(w = |\psi|^{p} / \psi_{x}^{p-1} \). Here \(p^{p} \) is the best possible constant, and there is no function \(v \in W_{0}^{1,p}(w) \), \(v \neq 0 \), which attains the equality in (2.5).
Proof. We only prove the inequality (2.5) and omit the other discussions. Let $1 < p < \infty$ and $v \in C_0^\infty(\mathbb{R}_+)$. A simple calculation gives

$$
(|v|^p \psi)_x = |v|^p \psi_x + p|v|^{p-2}vv_x \psi = \frac{1}{p}(|v|^p \psi_x - p^p |v_x|^p |\psi|^p/\psi_x^{p-1}) + R,
$$

(2.6)

where

$$
R = (1 - \frac{1}{p})|v|^p \psi_x + \frac{1}{p}p^p |v_x|^p |\psi|^{p-1} + p|v|^{p-2}vv_x \psi.
$$

Integrating (2.6) in x, we obtain

$$
\int_0^\infty |v|^p \psi_x \, dx + p \int_0^\infty R \, dx = p^p \int_0^\infty |v_x|^p |\psi|^p/\psi_x^{p-1} \, dx.
$$

(2.7)

By applying the Young inequality $AB \leq (1 - 1/p)A^{p/(p-1)} + (1/p)B^p$ for $A = |v|^{p-1} \psi_x^{(p-1)/p}$ and $B = p|v_x| |\psi|^{(p-1)/p}$, we find that $R \geq 0$, which together with (2.7) gives the desired inequality (2.5). \square

The following variant of Proposition 2.1 is useful in our application.

Proposition 2.3. Let $\phi \in C^1[0, \infty)$, $\phi < 0$, $\phi_x > 0$, and $\phi(x) \to 0$ for $x \to \infty$. Let $\sigma \in \mathbb{R}$ with $\sigma \neq 0$, and define the weight functions w and w_1 by

$$
w = (-\phi)^{-\sigma+1}/\phi_x, \quad w_1 = (-\phi)^{-\sigma-1}\phi_x.
$$

(2.8)

Then we have

$$
\int_0^\infty v^2 w_1 \, dx \leq \frac{4}{\sigma^2} \int_0^\infty v_x^2 w \, dx
$$

(2.9)

for $v \in H_0^1(w)$. Here $4/\sigma^2$ is the best possible constant, and there is no function $v \in H_0^1(w), \, v \neq 0$, which attains the equality in (2.9).

Proof. We put $\psi = (-\phi)^{-\sigma}$ for $\sigma > 0$ and $\psi = -(-\phi)^{-\sigma}$ for $\sigma < 0$, and apply Proposition 2.1. This gives the desired conclusion. \square

As a simple corollary of Proposition 2.3, we have:

Corollary 2.4. Let $\alpha \in \mathbb{R}$ with $\alpha \neq 1$. Then we have

$$
\|v\|_{L^2_{\alpha-2}} \leq \frac{2}{|\alpha - 1|} \|v_x\|_{L^2_{\alpha}}
$$

(2.10)

for $v \in H^1_{\alpha,0}$. Here the constant $2/|\alpha - 1|$ is the best possible, and there is no function $v \in H^1_{\alpha,0}, \, v \neq 0$, which attains the equality in (2.10).

Proof. Let $\phi = -(1 + x)^{-1/q}$ with $q > 0$. We apply Proposition 2.3 for this ϕ and $\sigma = (\alpha - 1)q$. This gives the proof. \square
3 Dissipativity of the linearized operator

Following [2], we discuss the dissipativity of the operator L defined by (1.5) in the weighted space $L^2(w)$, where w is given by (2.8) with ϕ being the the degenerate stationary wave. Note that our degenerate stationary wave ϕ is a smooth solution of (1.3) and verifies

$$-1 \leq \phi(x) < 0, \quad \phi_x(x) > 0, \quad \phi(x) \to 0 \text{ for } x \to \infty, \quad (3.1)$$

$$c(1 + x)^{-1/q} \leq -\phi(x) \leq C(1 + x)^{-1/q}. \quad (3.2)$$

Now, letting $w > 0$ be a smooth weight function depending only on x, we calculate the inner product $\langle Lv, v \rangle_{L^2(w)}$ for $v \in C_0^\infty(\mathbb{R}_+)$, where

$$\langle u, v \rangle_{L^2(w)} := \int_0^\infty uvw \, dx. \quad (3.3)$$

We multiply (1.5) by v. Then a simple computation gives

$$(Lv)v = (vv_x - \frac{1}{2}f'(\phi)v^2)_x - v_x^2 - \frac{1}{2}f''(\phi)\phi_xv^2.$$

