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Upper triangular operators, SVEP and Browder,
Weyl theorems

B. P. Duggal

Abstract

We show the important role played by SVEP, the single-valued extension property, and
the polaroid property in relating the spectrum, and certain distinguished parts thereof,

of the operators Mg = g g ) and M, for some Banach space operators A, B and
C € B(X).
1. Results

Let B(X) denote the algebra of operators (equivalently, bounded linear transformations)
on a Banach space X. For A, B,C € B(X), let M¢c denote the upper triangular operator

0 B
the operators M¢c and M, has been studied by a number of authors in the recent past; see
references. Of particular interest to us is the relationship between the spectral, the Fredholm,
the Browder and the Weyl properties.

Most of our notation is standard. For an operator T € B(&'):

( 4 C ) and let My = A @ B. The spectrum, and certain distinguished parts thereof, of

o(T) = spectrum of T,

0o(T) = approximate point spectrum of T,

&, (X)={T € B(X): T is upper semi-Fredholm}, and
®_(X)={T € B(X): T is lower semi-Fredholm}.

The Browder, the Weyl, the upper semi-Fredholm, the lower semi-Fredholm spectrum of T
are the sets

op(T) = {A € o(T) : T — A is not Fredholm or asc(T — A) # dsc(T' — )},
ow(T) ={A € o(T): T — X is not Fredholm or ind(T — A) £ 0},

osr, (T)={A€o(T):T-A¢ ®&,.(X)}, and

osr_ (T)={Ae€C:T-X\¢d_(X)},
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respectively. The Browder essential approximate point spectrum oa (7). and the Weyl es-
sential approximate point spectrum o4, (7'), of T are the sets

oab(T) ={A€0u(T): T =X ¢ &,(X) or asc(T — \) = oo}, and
Oaw(T) ={A€0o(T): T—A¢ ®,(X) or ind(T — A £ 0}.

Let

E(T) = {A € C: T does not have SVEP at A},
EL (M) ={T-2€d . (X): A€ E(T)}, and
Sl ={T -2 (X): A€ 2(T)}.

The following inclusions/equalities are either well known or are easily proved:

o(Mg) C 0(A)Uo(B) = a(Mp) = o(Mg) U {E(A") U 2(B)},
O'b(]\/fo) - O‘b(A) U Ob(B) = O'b(]\/fo), and
ow(Mc) C ow(Mp) C 04 (A) U ow(B).

Furthermore, if we let P = A4 and Q = B or P = A* and Q = B*, then:

O‘b(]\/fo) = gp(M¢g) U {E(A*) U E(B)}, and
ow(A) Uow(B) C ow(Mc) U{E(P) UE(Q)}.

Consequently, if 2(P) UZ(Q) = 0, then
op(Mo) = oy (M) = op(Me) = 0uw(Mc) = 0y (A) U oy (B).
For the spectra o, and cr,,;w, one has:

oab(Mc) C 04p(Mo) C 0ap(Mc) U {E5(A) U= (B)}, and
Gaw(MO) C..: Ua.w(A) U O'aw(B) g Uab(A) U Uab(B)
= 0a(Mo) C 0auw(A) Uogu(B) U {E+(4) Uz (B)}

Recall that a necessary and sufficient condition for My to satisfy Browder’s theorem (or,
Bt), acco(Mo) C ow(Mo) <= ow(Mp) = ob(Mp) (resp., a-Browder’s theorem (or, a — Bt),
accog(Mp) C 0aw(Mo) <= 04uw(Mo) = 0ap(Mp)), is that A and B have SVEP at points
A € 0(Mp) such that A— X, B— X are Fredholm and ind(A— A)+ind(B - A) = 0 (resp., A and
B have SVEP at points A € 04(M)p) such that A— X, B — \ are are upper semi-Fredholm and
ind(A—A)+ind(B - A) < 0). Similarly, a necessary and sufficient condition for M to satisfy
Bt, acco(Mc) C ow(Me) <= ow(Mc) = ou(Mc) (resp., a — Bt, acco,(Mp) C 0w (Mp) <>
oap(Mc) = oaw(Mc)), is that Mc has SVEP at points A € o(Mp) \ 0aw(Mg) (resp., at
points A € o,(Mc) \ 0auw(Mc)). It is easily verified that if My satisfies Bt then ow(Mp) =
ow(A) Uow(B), and that if My satisfies @ — Bt then 0gy(Mp) = 0aw(A) U 0aw(B). A similar
result, however, fails for the operator Mg, as follows from a consideration of the operator .

