
ON A FREE BOUNDARY PROBLEM OF THE
COUPLED NAVIER-STOKES / MEAN CURVATURE

EQUATIONS

Yasunori Maekawa
Faculty of Mathematics, Kyushu University, 6-10-1, Hakozaki,

Higashiku, Fukuoka, 812-8581, Japan.
yasunori@math.kyushu-u.ac.jp

1. INTRODUCTION AND FORMULATION

We are interested in a free boundary problem of viscous incompressible
flows as follows. We shall consider the Navier-Stokes systems:

$(NS)\{\begin{array}{l}\partial_{t}u-\Delta u+(u, \nabla)u+\nabla p=\sigma_{1}H\nu \mathcal{H}_{L^{-1}}^{n_{\Gamma_{t}}},0<t\leq T, x\in \mathbb{R}^{n},\nabla\cdot u=0,0<t\leq T, x\in \mathbb{R}^{n},u(O, x)=u_{0}(x), x\in \mathbb{R}^{n},\end{array}$

where $u=(u_{1}u_{n})$ and $p$ are unknown velocity field and pressure
field, respectively. The symbol $\Gamma_{t}$ represents an unknown free interface
evolving from the initial interface $\Gamma_{0}$ which is the boundary of a bounded
domain $\Omega_{0}$ . The positive constant $\sigma_{1}$ represents the surface tension, and
$H,$ $\nu$ are the mean curvature, the exterior unit normal vector of $\Gamma_{t}$ ,
respectively. The symbol $\mathcal{H}_{L^{-}}^{n_{\Gamma_{t}}1}$ means the $n-1$ dimensional Hausdorff
measure restricted on $\Gamma_{t}$ .

We assume that the free interface is given by $\Gamma_{t}=\{x(t, x_{0})\in \mathbb{R}^{n}$ ; $x_{0}\in$

$\Gamma_{0}\}$ where $x(t, x_{0})$ is the solution of the ODE:

(BC) $\{\begin{array}{l}\frac{dx(t)}{dt}=u(t, x(t))+\sigma_{2}H(t, x(t))\nu(t, x(t)), 0<t\leq T,x(O)=x_{0}\in\Gamma_{0},\end{array}$

where $\sigma_{2}$ is a fixed positive constant.
The right hand side of the first equation in (NS) is the free boundary

condition taken into account in weak sense. That is, the term $\sigma_{1}H\nu \mathcal{H}_{L^{-1}}^{n_{\Gamma_{t}}}$

is formally equivalent to the free boundary condition
$[(-p\delta_{ij}+\partial_{j}u_{i}+\partial_{i}u_{j})_{1\leq ij\leq n})]_{\Gamma_{t}}\nu=\sigma_{1}H\nu$,

where $[\cdot]_{\Gamma_{t}}$ expresses the jump across the interface $\Gamma_{t}$ .
This report is a continuation of the author’s paper [15], in which the

fluid motion is assumed to be described by the Stokes equations instead
of the Navier-Stokes equations.
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Our problem is motivated by the phase transition of materials in a
flowing fluid. That is, the motion of the phase is not only govemed by
its mean curvature but also convected by the fluid velocity. The mo-
tion of the fluid is also influenced by the interface, which is represented
by the free boundary condition. The coupled equations for fluid motion
and the phase transition have lately attracted considerable attention.
Gurtin-Polignore-Vinals [9] and Liu-Shen [13] considered the coupled
Navier-Stokes/Cahn-Hilliard equations, In [2] Blesgen formulated the
coupled compressible Navier-Stokes/Allen-Cahn equations. Feng-He-Liu
[6] and Tan-Lim-Khoo [27] discussed the system of the Stokes/Allen-
Cahn equations: see also [13]. Especially, [6] is closely related with our
problem, since it is formally derived through the singular interface limit
of the system considered in [6].

Our model is also related with the following two phase Navier-Stokes
flows problem (in weak form)

$(TP)\{$

$\partial_{t}u-\nabla\cdot T(\kappa Du,p)+(u, \nabla)u=\sigma_{1}H\nu \mathcal{H}_{L^{-1}}^{n_{\Gamma_{t}}},0<t\leq T,$ $x\in \mathbb{R}^{n}$ ,
$\nabla\cdot u=0,0<t\leq T,\cdot x\in \mathbb{R}^{n}$ ,
$u(O, x)=u_{0}(x),$ $x\in \mathbb{R}^{n}$ ,