Multiplying this equality by w, we obtain

$$(Lv)vw = \{ (vv_x - \frac{1}{2}f'(\phi)v^2)_x \, w - \frac{1}{2}v^2w_x \}_{x}$$

$$- v_x^2w + \frac{1}{2}v^2(w_{xx} + w_xf'(\phi) - wf''(\phi)\phi_x). \quad (3.4)$$

Now we choose the weight function w and the corresponding w_1 in terms of our degenerate stationary wave ϕ by (2.8), where $\sigma \in \mathbb{R}$. Then we have $w = (-\phi)^{-\sigma+1}/f(\phi)$ and $w_1 = (-\phi)^{-\sigma-1}f(\phi)$ by $\phi_x = f(\phi)$. After straightforward computations, we find that

$$w_{xx} + w_xf'(\phi) - wf''(\phi)\phi_x = 2(c_1(\sigma) - r(\phi))w_1, \quad (3.5)$$

where

$$c_1(\sigma) := \sigma(\sigma - 1)/2 - q(q + 1),$$

$$r(u) := (-u)^2f''(u)/f(u) - q(q + 1). \quad (3.6)$$

Substituting (3.5) into (3.4) and integrating with respect to x, we get the following conclusion.
Claim 3.1. Let ϕ be the degenerate stationary wave and define the weight functions w and w_1 by (2.8) with $\sigma \in \mathbb{R}$. Then the operator L defined in (1.5) verifies

$$
\langle Lv, v \rangle_{L^2(w)} = -\|v_x\|^2_{L^2(w)} + c_1(\sigma)\|v\|^2_{L^2(w_1)} - \int_0^\infty v^2 r(\phi) w_1 \, dx \tag{3.7}
$$

for $v \in \mathcal{C}_0^\infty(\mathbb{R}_+)$ and hence for $v \in H_0^1(w)$, where $c_1(\sigma)$ and $r(\phi)$ are given in (3.6).

The term $r(\phi)$ in (3.7) can be regarded as a small perturbation. In fact, a straightforward computation gives

$$
r(u) = (-u)((-u)g''(u) - 2(q+1)g'(u))/(1 + g(u)) \tag{3.8}
$$

which shows that $r(u) = O(|u|)$ for $u \to 0$. In particular, we have $r(u) \equiv 0$ if $g(u) \equiv 0$. With these preparations, we have the following result on the characterization of the dissipativity of L.

Theorem 3.2. Assume (1.2). Let ϕ be the degenerate stationary wave and L be the operator defined in (1.5). Let w and w_1 be the weight functions in (2.8) with the parameter $\sigma \in \mathbb{R}$. Then we have:

1. Let $-2q < \sigma < 2(q+1)$. Then, under the additional assumption that $r(u) \geq 0$ for $-1 \leq u \leq 0$, the operator L is uniformly dissipative in $L^2(w)$. Namely, there is a positive constant δ such that

$$
\langle Lv, v \rangle_{L^2(w)} \leq -\delta(\|v_x\|^2_{L^2(w)} + \|v\|^2_{L^2(w_1)}) \quad \text{for } v \in H_0^1(w). \tag{3.9}
$$

2. Let $\sigma > 2(q+1)$ or $\sigma < -2q$. Then the operator L can not be dissipative in $L^2(w)$. Namely, we have $\langle Lv, v \rangle_{L^2(w)} > 0$ for some $v \in H_0^1(w)$ with $v \neq 0$.

Proof. The proof is based on the equality (3.7) in Claim 3.1 and the Hardy type inequality (2.9) in Proposition 2.3.