( g (lj.: vy , where U is the forward unilateral shift on a Hilbert space. Evidently, the

complement of o, (Mc) in the complex plane C is the union of the complement of &, (Mp)
in C with o4, (Mp) \ 0w (Mc), and the complement of o4, (Mc) in the complex plane C is the
union of the complement of ¢,,,(Mp) in C with 04, (M) \ daw(Mc); thus, if My satisfies Bt
(resp., a — Bt) and M¢ has SVEP on a,(Mp) \ 0w (Mc) (resp., Oaw(Mp) \ caw(Mc)), then
Mc satisfies Bt (resp., a — Bt). This may be achieved in a number of ways.
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Theorem 1.1 (a). If either (i) A has SVEP at points A € oy(Mp) \ osr_(A) and B has
SVEP at points u € ow(Mp) \ osr_(B), or (it) both A and A* have SVEP at points A €
ow(Mo) \ osk, (A), or (iit) A* has SVEP at points X € oy (Mo) \ 0sr, (A) and B* has SVEP
at points p € oy (Mo) \ osr_ (B), then My satisfies Bt implies Mc satisfies Bt.

(b). If (i) A has SVEP on A € 04y(Mp) \ 0sr, (A) and A* has SVEP on u € oy (Mp) \
osr, (A), or (i) A* has SVEP on X € 0y(Mp)\osr, (A) and B* has SVEP on p € oy(Mo) \
osr. (B), then My satisfies a — Bt implies Mc satisfies a — Bt.

As a consequence one has:

Corollary 1.2 (a)[4, Proposition 4.1] If {Z(A) NE(B*)} UZE(A*) = 0, then My satisfies Bt
(resp., a — Bt) implies M¢ satisfies Bt (resp., a — Bt).

(b) [2, Theorem 3.2] If either 04w(A) = osp,(B) or osp_(A) Nosr, (B) = 0, then My
satisfies Bt (resp., a — Bt) implies M¢ satisfies Bt (resp., a — Bt).

Both Theorem 1.1 and Corollary 1.2 are a particular case of the following theorem.

Theorem 1.3 (i) If 0 (Mc) = ow(A) U oy(B), then My satisfies Bt if and only if Mc
satisfies Bt.

(i) If Caw(Mcg) = Oauw(A) U oaw(B), then My satisfies a — Bt implies Mc satisfies a — Bt.
If in addition either A* or B has SVEP on o,(Mc) \ 0aw(Mc), then Mc satisfies a — Bt if
and only if My satisfies a — Bt.

Here, we observe that if 0., (M¢g) = 0w (A) U ow(B), then 0,(Mp) = 0yw(Mc) and o(Mc) =
o(My); the hypothesis 04 (Mg) = 0aw(A) U 04w (B) implies that 04 (Mc) = 0aw(Mp) (and
o(Mc) = 0(Mp)). Observe also that if B has SVEP on 0,(Mc) \ 0aw(Mc) and M¢ satisfies
a—Bt, then A and B have SVEP on 0, (M¢)\0aw(Mc); if A* has SVEP on 04,(M¢c)\0aw(Mc),
then o,(Mc) = 04(A) U 0a(B).

Let mo(M¢c) = {\ € isoo (M) : 0 < dimker(M¢ — A)71(0) < oo}, and let ng(Mc¢) = {A €
isoce(M¢) : 0 < dimker(M¢c — A)~1(0) < co}. An operator T is said to be polaroid (resp.,
a-polaroid) at a points A € isoo(T) (resp., A € isoo,(T)) if A is a pole of the resolvent of T
(resp., (T — A)X is closed and asc(T — A) < 00). Let Ro(T) = {X € isoo(T') : A is a finite rank
pole of the resolvent of T} and RE(T) = {A € is00,(T) : T — X € &, (X),asc(T — A) < oo}.