(BC’) $\{\begin{array}{l}\frac{dx(t)}{dt}=u(t, x(t)), 0<t\leq T, x(t)\in\Gamma_{t},x(0)=x_{0}\in\Gamma_{0},\end{array}$

where $T(\kappa Du,p)$ $:=2\kappa_{1}\chi_{\Omega_{t}}Du+2\kappa_{2}(1-\chi_{\Omega_{t}})Du-pI$ is the stress tensor,
$2Du=(\partial_{j}u_{i}+\partial_{i}u_{j})_{1\leq i,j\leq n}$ is the deformation tensor, $\kappa_{i}>0$ are viscosity
coefficients of fluids, and $\Omega_{t}$ is a bounded domain with $\Gamma_{t}=\partial\Omega_{t}$ . The
function $\chi_{\Omega_{t}}$ is the characteristic function of $\Omega_{t}$ .

Then our problem can be regarded as the relaxation of the problem
(TP), since the viscosities and the densities of the two fluids are assumed
to be the same value and the term $\sigma_{2}H\nu$ in the kinematic boundary
condition has a regularizing effect for the interface. Such relaxation in
the kinematic boundary condition is used as the level set methods in
numerical analysis; see Chang-Hou-Merriman-Osher [3]. The advantage
of this method (or the phase-field method in [9, 13, 2, 6, 27]) is that
one can capture the interface even when it develops singularities such as
merging and reconnection.

Since $u$ satisfies the divergence free condition in whole space, we have
from (NS),

(1.1) $\partial_{t}u-\triangle u+P\nabla\cdot u\otimes u=P\sigma_{1}H\nu \mathcal{H}_{L^{-}}^{n_{\Gamma_{t}}1}$ ,
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where $P=(R_{i}R_{j})_{1\leq i,\gamma\leq n}+I$ is the Helmholtz projection, and $R_{j}=$

$\partial_{j}(-\triangle)^{-\xi}$ is the Riesz transformation. One can check that the term
$P\sigma_{1}H\nu \mathcal{H}_{L^{-}}^{n_{\Gamma_{t}}1}$ is well-defined at least in the class of tempered distributions
if the hypersurface $\Gamma_{t}$ is a smooth boundary of a bounded domain.

In this paper we shall construct the velocity field as the mild solution
of the equation (1.1), that is, the integral equation associated with (1.1).
Thus we shall consider the system as follows.

$(FBP)\{(BC)$

.
$u(t)=e^{t\Delta}u_{0}- \int_{0}^{t}e^{(t-\Delta}P\nabla\cdot u\otimes uds+\int^{t}e^{(t-s)\Delta}P\sigma_{1}H\nu \mathcal{H}_{L}^{n-1}ds$,

Here, $e^{t\Delta}$ is the heat semigroup. We assume that $u_{0}$ belongs to the class of
$\alpha$-Holder continuous functions $(=C^{\alpha}(\mathbb{R}^{n}))$ and $\Gamma_{0}$ is a $C^{2+\alpha}$ hypersurface
for some $\alpha\in(0,1)$ . Our aim is to construct the pair $(u, \{\Gamma_{t}\}_{0\leq\iota\leq\tau})$

solving (FBP) with initial data $(u_{0}, \Gamma_{0})$ .
We say that a family of hypersurfaces $\{\Gamma_{t}\}_{0\leq t\leq T}$ belongs to $C^{1,2+\alpha}$ when

the signed distance function of $\Gamma_{t}$ belongs to $C^{1,2+\alpha}$ in a neighborhood
of $\{\Gamma_{t}\}_{0\leq t\leq T}$ . The precise definition will be given in Section 3.

Now the main result of this paper is as follows.
Theorem 1.1 (Existence and uniqueness).
Let $\alpha\in(0,1)$ . Assume that $u_{0}\in C^{\alpha}(\mathbb{R}^{n})$ with $\nabla\cdot u_{0}=0$ and $\Omega_{0}$ is a
bounded domain with $C^{2+\alpha}$ boundary. Let $\Gamma_{0}=\partial\Omega_{0}$ . Then there exists
a positive $T$ such that there is a unique solution $(u, \{\Gamma_{t}\}_{0\leq t<T})$ solving
$(FBP)$ with initial data $(u_{0}, \Gamma_{0})$ satisfying that $u\in C^{\frac{\alpha}{2},\alpha}([0, T\overline{]}\cross \mathbb{R}^{n})$ and
$\{\Gamma_{t}\}_{0\leq t\leq T}$ belongs to $C^{1,2+\alpha}$ .