Let $-2q < \sigma < 2(q+1)$. This is equivalent to $c_1(\sigma) < \sigma^2/4$. Therefore we can choose $\delta > 0$ so small that $\delta(1 + \sigma^2/4) \leq \sigma^2/4 - c_1(\sigma)$. Since $r(\phi) \geq 0$ by the additional assumption on $r(u)$ and since $(\sigma^2/4)\|v\|^2_{L^2(w_1)} \leq \|v_x\|^2_{L^2(w)}$ by the Hardy type inequality (2.9), we have from (3.7) that

$$
\langle Lv, v \rangle_{L^2(w)} \leq -\|v_x\|^2_{L^2(w)} + c_1(\sigma)\|v\|^2_{L^2(w_1)}
= -\delta\|v_x\|^2_{L^2(w)} - (1 - \delta)\|v_x\|^2_{L^2(w)} + c_1(\sigma)\|v\|^2_{L^2(w_1)}
\leq -\delta\|v_x\|^2_{L^2(w)} - \{(1 - \delta)\sigma^2/4 - c_1(\sigma)\}\|v\|^2_{L^2(w_1)}
\leq -\delta(\|v_x\|^2_{L^2(w)} + \|v\|^2_{L^2(w_1)}) \tag{3.10}
$$
for \(v \in C_{0}^{\infty}(\mathbb{R}_{+}) \) and hence for \(v \in H_{0}^{1}(w) \), where we have used the fact that
\((1 - \delta)\sigma^{2}/4 - c_{1}(\sigma) \geq \delta \). This completes the proof of the uniform dissipative case \((1)\).

Next we consider the case where \(\sigma > 2(q + 1) \); the case \(\sigma < -2q \) can be treated similarly and we omit the argument in this latter case. When \(\sigma > 2(q + 1) \), we have \(c_{1}(\sigma) > \sigma^{2}/4 \). Then we choose \(\delta > 0 \) so small that \(c_{1}(\sigma) \geq \sigma^{2}/4 + 3\delta \). Since \(r(u) = O(|u|) \) for \(u \to 0 \) and \(\phi(x) \to 0 \) for \(x \to \infty \), we take \(a = a(\delta) > 0 \) so large that \(|r(\phi)| \leq \delta \) for \(x \geq a \). For this choice of \(a \) and for \(\epsilon > 0 \), we take a test function \(v^{\epsilon} \) as in \((2.4)\):

\[
 v^{\epsilon}(x) = \begin{cases}
 0, & 0 \leq x < a, \\
 (x - a)(-\phi(x))^{(1/2+\epsilon)}, & a < x < a + 1, \\
 (-\phi(x))^{(1/2+\epsilon)}, & a + 1 < x.
\end{cases} \tag{3.11}
\]

Then we have

\[
 \left| \int_{0}^{\infty} (v^{\epsilon})^{2} r(\phi) w_{1} \, dx \right| \leq \delta \int_{a}^{\infty} (v^{\epsilon})^{2} w_{1} \, dx = \delta \| v^{\epsilon} \|_{L^{2}(w_{1})}^{2},
\]

so that we have from \((3.7)\) that

\[
 \langle Lv^{\epsilon}, v^{\epsilon} \rangle_{L^{2}(w)} \geq -\| v_{x}^{\epsilon} \|_{L^{2}(w)}^{2} + (c_{1}(\sigma) - \delta) \| v^{\epsilon} \|_{L^{2}(w_{1})}^{2}. \tag{3.12}
\]

Also, by straightforward computations, we find that

\[
 \frac{\| v_{x}^{\epsilon} \|_{L^{2}(w)}^{2}}{\| v^{\epsilon} \|_{L^{2}(w_{1})}^{2}} = \frac{O(1) + \sigma^{2}(1/2 + \epsilon)^{2} \frac{1}{2\epsilon} (-\phi(a + 1))^{2\epsilon}}{O(1) + \frac{1}{2\epsilon} (-\phi(a + 1))^{2\epsilon}} \to \frac{\sigma^{2}}{4}
\]

for \(\epsilon \to 0 \). Thus we have \(\| v_{x}^{\epsilon} \|_{L^{2}(w)}^{2}/\| v^{\epsilon} \|_{L^{2}(w_{1})}^{2} \leq \sigma^{2}/4 + \delta \) for a suitably small \(\epsilon = \epsilon(\delta) > 0 \). Consequently, we have from \((3.12)\) that

\[
 \frac{\langle Lv^{\epsilon}, v^{\epsilon} \rangle_{L^{2}(w)}}{\| v^{\epsilon} \|_{L^{2}(w_{1})}^{2}} \geq \frac{\| v_{x}^{\epsilon} \|_{L^{2}(w)}^{2}}{\| v^{\epsilon} \|_{L^{2}(w_{1})}^{2}} + c_{1}(\sigma) - \delta \geq -\left(\frac{\sigma^{2}}{4} + \delta \right) + c_{1}(\sigma) - \delta \geq \delta.
\]