In common with current terminology, we say that T satisfies Weyl’s theorem, or Wt (resp.,
a-Weyl’s theorem, or a — Wt) if o(T) \ 0w (T) = mo(T) (resp., 0a(T) \ caw(T) = 7§(T)).

The following result is not difficult to prove:

Theorem 1.4 (a). M satisfies Wt if and only if Mc has SVEP at A ¢ c(Mc) and Mc
is polaroid at points u € mo(Mc).

(b). Mc satisfies a — Wt if and only if Mc has SVEP at A ¢ oqaw(Mcg) and Mc is
a-polaroid at points u € n§(Mc).

Combining Theorems 1.1 and 1.4, an additional well known argument, see [5] and [6], implies
the following;:

Theorem 1.5 [5, Theorem 8.7] If either of the SVEP hypotheses (i), (ii) and (iii) of Theo-
rem 1.1(a) is satisfied, then Mc satisfies Wt for every C € B(X) if and only if My satisfies
Wt and A is polaroid at A € mo(Mc).

Theorem 1.5 implies the following:

Corollary 1.6 (a) [4, Theorem 4.2] If {E(A) N E(B*)) UE(A*) = 0, A is polaroid at A\ €
no(Mc) (or A is isoloid and satisfies Wt) and My satisfies Wt, then Mc satisfies Wt.

(b) [2, Theorem 3.8] If 0aw(A) = osr, (B) or osp_(A)Nosp, (B) =0, A is polaroid at
A € mo(Mc) (or A is isoloid and satisfies Wt) and My satisfies Wt, then Mc satisfies Wt.
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Both Theorem 1.5 and Corollary 1.6 are subsumed by the following general result.

Theorem 1.7 If 0, (Mc) = 0w (A) U oy (B), then My satisfies Wt <= Mc satisfies Wt if
and only if Ro(Mp) = TFO(I‘/[C_')-

The proof of the theorem is a straightforward consequence of the facts that Wt = Bt, and
ow(Mc) = 0y (A) U oy(B) => 0y(Mp) = ow(Mc) and o(M¢) = o(My).

The result corresponding to Theorem 1.7 for a — Wt is the following:

Theorem 1.8 (7). If 0w (Mp) = oaw(Mc), then My satisfies a -- Wt implies Mc satisfies
a — Wt if and only if n§(Mc) C n§(Mp).

(i3). Conversely, if 04w(Mo) = caw(Mc) and A* has SVEP on o4(Mc) \ caw(Mc), then Mc
satisfies a — Wt implies My satisfics a — Wt if and only of n§(Mp) C n§(Mc).

Theorem 1.8 implies in particular that:

Corollary 1.9 /5, Theorem 3.11] If E(A*) UE(B*) = 0, A is polaroid at A € n¢(M¢) (or,
A is isoloid and satisfies Wt) and B is polaroid at p € n§(B), then M¢ satisfies a — Wt.

We note here that the hypothesis Z(A*) UZ(B*) =  implies that a-poles of A and B are
indeed poles of their respective resolvents.

It is well known that if a Banach space operator T is such that T* has SVEP, then T
satisfies Wt if and only if T satisfies a — Wt. Observe that a sufficient condition for My* and
Mc* to have SVEP is that both A* and B* have SVEP. More generally:

Theorem 1.10 Let Mx = My or Mcg. If A* has SVEP on o(A) \ osr,(A) and B* has
SVEP on o(B) \ osr, (B), then Mx satisfies Wt <> Mx satisfies a — Wt.

Although T has SVEP and satisfies Wt does not guarantee T™* satisfies a — Wt, we do
have that if 7" has SVEP and is polaroid, then T satisfies Wt and T™* satisfies a — Wt. This
leads us to: if A and B have SVEP and are polaroid, then Mc satisfies Wt and Mg satisfies
a—Wt.
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