As far as the author knows, there are few mathematical results for the
free boundary problems in the presence of the term $\sigma_{2}H\nu$ in (BC). But
under the kinematic boundary condition (BC’), there is much literature
for the free boundary problems of viscous incompressible (Navier-Stokes)
flows with or without surface tension.

Solonnikov [25] and Shibata-Shimizu [23] proved the local well-posedness
in Sobolev spaces for one phase flow problems without surface tension.
Mogilevskii-Solonnikov [17] showed the local well-posedness in H\"older
spaces for one face flow problems with surface tension; see also Solon-
nikov [26], Shibata-Shimizu [24]. Denisova [4] and Tanaka [29] studied
the two phase flows problems in the Sobolev-Slobodetskii spaces. It is
also known that the global solvability holds near the equilibrium states
for one or two phase flows problems; see Padula-Solonnikov [25] and
Tanaka [28].

In these papers regular solutions are considered and Lagrangian coor-
dinates are used in order to reduce the problem to the case of a fixed
domain. But in our problem such reduction is less useful because of the
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term $\sigma_{2}H\nu$ in (BC). So we shall deal with the equation directly as in
the formulation (FBP), and the free boundary condition appears in the
layer potential term. Although the term $\sigma_{2}H\nu$ could lead to more com-
plicated interactions between the interface and the fluid velocity, we have
a mathematical advantage such that we do not need the compatibility
conditions between the boundary and the initial data. We remark that
such compatibility conditions are required in the above papers.

Let us comment on weak solutions of two phase flows problem. Giga-
Takahashi [8] studied two phase Stokes flows, and Nouri-Poupaud-Demay
[19] studied the multi-phase flows. Both papers deal with the case with-
out surface tension. In Plotnikov [21], Nespoli-Salvi [18], and Abels [1],
the case with surface tension is discussed. However. if surface tension is
present, the existence of weak solutions is still open even for the Stokes
flows, and only measure-valued varifold solutions or varifold solutions are
obtained; see [21], [1] for details.

Now let us state the main idea and the outline of the proof for the
main theorem. As the first step, for a given $u$ in an appropriate class of
functions, we shall construct the family of hypersurfaces evolving by the
equation in (BC). Since it is regarded as the mean curvature equation
with the perturbation term $u$ , we will follow the arguments of Evans-
Spruck [5] (see also A. Lunardi [14] and Giga-Goto [7]), which reduces
the equation to the one for the signed distance function of interfaces.

Next, for a given family of hypersurfaces, we estimate the layer po-
tential term in the integral equation in (FBP). The main difficulty is
that we cannot expect high regularity for $u$ in whole space (for exam-
ple, we cannot expect $u(t)\in C^{1+a}(\mathbb{R}^{n})$ in general) because of the jump
relation of the layer potential. However, in order to obtain a unique
regular solution for the perturbed mean curvature equation in (BC), we
need the regularity for the perturbation term $u$ such as $u(t)\in C^{1+\alpha}(\mathbb{R}^{n})$ .
To overcome these difficulties, we make use of the regularity for $u$ in
tangential directions to the interface. More precisely, if each interface
has $C^{2+\alpha}$ regularity (and suitable regularity with respect to time), we
have the optimal regularity for the layer potential term such as $C^{1+\alpha}$ in
tangential directions. In order to establish this optimal regularity, we
use the H\"older-Zygmund spaces. The desired result in the main theorem
is obtained by constmcting a suitable contraction mapping for velocity
fields.

This report is organized as follows. In Section 2 we give the definitions
of function spaces. In Section 3 we collect the results in [15], in which
the mean curvature equation with a convection term is solved and the
estimates for the layer potential term in (FBP) are established. In Section
4 we solve the integral equation for the Navier-Stokes equations with a
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given layer potential term. In Section 5 we shall construct a suitable
contraction mapping and obtain the desired results.

2. FUNCTION SPACES AND EMBEDDING PROPERTIES

First of all, we introduce several function spaces in which we deal with
the problems. Let $D$ be either $\mathbb{R}^{n}$ or an open set in $\mathbb{R}^{n}$ with uniformly
$C^{2}$ boundary. Let $C(\overline{D})$ denote the Banach space of all continuous and
bounded functions in $\overline{D}$ , endowed with the $\sup$ norm. Let $C^{m}(\overline{D})$ denotes
the set of all $m$ times continuously differentiable functions in $D$ , with
derivatives up to the order $m$ bounded and continuously extendable up
to the boundary. The norm of $C^{m}(\overline{D})$ is defined as

$||f||_{C^{m}(\overline{D})}:= \sum_{0\leq k\leq m}||\partial_{x}^{k}f||_{C(\overline{D})}$

$|| \partial_{x}^{k}f||_{C(\overline{D})}:=\sum_{|\theta|=k}||\partial_{x}^{\theta}f||_{C(\overline{D})}$
.