This completes the proof of the non-dissipative case \((2)\). Thus the proof of Theorem 3.2 is complete. \(\square \)
In the special case where $g(u) \equiv 0$ so that $f(u) = \frac{1}{q}(-u)^{q+1}$, we have $\phi = -(1 + x)^{-1/q}$ and the operator L in (1.5) is reduced to

$$L_0v = v_{xx} + \frac{q + 1}{q} \left(\frac{v}{1 + x} \right)_x.$$ \hspace{1cm} (3.13)

In this simplest case, we have the complete characterization of the dissipativity of the operator L_0.

Theorem 3.3. Let $\alpha_c(q) := 3 + 2/q$. Then we have the complete characterization of the dissipativity of the operator L_0 given in (3.13):

1. Let $-1 < \alpha < \alpha_c(q)$. Then L_0 is uniformly dissipative in L^2_α. Namely, there is a positive constant δ such that
 $$\langle L_0v, v \rangle_{L^2_{\alpha}} \leq -\delta(\|v_x\|_{L^2_{\alpha}}^2 + \|v\|_{L^2_{\alpha-2}}^2)$$ for $v \in H^1_{\alpha,0}$. \hspace{1cm} (3.14)

2. Let $\alpha = \alpha_c(q)$ or $\alpha = -1$. Then L_0 is strictly dissipative in L^2_α. Namely, we have $\langle L_0v, v \rangle_{L^2_{\alpha}} < 0$ for $v \in H^1_{\alpha,0}$ with $v \neq 0$.

3. Let $\alpha > \alpha_c(q)$ or $\alpha < -1$. Then L_0 cannot be dissipative in L^2_α. Namely, we have $\langle L_0v, v \rangle_{L^2_{\alpha}} > 0$ for some $v \in H^1_{\alpha,0}$ with $v \neq 0$.

Proof. In this case, we have $\phi = -(1 + x)^{-1/q}$, $L = L_0$ and $r(u) \equiv 0$. Therefore, (3.7) is reduced to

$$\langle L_0v, v \rangle_{L^2_{\alpha}(w)} = -\|v_x\|_{L^2_{\alpha}(w)}^2 + c_1(\sigma)\|v\|_{L^2_{\alpha}(w_1)}^2,$$ \hspace{1cm} (3.15)

where w and w_1 are the weight functions defined in (2.8) with $\phi = -(1 + x)^{-1/q}$ and $\sigma = (\alpha - 1)q$. The desired conclusions easily follow from (3.15) by applying the same argument as in Theorem 3.2. We omit the details. \hspace{1cm} \square

\section{Nonlinear stability}

The following stability result for the nonlinear problem (1.4) was obtained in [2] as a refinement of the result in [14].

Theorem 4.1. Assume (1.2). Suppose that $v_0 \in L^2_\alpha \cap L^\infty$ for some α with $1 \leq \alpha < \alpha_c(q) := 3 + q/2$. Then there is a positive constant δ_1 such that if $\|v_0\|_{L^2_\alpha} \leq \delta_1$, then the problem (1.4) has a unique global solution $v \in C^0([0, \infty); L^2_\alpha \cap L^p)$ for each p with $2 \leq p < \infty$. Moreover, the solution verifies the decay estimate

$$\|v(t)\|_{L^p} \leq C(\|v_0\|_{L^2_\alpha} + \|v_0\|_{L^\infty})(1 + t)^{-\alpha/4 - \nu}$$ \hspace{1cm} (4.1)

for $t \geq 0$, where $2 \leq p < \infty$, $\nu = (1/2)(1/2 - 1/p)$, and C is a positive constant.
Proof. A key to the proof of this theorem is to show the following space-time weighted energy inequality:

\[
(1 + t)^\gamma \|v(t)\|_{L_\beta}^2 + \int_0^t (1 + \tau)^\gamma (\|v_x(\tau)\|_{L_\beta}^2 + \|v(\tau)\|_{L_{\beta-2}}^2) d\tau \leq C\|v_0\|_{L_\beta}^2 + \gamma C \int_0^t (1 + \tau)^{\gamma-1} \|v(\tau)\|_{L_\beta}^2 d\tau + CS_\beta^\gamma(t) \tag{4.2}
\]

for any \(\gamma \geq 0\) and \(\beta\) with \(0 \leq \beta \leq \alpha\), where \(1 \leq \alpha < \alpha_c(q) := 3 + 2/q\), \(C\) is a constant independent of \(\gamma\) and \(\beta\), and

\[
S_\beta^\gamma(t) = \int_0^t (1 + \tau)^\gamma \|v(\tau)\|_{L_{\beta-1}}^3 d\tau. \tag{4.3}
\]

