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A capital letter means a bounded linear operator on a complex Hilbert space H.
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ABSTRACT. Garcia gave an upper bound of ||A + iB|| for self-adjoint operators 4 and
B. We give a matrix representation of |4 + iB|| and a generalization of Garcia’s result.
al
Tl!

For it we give a numerical range of g} ) for an operator T' and real numbers a

and b. On the other hand, Furuta gave a numerical range of § = ( d‘;{* i; for an

operator T and nonnegative real numbers a, b, c and d. We pointed out w(S) = w(Re §)
under the condition that a, b, ¢ and d are real numbers with ed > 0.

1. INTRODUCTION

The numerical range W(T') of an operator T is defined by

W(T) = {(Tz,z) : ||zl = 1}.

515}

Toeplitz-Hausdorff’s theorem implies that the numerical range W (T) is a convex set on
the complex plane (cf. [3]). Moreover the numerical radius w(T) of an operator T is
defined by

w(T) = sup{|A| : A € W(T)} = sup{|{Tz, z)| : ||z|| = 1}.

It is known that w(T") < ||T||, and w(T') = ||T|| for normal operators T.
It is well known that w(T) < ||T||, and w(T) = ||T|| for normal operators T.
In [4], Garcia showed the following theorem:

Theorem A. If A and B are self-adjoint operators with m < A < M, then

(1.1)

1
l4+iBIl < (M —m)+ 53/(M +m)p? +4|BI.
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The norm ||A + ¢B)|| is represented by an operator matrix as follows: ||A+iB| =

I(5 %)
(1.2) w((g = )) - “(g _i)” < %(M—m)+%\/(M+m)?+4|13112.

al T
T* bl

(see Lemma 3.1). So the inequality (1.1) is rewritten as follows:

In this note, we shall calculate w (( )) for an operator T and real numbers a

and b (see Theorem 2.2). As a result, we give an upper bound of w ( ;1,1 _ Aj; for
an operator T and self adjoint operators A;, A, as a generalization of (1.2) (i.e., (1.1))
(see Theorem 3.2). For it, the following equation plays an elementary and essential role

o((3 Z)) = (8 %) - v

for an operator T and a € R (see Lemma 2.1(ii)).

On the other hand, Furuta [2] gave the numerical radius w(S) of S which is defined by
(1.3). We show that it is sufficiently to obtain the value of w(Re S) (= w(it,ﬁ—)) for the
calculation of w(S) by using Theorem 2.2.

Theorem B. Let

al T
(1.3) §= ( dT* bl )

be an operator on a Hilbert space H = H, & H, where T is an operator from Hy to H,
and a, b, c and d are nonnegative real numbers. Then

(1.4) w(S) = —(a 40+ = \ﬂa — B2+ (c+ d)? ||TI2

We calculate w(S) under the condition a,b,c,d € R with c¢d > 0 (see Theorem 3.3).

2. NUMERICAL RADIUS FOR SELF-ADJOINT OPERATORS

For an operator 7' and a real number a, we give some properties of ( ;,I. _7; I ) to

generalize (1.2) (i.e., (1.1)) in the following lemma:

Lemma 2.1. Let T be an operator and a be a real number. Then the following holds:

i w (( ;{ _:Z;I )) is symmetric, i.e.,

<)< ) = ew((# 1)

o o((# 2)-|(# Z)|- v
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w w(( 3 )= [-veTmE va e
where W(T) is a closure of W(T).

Proof. (i) Fora e W (( ol z )),We have

o= ((# 2)(2) () =alel +2Re vz — ey

) T
for some unit vector ( )

el 4
y

On the other hand, since ) is a unit vector, we have

]
z
Yy

vl

al T U%llx = allyll2 — 2] z) —allzll2 = —
<(T,. T ( "y”y)( Hy»— lyll? — 2Re(Ty, z) — alle]

M
and <(;’{ ——CZ;I ( ) < z)> € W(( f}{ _J;I )) Hence we have

al
“QEW(<T* —aI)

(ii) Since ( C,_Lz{ _?; I ) is self-adjoint, we have

a T | a T\’ a? + TT* 0 _ 9 2
(2 T8 2T -

(iii) is obvious by (i) and (ii). . O

al T

In the following theorem, we give the numerical radius of the self-adjoint operator
matrix ( T b] 3

Theorem 2.2. Let H = H, & H; be a Hilbert space and let T be an operator from H, to
H;. Let a and b be real numbers. Then

e o((#£3))-I(% )

Proof. The first equality is obviously. Next we have

() - oo+ (1))

1 a=br T
= = 2
2Ia +b+w (( e abj )) by Lemma 2.1 (iii)

1 1 9 2
—§|a+b|+—2-\/(a b)? + 4 |T|.

