On L(n)-hyponormal operators

Sun Hyun Park *

Department of Mathematics, College of Natural Science, Kyungpook National University, Daegu 702-701, Korea E-mail: sm1907s4@hanmail.net

Abstract

We introduce a new notion of L(n)-hyponormality in order to provide a bridge between subnormality and paranormality, since 1950s, two notions of operator theorists are receiving considerable attention. And L(n)-hyponormality is offered to a criterion. Relationships to other hyponormality notions are discussed in the context of weighted shift and composition operators.

1. Introduction

This is based on the joint work with I. Jung and J. Stochel and was talked at RIMS Workshop: Application of Geometry to Operator Theory, which was held at Kyoto University on October 29-31 in 2008. Some additional results with the detailed proofs will be appeared in some other journal.

Let \mathcal{H} be a separable, infinite dimension, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H} . Recall that $T \in \mathcal{L}(\mathcal{H})$ is subnormal if and only if $\sum_{i,j=0}^{n} \langle T^{*j}T^{i}f_{j}, f_{i} \rangle \geq 0$ for all $f_{0}, f_{1}, \cdots, f_{n} \in \mathcal{H}$ and all $n \in \mathbb{N}$ ([Bra], [Hal]). To construct a bridge between subnormal and hyponormal operators on \mathcal{H} , R. Curto ([Cu1]) introduced a n-hyponormality as following.

Definition 1.1. An operator $T \in \mathcal{L}(\mathcal{H})$ is *n-hyponormal* if $\sum_{i,j=0}^{n} \langle T^{*j}T^{i}f_{j}, f_{i} \rangle \geq 0$ for all $f_{0}, f_{1}, \dots, f_{n} \in \mathcal{H}$.

As a parellel definition on Embry's characterization for subnormal operator (cf., [Em]), the E(n)-hyponormality was given in [JLP] as following.

Definition 1.2. An operator T is E(n)-hyponormal if $\sum_{i,j=0}^{n} \langle T^{*i+j}T^{i+j}f_i, f_j \rangle \geq 0$ for all $f_0, f_1, \dots, f_n \in \mathcal{H}$.

^{*2000} Mathematics Subject Classification. 47B20, 47B33, 47B37.

[†] Key words and phrases: hyponormal operator, E(n)-hyponormal operator, L(n)-hyponormal operator.

Note that the E(n)-hyponormality is weaker than the n-hyponormality ([MP2]). In particular, if T is E(1)-hyponormal, then T is of class A operator, i.e., $|T^2| \geq |T|^2$ ([Fur]). In [JLP] they characterized the E(n)-hyponormality for composition operators on L^2 via Radon-Nikodym derivatives. Hence E(n)-hyponormality is a bridge between subnormal and class A operators. An operator $T \in \mathcal{L}(\mathcal{H})$ is paranormal if $||T^2h|| \geq ||Th||^2$ for an unit vector $h \in \mathcal{H}$. It is well-known that every class A operator is paranormal. In [Lam] or [Sto] it was proved that T is subnormal if and only if $\sum_{i,j=0}^n \langle T^{*i+j}T^{i+j}f,f\rangle \lambda_i\bar{\lambda}_j \geq 0$ for all $\lambda_i,\lambda_j\in\mathbb{C},\ 0\leq i,j\leq n,\ f\in\mathcal{H},\ n\in\mathbb{N}$. Hence we may give the following defintion.

Definition 1.3. An operator $T \in \mathcal{L}(\mathcal{H})$ is L(n)-hyponormal if for all $\lambda_i, \lambda_j \in \mathbb{C}$, $0 \leq i, j \leq n, f \in \mathcal{H}, \sum_{i,j=0}^{n} ||T^{i+j}f||^2 \lambda_i \bar{\lambda}_j \geq 0$.

Proposition 1.4. An operator $T \in \mathcal{L}(\mathcal{H})$ is L(1)-hyponormal operator if and only if T is paranormal.