Here, $\theta=(\theta_{1}, \cdots, \theta_{n})$ is a multi-index. We recall that $C([a, b]\cross\overline{D})$ is the
space of all the continuous and bounded functions in $[a, b]\cross\overline{D}$ , endowed
with the norm

$||f||_{C([a,b]x\overline{D})}(=||f||_{\infty}):= \sup_{(t,x)\in[a,b]\cross\overline{D}}|f(t, x)|$
.

For $0<\alpha<1$ , we denote by $C^{0,\alpha}([a, b]\cross\overline{D})$ (respectively, $C^{\frac{a}{2},0}([a, b]\cross$

$\overline{D}))$ the space of continuous functions that are $\alpha$-H\"older continuous with
respect to the space variables (respectively, $\frac{\alpha}{2}$ -H\"older continuous with
respect to time), i.e.,

$C^{0,\alpha}([a, b]\cross\overline{D})$ $:=\{f\in C([a\}b]\cross\overline{D});f(t, \cdot)\in C^{\alpha}(\overline{D}), t\in[a, b]\}$,

$||f||_{C^{0,\alpha}([a,b]x\overline{D})}(=||f||_{C^{0.\alpha}}):=||f||_{\infty}+ \sup_{t\in[a,b]}[f(t, \cdot)]_{C^{\theta}(\overline{D})}$
,

where
$[g]_{C^{\alpha}(\overline{D})}:=x.y \in,x\neq ys_{\frac{u}{D}}p\frac{|g(x)-g(y)|}{|x-y|^{\alpha}}$

(respectively,

$C^{\frac{\alpha}{2},0}([a, b]\cross\overline{D}):=\{f\in C([a, b]\cross\overline{D});f(\cdot, x)\in C^{\frac{\alpha}{2}}([a, b]), x\in\overline{D}\}$,

$||f||_{c8^{0_{([a,b]x\overline{D})}}}.(=||f||_{c9^{0}}.):=||f||_{\infty}+su[f(\cdot, x)]_{c9_{([a_{r}b])}}x\in^{\frac{p}{D}}’$

where
$[h]_{c9_{([a,b])}}:= \sup_{t,\epsilon\in[a,b]t>s},\frac{|h(t)-hs)|}{(t-s)^{\frac{(\alpha}{2}}})$ .
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Moreover, the function spaces $C^{\frac{\alpha}{2},\alpha}([a, b]\cross\overline{D}),$ $C^{1.2}([a, b]\cross\overline{D}),$ $C^{1,2+\alpha}([a, b]\cross$

$\overline{D}),$ $C^{1+}\tau^{2+\alpha}([a, b]\alpha,\cross\overline{D})$ are defined as follows.

$C^{\frac{\alpha}{2},\alpha}([a, b]\cross\overline{D})$ $:=C^{\frac{\alpha}{2},0}([a, b]\cross\overline{D})\cap C^{0,\alpha}([a, b]\cross\overline{D})$ ,
$||f||_{c’([a,b]\cross\overline{D})}g_{\alpha}(=||f||_{c8^{\alpha}},):=||f||_{C}g,0_{([a,b|x\overline{D})}+||f||_{C^{0,\alpha}([a,b]x\overline{D})}$ .

$C^{1,2}([a, b]\cross\overline{D})$ $:=\{f\in C([a, b]\cross\overline{D});\partial_{t}f, \partial_{ij}f\in C([a, b]\cross\overline{D}), 1\leq i,j\leq n\}$ ,
$||f||_{C^{1,2}(|a,b|\cross\overline{D})}(=||f||_{C^{1.2}}):=||f||_{\infty}+||\partial_{x}f||_{\infty}+||\partial_{t}f||_{\infty}+||\partial_{x}^{2}f||_{\infty}$.