2
= %|a+ bl + \/<a b) +||T||* by Lemma 2.1 (ii)
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2

1 1
= Sla+bl+ 5¢/(a = b2 + 4T

and hence the second equality holds. O

3. MAIN RESULTS

The following lemma gives matrix representation of | A + iB|| for self-adjoint operators
A and B.

Lemma 3.1. Let X and Y be operators on H. Then
X -Y _ X Y
Y X o Y X

In particular, if A and B are self-adjoint operators, then

(5 2I-10 =I-1( %)

Proof. We only prove the equality (3.1). Let I be the identity operator of H. Then we

have
X +1iY 0 _l I i
0 X-3iY ) o\ i I
_1( 11
T o\ —-I I

1 I il 1
Since matrix operators — ( i I ) and — ( I

(3.1)

= max{||X + Y|, | X —i¥][}.

(3.2) =||[A+{B| =||A-B|.

) are unitary, we have

V2 A\ I
I 3100 SOI=105" <200
Y Y X 0 X —-1iY
= max{||X + Y|, || X —Y|[}.
So the desired equalities hold. |

From (3.2), (1.1) in Theorem A can be interpreted as

(3.3) w((g = )) SO —m)+ 2/ +my + 41 BI.

Thus the following theorem is a generalization of Theorem A:

Theorem 3.2. Let T be an operator from Ha to Hy, and let A; be self-adjoint operators
on H; with 0(A;) C [m, M] where o(A;) is the spectrum of A; (i = 1,2). Then

(3.4) w(( ?3 _22 )) —(M m)+ = \/(M+m)2+4HTH
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Proof. Since m < 4; < M (i = 1,2). we have

m T Ay T M T
(7 8)= (2 -0)=(2 D)

Here we have by Theorem 2.2

”(gj —Tz;) (93 M)” ‘(M m)+ 5 \/(M+m)2+4uT||

Hence the desired inequality (3.4) holds. a

Next, we pay attention to the fact that w(S) = w(Re S) for Sin (1.3). As a consequence,
Theorem 2.2 is applicable to the following theorem. It is a generalization of Theorem B.

Theorem 3.3. Let H = H| @ H, be a Hilbert space and let T be an operator from Hs to

H,. Leta, b, ¢ and d be real numbers with cd > 0. Suppose that S = ( d‘;{, fz; ) be an

operator on H. Then

1 1
(3.5) w(S) = w(ReS) = gla+b|+ 5\/ (a—b)? + (c+d)? |T|%
Proof. We have

w<3>~sup§l<(w i) (2)- () E)]-

)
@0 = {JallP s bleal + etz + T | ()] 1)
1

()=

The last equality of (3.6) is ensured by cd > 0. Moreover we have
_ al 4T z z1 . T _
s (e 37 (2)- () [(2)]-
= sup {|a|lm1|]2 + b||z2||® + (¢ + d) Re(T'z2, m1)| ; ” ( 2 ) H = 1}
— sup { lallz 2 + bllesll?] + I(c + d) (T, 21)] ; “ ( o )” - 1} .
So the first equality of (3.5) holds.
Next, replacing °—‘§—4T to T in Theorem 2.2, we have

I —i—T 1 1 2
wRes) =w (A )) = Fla+b+ 3y —vrr crariTi?
( stdTe  }r 3! 2\/

and hence the second equality holds. O

—sup{iaua:lnubuxzu |+ e+ )Tz, 1)l 3

If cd < 0 in Theorem 3.3, then the last equation of (3.6) and so the first equality of
v o—w

(3.5) be not ensured. We confirm this result by using 2 x 2 real matrix S = w v
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where v, w # 0 and v? + w? = 1. Since S is unitary, we have w(S) = 1. On the other

hand, it follows from Re S = ( (L) S ) that w(Re S) = |v|(< 1).
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