Proof. Since T is L(1)-hyponormal operator, using definition, we get

$$\begin{pmatrix} ||h||^2 & ||Th||^2 \\ ||Th||^2 & ||T^2h||^2 \end{pmatrix} \ge 0, \quad \text{for all } h \in \mathcal{H}.$$

This is equivalent to $||T^2h|| \ge ||Th||^2$ for an unit vector $h \in \mathcal{H}$. So T is paranormal.

From above Remark, the notion of L(n)-hyponormalities provides a bridge between subnormal and paranormal operators.

This note will be organized four sections. In Section 2 we discuss the L(n)-hyponormality of weighted shifts and prove that every L(n)-hyponormal weighted shift is n-hyponormal. In Section 3 we give a characterization for composition operator C_{ϕ} on L^2 corresponding to a nonsingular measurable transformation ϕ whose proof is much simpler than that of [JLP, Theorem 2.3].

2. L(n)-hyponormal weighted shifts

Let W_{α} be a weighted shift with weight sequence $\alpha:=\{\alpha_n\}_{n=0}^{\infty}$ of positive real numbers. Let $\gamma_0=1$, $\gamma_n:=\alpha_0^2\alpha_1^2\cdots\alpha_{n-1}^2$ $(n\geq 1)$. (The values γ_n are called sometimes moments because this sequence $\{\gamma_n\}$ satisfies Stieltjes moment equation when W_{α} is subnormal.) Then it follows from [MP2] and [Cu2] that W_{α} is n-hyponormal if and only if W_{α} is E(n)-hyponormal, also it is equivalent to that the $(n+1)\times(n+1)$ matrix $[\gamma_{i+j+k}]_{0\leq i+j\leq n}\geq 0$ for all $k\in\mathbb{N}_0:=\mathbb{N}\cup\{0\}$.

Proposition 2.1. Let W_{α} be a weighted shift with weight sequence $\alpha := \{\alpha_n\}_{n=0}^{\infty}$. Then the following assertions are equivalent:

- (i) W_{α} is n-hyponormal;
- (ii) W_{α} is L(n)-hyponormal.

Proof. Since the implication (i) \Rightarrow (ii) is obvious by definitions, we will prove only the reverse implication. To do so, we suppose that W_{α} is L(n)-hyponormal. For a

standard orthonormal basis $\{e_k\}_{k=0}^{\infty}$ in l^2 , $\sum_{i,j=0}^{n} \|W_{\alpha}^{i+j} e_k\|^2 \lambda_i \bar{\lambda}_j \geq 0$ for all $\lambda_i, \lambda_j \in \mathbb{C}$. $0 \leq i, j \leq n$, i.e.,

$$\begin{pmatrix} 1 & \alpha_{k}^{2} & \alpha_{k}^{2}\alpha_{k+1}^{2} & \cdots & \alpha_{k}^{2}\cdots\alpha_{k+n-1}^{2} \\ \alpha_{k}^{2} & \alpha_{k}^{2}\alpha_{k+1}^{2} & \alpha_{k}^{2}\alpha_{k+1}^{2}\alpha_{k+2}^{2} & \cdots & \alpha_{k}^{2}\cdots\alpha_{k+n}^{2} \\ \alpha_{k}^{2}\alpha_{k+1}^{2} & \alpha_{k}^{2}\alpha_{k+1}^{2}\alpha_{k+2}^{2} & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & & \\ \alpha_{k}^{2}\cdots\alpha_{k+n-1}^{2} & \alpha_{k}^{2}\cdots\alpha_{k+n}^{2} & \cdots & & \alpha_{k}^{2}\cdots\alpha_{k+2n}^{2} \end{pmatrix} \geq 0,$$

which is equivalent to

$$\begin{pmatrix} \gamma_k & \gamma_{k+1} & \cdots & \gamma_{k+n} \\ \gamma_{k+1} & \gamma_{k+2} & \cdots & \gamma_{k+n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{k+n} & \gamma_{k+n+1} & \cdots & \gamma_{k+2n-1} \end{pmatrix} \ge 0$$

for all $n \in \mathbb{N}$. By [Cu1], W_{α} is n-hyponormal.