Here we give an outline of the proof of (4.2) and omit the other discussions. We refer to [2, 14] for the complete proof of Theorem 4.1.

Proof of (4.2) for \(\beta = 0\). The proof is based on the time weighted \(L^2\) energy method. First we note that

\[
\|v(t)\|_{L^\infty} \leq M_\infty, \tag{4.4}
\]

where \(M_\infty = \|v_0\|_{L^\infty} + 2\). This is an easy consequence of the maximum principle (see [5] for the details). Now we multiply the equation (1.4) by \(v\). This yields

\[
\left(\frac{1}{2}v^2\right)_t + (F - vv_x)_x + v_x^2 + G = 0, \tag{4.5}
\]

where

\[
F = \left(f(\phi + v) - f(\phi)\right)v - \int_0^v (f(\phi + \eta) - f(\phi))d\eta,
\]

\[
G = \int_0^v (f'(\phi + \eta) - f'(\phi))d\eta \cdot \phi_x.
\]

We note that

\[
F = \frac{1}{2}f'(\phi)v^2 + O(|v|^3), \quad G = \frac{1}{2}f''(\phi)\phi_xv^2 + \phi_xO(|v|^3) \tag{4.7}
\]

for \(v \to 0\). Here, a careful computation, using (3.2) and (4.4), shows that

\[
G \geq c(1 + x)^{-2}v^2 - C(1 + x)^{-1-1/q}|v|^3 \tag{4.8}
\]

for any \(x \in \mathbb{R}_+\). We integrate (4.5) over \(\mathbb{R}_+\) and substitute (4.8) into the resulting equality, obtaining

\[
\frac{1}{2} \frac{d}{dt} \|v\|_{L_2}^2 + \|v_x\|_{L_2}^2 + c\|v\|_{L_{\beta-2}}^2 \leq C\|v\|_{L_{\beta-1}}^3.
\]
We multiply this inequality by $(1 + t)\gamma$ and integrate with respect t. This yields the desired inequality (4.2) for $\beta = 0$.

Proof of (4.2) for $\beta > 0$. We apply the space-time weighted energy method employed in [14, 2] (see also [3]). Let $w > 0$ be a smooth weight function depending only on x, which will be specified later. We multiply (4.5) by w, obtaining

$$\left(\frac{1}{2}v^2w\right)_t + \left\{(F - \mu vv_x)w + \frac{1}{2}v^2w_x\right\}_x + v_x^2w - \left(\frac{1}{2}v^2w_{xx} + Fw_x - Gw\right) = 0. \quad (4.9)$$

Here, using (4.7), we have

$$\frac{1}{2}v^2w_{xx} + Fw_x - Gw = \frac{1}{2}v^2(w_{xx} + w_x f'(\phi) - wf''(\phi)\phi_x) + R, \quad (4.10)$$

where $R = w_x O(|v|^3) - w\phi_x O(|v|^3)$ for $v \to 0$. Notice that the coefficient $w_{xx} + w_x f'(\phi) - wf''(\phi)\phi_x$ in (4.10) is just the same as that appeared in (3.4).

Now we choose the weight function w and the corresponding w_1 by (2.8) with $\sigma = (\beta - 1)q$, where $0 \leq \beta \leq \alpha$ and $1 \leq \alpha < \alpha_c(q) := 3 + 2/q$. Then we have (3.5) with $\sigma = (\beta - 1)q$. Substituting these expressions into (4.9) and integrating over \mathbb{R}_+, we obtain

$$\frac{1}{2} \frac{d}{dt} \|v\|_{L^2(w)}^2 + \|v_x\|_{L^2(w)}^2 - c_1(\sigma)\|v\|_{L^2(w_1)}^2 + \int_{0}^{\infty}v^2r(\phi)w_1 dx = \int_{0}^{\infty}R dx, \quad (4.11)$$