$C^{1,2+\alpha}([a,b]\cross\overline{D}):=\{f\in C^{1,2}([a,b]\cross\overline{D});\partial_{t}f,\partial_{ij}f\in C^{0,\alpha}([a,b]\cross\overline{D}), 1\leq i,j\leq n\}$ ,

$||f||_{c([a,b]\cross\overline{D})}1,2+\alpha(=||f||_{C^{1,2+\alpha}}):=||f||_{\infty}+||\partial_{x}f||_{\infty}+||\partial_{t}$ fll $c^{0,\circ}+||\partial_{x}^{2}f||_{C^{0,\alpha}}$ .
Let $X$ be a Banach space endowed with the norm $||\cdot||_{X}$ . We denote

by $C^{\alpha}([a, b];X)$ the H\"older space such that

$C^{a}([a, b];X)$ $:=$ $\{f\in C([a, b];X);[f]_{C^{\alpha}([a,b];X)}:=\sup_{t,s\in[a,b]t>s},\frac{||f(t)-f(s)||_{X}}{(t-s)^{\alpha}}$ ,

$||f||_{C^{\alpha}([a,b];X)}:= \sup_{a\leq t\leq b}||f(t)||_{X}+[f]_{C^{\alpha}([a,b];X)}<$ oo $\}$ .

Similarly,

Lip$([a, b];X)$ $;=$ $\{f\in C([a, b];X);[f|_{Lip([a,b]_{\backslash }\cdot X)}:=\sup_{t,s\in[a,b]t>s},\frac{||f(t)-f(s)||_{X}}{t-s}$ ,

$||f||_{Lip([a,b],\cdot X)}:= \sup_{a\leq t\leq b}||f(t)||_{X}+[f]_{Lip([a,b];X)}<\infty\}$.

Now we state the embedding properties of the H\"older spaces defined
above. The following lemma will be used freely in this paper.

Lemma 2.1. Let $0<\alpha<1$ . Then there enists a positive constant $K_{\alpha}$

such that for any $f\in C^{1,2+\alpha}([a, b]\cross\overline{D})$ ,

(2.1) $||f||_{C^{1}}+||f||_{Lip([a,b];C^{a}(\overline{D}))}+||\partial_{x}f||_{1\alpha_{0}}.+||\partial_{x}^{2}f||_{C^{\alpha}}$ ,

$\leq$ $K_{\alpha}||f||_{C^{1,2+\alpha}}$

holds. Here, the constant $K_{\alpha}$ is independent of $b-a$ and $f$ .

Proof. See Lunardi $[$ 14, Lemma 5.1.1 $]$ .

3. SEVERAL KEY ESTIMATES IN $[$ 15$]$

In this section we recall several results obtained by [15].
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3.1. Motion of hypersurfaces by mean curvature with a convec-
tion term. We consider the hypersurfaces evolving in time via mean
curvature with a convection term. More precisely, we shall construct
a family of hypersurfaces $\{\Gamma_{t}\}_{0\leq t\leq T}$ such that for $0\leq t_{0}\leq t\leq T$ ,
$\Gamma_{t}=\{x(t, x_{0});x_{0}\in\Gamma_{t_{0}}\}$ satisfies the ODE

$(31 \{\frac{)dx(t)}{dt}$ $=- \frac{\sigma_{2}}{n-1}[div(\nu(t, x(t))]\nu(t, x(t))+u(t, x(t))_{\}t_{0}\leq t\leq T$ ,
$x(t_{0})$ $=x_{0}$ .

Here $\nu(t, x)$ is the exterior unit normal vector of $\Gamma_{t},$
$\sigma_{2}$ is a positive con-

stant, and $u(t, x)$ is a continuous function on $[0, T]\cross \mathbb{R}^{n}$ . The mean
curvature $H(t, x)$ of the surface $\Gamma_{t}$ is given by $H(t, x)=- \frac{1}{n-1}div\nu(t, x)$ .
So if $u\equiv 0$ , the above equation is the well-known mean curvature flow
equation. To construct an evolving hypersurfaces starting from a given
smooth initial hypersurfaces, we will follow the arguments of Evans-
Spruck [5]; see also Lunardi [14]. Let $\{\Gamma_{t}\}_{0\leq t\leq T}$ be the evolving hy-
persurfaces such that each $\Gamma_{t}$ is the boundary of a bounded domain $\Omega_{t}$ .
We reduce the equation to an equation for the signed distance function

(3.2) $d(t, x)=\{\begin{array}{ll}dist (x, \Gamma_{t}), x\in \mathbb{R}^{n}\backslash \overline{\Omega_{t}},- dist (x, \Gamma_{t}), x\in\Omega_{t}.\end{array}$

If $\Gamma_{t}$ is smooth, then the above $d(t, \cdot)$ is also smooth in the set