Let W_{α} be a subnormal weighted shift with a weight sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ and let $\alpha(x) : x, \alpha_1, \alpha_2, \cdots$ with variable x > 0. Let

$$\mathcal{LH}(n) = \{x \in (0, \infty) : W_{\alpha(x)} \text{ is } L(n)\text{-hyponormal}\}, \quad n \in \mathbb{N} \cup \{\infty\}.$$

Then obviously $\mathcal{LH}(\infty)$ is the set of $x \in (0,\infty)$ such that $W_{\alpha(x)}$ is subnormal operator. By Proposition 2.1, the L(n)-hyponormality of W_{α} is equivalent to the n-hyponormality. Hence we have the following example.

Example 2.2 ([JL]). Let W_{α} be a subnormal weighted shift whose corresponding Berger measure has infinite support. Then by [JL], $\mathcal{LH}(n)\backslash\mathcal{L}(n+1)\neq\varnothing$ for all $n\in\mathbb{N}\cup\{\infty\}$. Especially, let W_{α} be the Bergmann shift with a weight sequence $\alpha=\{\sqrt{(n+1)/(n+2)}\}_{n=0}^{\infty}$ and let $\alpha(x):\sqrt{x},\sqrt{1/2},\sqrt{2/3},\cdots$. Then $\mathcal{LH}(1)=(0,\sqrt{2/3}],$ $\mathcal{LH}(2)=(0,3/4],$ $\mathcal{LH}(3)=(0,\sqrt{8/15}],$ $\mathcal{LH}(4)=(0,\sqrt{25/48}],\cdots$, etc., and $\mathcal{LH}(\infty)=(0,\sqrt{1/2}].$

3. L(n)-composition operators

Let (X, \mathcal{A}, μ) be a σ finite measure space and let $\phi: X \to X$ be a measurable nonsingular transformation (i.e., $\phi^{-1}\mathcal{A} \subset \mathcal{A}$ and $\mu \circ \phi^{-1} \ll \mu$). We assume that the Radon-Nikodym derivative $h = d\mu \circ \phi^{-1}/d\mu$ is in L^{∞} and we define $h_n = d\mu \circ T^{-n}/d\mu$. The composition operator C_{ϕ} acting on $L^2 := L^2(X, \mathcal{A}, \mu)$ is defined by $C_{\phi}f = f \circ \phi$. The condition $h \in L^{\infty}$ assures that C_{ϕ} is bounded.

Theorem 3.1. Let C_{ϕ} be a composition operator on L^2 and suppose $n \in \mathbb{N}$. Then the following assertions are equivalent:

(i) C_{ϕ} is E(n)-hyponormal:

(ii) C_{ϕ} is L(n)-hyponormal;

(iii) $(n+1) \times (n+1)$ matrix $[h_{i+j}(x)]_{i,j=0}^n \geq 0$ for μ -almost every $x \in X$.

Proof. (i) \Rightarrow (ii) It is obvious.

(ii) \Rightarrow (iii) For $f \in L^2$ and for any $\lambda_0, \lambda_1, \dots, \lambda_n \in \mathbb{C}$, we have

$$0 \leq \sum_{i,j=0}^{n} \|C_{\phi}^{i+j}f\|^{2} \lambda_{i} \bar{\lambda}_{j} = \left(\sum_{i,j}^{n} \int_{X} |f|^{2} \phi^{i+j}(x) d\mu\right) \lambda_{i} \bar{\lambda}_{j}$$

$$= \left(\sum_{i,j}^{n} \int_{X} |f|^{2} (x) d\mu \circ \phi^{-(i+j)}\right) \lambda_{i} \bar{\lambda}_{j} = \left(\sum_{i,j=0}^{n} \int_{X} |f|^{2} h_{i+j}(x) d\mu(x)\right) \lambda_{i} \bar{\lambda}_{j}.$$