where $c_1(\sigma)$ and $r(\phi)$ are given in (3.6) with $\sigma = (\beta - 1)q$. Here our weight functions verify

$$w \sim (1 + x)^\beta, \quad w_1 \sim (1 + x)^{\beta-2}, \quad (4.12)$$

where the symbol \sim means the equivalence. This implies that the norms $\|\cdot\|_{L^2(w)}$ and $\|\cdot\|_{L^2(w_1)}$ are equivalent to $\|\cdot\|_{L_\beta^2}$ and $\|\cdot\|_{L_{\beta-2}^2}$, respectively.

We estimate (4.11) similarly as in (1) of Theorem 3.2. To this end, we note that $\sigma_1 \leq \sigma \leq \sigma_2$, where $\sigma_1 = -q$ and $\sigma_2 = (\alpha - 1)q$. Since $c_1(\sigma) < \sigma^2/4$ for $-2q < \sigma < 2(q + 1)$ and since $-2q < \sigma_1 < \sigma_2 < 2(q + 1)$, we can choose $\delta > 0$ so small that

$$\delta \leq \min_{\sigma_1 \leq \sigma \leq \sigma_2} \frac{\sigma^2/4 - c_1(\sigma)}{2 + \sigma^2/4}.$$

Notice that this δ is independent of β. For this choice of δ, we take $a = a(\delta) > 0$ so large that $|r(\phi)| \leq \delta$ for $x \geq a$. Then we have

$$\left|\int_{0}^{\infty}v^2r(\phi)w_1 dx\right| \leq \delta\|v\|_{L^2(w_1)}^2 + C\|v\|_{L_{\beta-2}^2}^2.$$
where \(C \) is a constant satisfying \(C \geq (1 + x)^2 |r(\phi)| w_1 \) for \(0 \leq x \leq a \). Also, using the Hardy type inequality \((\sigma^2/4) \| v \|_{L^2(w_1)}^2 \leq \| v_x \|_{L^2(w)}^2\) in (2.9) and estimating similarly as in (3.10), we have
\[
\| v_x \|_{L^2(w)}^2 - c_1(\sigma) \| v \|_{L^2(w_1)}^2 \geq \delta \| v_x \|_{L^2(w)}^2 + 2\delta \| v \|_{L^2(w_1)}^2,
\]
where we have used the fact that \((1 - \delta)\sigma^2/4 - c_1(\sigma) \geq 2\delta\). On the other hand, using (4.4), we see that \(| R | \leq C (| w_x | + w\phi_x) | v |^3\). Moreover, a straightforward computation shows that \(| w_x | + w\phi_x \leq C (1 + x)^{\beta-1}\). Substituting all these estimates into (4.11), we obtain
\[
\frac{1}{2} \frac{d}{dt} \| v \|_{L^2(w)}^2 + \delta (\| v_x \|_{L^2(w)}^2 + \| v \|_{L^2(w_1)}^2) \leq C \| v \|_{L^2_{\beta}}^2 + C \| v \|_{L^3_{\beta-1}}^3,
\]
where \(\delta \) and \(C \) are independent of \(\beta \). We multiply this inequality by \((1 + t)^\gamma\) and integrate with respect to \(t \). By virtue of (4.12), we have
\[
(1 + t)^\gamma \| v(t) \|_{L^2_{\beta}}^2 + \int_0^t (1 + \tau)^\gamma (\| v_x(\tau) \|_{L^2_{\beta}}^2 + \| v(\tau) \|_{L^2_{\beta-2}}^2) d\tau
\leq C \| v_0 \|_{L^2_{\beta}}^2 + \gamma C \int_0^t (1 + \tau)^{\gamma-1} \| v(\tau) \|_{L^2_{\beta}}^2 d\tau
\]
\[
+ C \int_0^t (1 + \tau)^\gamma \| v(\tau) \|_{L^2_{\beta-2}}^2 d\tau + CS_\beta^\gamma(t),
\]
where the constant \(C \) is independent of \(\gamma \) and \(\beta \). Here the third term on the right hand side of (4.14) was already estimated by (4.2) with \(\beta = 0 \). Hence we have proved (4.2) also for \(0 < \beta \leq \alpha \). This completes the proof. \(\square \)

References