For $\sigma \in \mathcal{A}$ with $\mu(\sigma) < \infty$, if we consider $f = \chi_{\sigma} \in L^2$, then

$$\int_{\sigma} \sum_{i,j=0}^{n} h_{i+j}(x) \lambda_i \bar{\lambda}_j d\mu(x) \ge 0$$
(3.1)

for all $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_n) \in \mathbb{C}^{n+1}$. Since X is σ -finite, we may write $X = \bigcup_{n \in \mathbb{N}} X_n$ with $\mu(X_n) < \infty$. For brevity, we let

$$H_{\lambda}(x) = \sum_{i,j=0}^{n} h_{i+j}(x) \lambda_i \bar{\lambda}_j, \quad \lambda = (\lambda_0, \lambda_1, \dots, \lambda_n) \in \mathbb{C}^{n+1}$$

and

$$\Omega_{\lambda} := \{ x \in X : H_{\lambda}(x) \ge 0 \}.$$

Since (3.1) for all $\sigma \in \mathcal{A}$ with $\sigma \subset X_n$ was arbitrary, we have that $H_{\lambda}(x) \geq 0$, a.e. $[\mu]$ on X_n , and also $\Omega_{\lambda} \in \mathcal{A}$ such that $\mu(X \setminus \Omega_{\lambda}) = 0$ for all $\lambda \in \mathbb{C}^{n+1}$. Consider a countable dense subset \mathcal{Z} of \mathbb{C}^{n+1} . And set $\Omega := \cap_{\lambda \in \mathcal{Z}} \Omega_{\lambda}$. Then

$$\mu(X \backslash \Omega) = \mu(\cup_{\lambda \in \mathcal{Z}} (X \backslash \Omega_{\lambda})) \le \sum_{\lambda \in \mathcal{Z}} \mu(X \backslash \Omega_{\lambda}) = 0.$$

For $\lambda \in \mathbb{C}^{n+1}$, there exists a sequence $\{\lambda^{(k)}\}_{k=1}^{\infty}$ in \mathbb{C}^{n+1} with $\lambda^{(k)} \in \mathcal{Z}$, say $\lambda^{(k)} = (\lambda_0^{(k)}, \dots, \lambda_n^{(k)}) \in \mathbb{C}^{n+1}$. Since $H_{\lambda^{(k)}}(x) \geq 0$ for all $x \in \Omega$ and $k \in \mathbb{N}$, obviously $H_{\lambda}(x) \geq 0$ for all $x \in \Omega$ and $\lambda \in \mathbb{C}^{n+1}$. Hence $H_{\lambda}(x) \geq 0$ for all $\lambda \in \mathbb{C}^{n+1}$ and x a.e. in X, which implies that $[h_{i+j}(x)]_{i,j=0}^n \geq 0$ for μ a.e. $x \in X$.

$$(iii) \Rightarrow (i) \text{ See [JLP, Th. 2.3].} \blacksquare$$

References

- [Ag] J. Agler. Hypercontractions and subnormality. J. Operator Theory 13(1985), 203-217.
- [Bra] J. Bram, Subnormal operator, Duke Math. J. 22(1955), 75-94.
- [Cu1] R. Curto, Quadratically hyponormal weighted shift, Int. Equ. Operator Theory, 13(1990), 49-66.
- [Cu2] R. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Proc. Sym. Math. **51**(1990), 69-91.
- [Em] M. Embry, A generalization of the Halmos-Bram condition for subnormality, Acta. Sci. Math.(Szeged) **35**(1973), 61–64.
- [Fur] T. Furuta, Invitation to linear operators, Taylor & Francis Inc., 2001.
- [JL] I. Jung and C. Li, A formula for k-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc. 129(2000), 2343-2351.
- [JLP] I. Jung, M. Lee, and S. Park, Separating classes of composition operators, Proc. Amer. Math. Soc. 135(2007), 3955-3965.
- [Hal] P. Halmos, Normal dilations and extensions of operators, Summa Bras. Math. 2(1950),124-134.
- [Lam] A. Lambert, Subnormality and weighted shifts, J. London Math. Soc. 14(1976), 476-480.
- [MP1] S. McCullough and V. I. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107(1989), 187-195.
- [MP2] _____, k-hyponormality of weighted shifts, Proc. Amer. Math. Soc. $\mathbf{116}(1992)$, 165-169.
- [Sto] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124(1996), 135-140.