$D^{+}:=\{x\in \mathbb{R}^{n} ; 0\leq d(t, x)<\delta_{0}\}$

and
$D^{-};=\{x\in \mathbb{R}^{n} ; -\delta_{0}<d(t, x)\leq 0\}$ ,

provided $\delta_{0}>0$ and $T>0$ is small. Moreover, if $\delta_{0}$ is sufficiently small,
for each $x\in D^{+}$ there exists a unique $y\in\Gamma_{t}$ such that $d(t, x)=|y-x|$ .
The equation (3.1) implies that

$d_{t}(t, x)$ $=$ $< \frac{dy}{dt},$
$\frac{y-x}{|y-x|}>$

$=$ $<- \frac{\sigma_{2}}{n-1}[div\nu(t, y)]\nu(t, y)+u(t, y),$ $\frac{y-x}{|y-x|}>$

$=$ $\frac{\sigma_{2}}{n-1}div\nu(t, y)-u(t, x-d\nabla_{x}d(t, x))\cdot\nabla_{x}d(t, x)$ .

It is well-known that the eigenvalues of the Hessian $\nabla^{2}d(t, x)$ are given
by

(3.3) $\lambda_{i}=-\frac{\kappa_{i}(t,y)}{1-\kappa_{i}(t,y)d(t,x)},$ $i=1,$ $\cdots,$ $n-1,$ $\lambda_{n}=0$ ,
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where $\kappa_{i}$ are the principal curvatures of the surface $\Gamma_{t}$ . Since the mean
curvature $H$ is defined as $H= \frac{1}{n-1}\sum_{i=1}^{n,-1}\kappa_{i}$ , we have

(3.4) $d_{t}= \frac{\sigma_{2}}{n-1}f(d, \nabla^{2}d)-u(t, x-d\nabla d)\cdot\nabla d$ ,

where

(3.5) $f(s, q)= \sum_{i=1}^{n}\frac{\lambda_{i}}{1-\lambda_{i}s},$ $s\in \mathbb{R},$ $q\in \mathbb{R}_{s}^{nxn},$ $\lambda_{i}s\neq 1$ .

Here $\lambda_{i}$ are the eigenvalues of the symmetric matrix $q$ . The same equa-
tion can be deduced for $x\in D^{-}$ Since $|d|$ is a distance function, the
spatial gradient $\nabla d$ should have modulus 1 at any point. This provides
a nonlinear first order boundary condition for $d$ . So the equation (3.1) is
reduced to the following fully nonlinear parabolic problem

(3.6) $\{\begin{array}{l}\partial_{t}v=\frac{\sigma_{2}}{n-1}f(v, \nabla^{2}v)-u(t, x-v\nabla v)\cdot\nabla v, t\geq 0, x\in\overline{D},|\nabla v|^{2}=1, t\geq 0, x\in\partial D,v(O, x)=d_{0}(x), x\in\overline{D},\end{array}$

where $D=D^{+}\cup D^{-}=\{x\in \mathbb{R}^{n}, -\delta_{0}<d_{0}(x)<\delta_{0}\}$. $d_{0}$ is the signed
distance function from $\Gamma_{0}$ , and $f$ is given as above. We choose $\delta_{0}$ so
small that $\lambda_{i}(\nabla^{2}d_{0})\delta_{0}\neq 1$ for each $i$ , so $f$ is well-defined near the range
of $(d_{0}(x), \nabla^{2}d_{0}(x))$ . Since $f(s.q)=$ Tr $(q(I-sq)^{-1}),$ $f$ is analytic. More-
over, since Tr $(_{\partial q}^{I}\partial(s, q)A)=$ Tr $((I-sq)^{-2}A)$ for $A\in \mathbb{R}^{n\cross n}$ , we have for
$\xi\in \mathbb{R}^{n}$ ,

$\sum_{i,j=1}^{n}f_{q_{ij}}(9, q)\xi_{i}\xi_{j}$ $=$ $Tr(\frac{\partial f}{\partial q}(s, q)\xi\otimes\xi)$

$=$ $\sum_{i=1}^{n}\frac{1}{(1-\lambda_{i}s)^{2}}<\xi,\overline{e}_{i}>^{2}$,
.

where $\{e_{1}^{-}, \cdots. e_{n}^{-}\}$ is an orthogonal basis in $\mathbb{R}$“ such that each $\overline{e}_{i}$ is an
eigenvector of $q$ with eigenvalue $\lambda_{i}$ . Thus we have

(3.7) $\sum_{i,j=1}^{n}f_{q_{ij}}(s, q)\xi_{i}\xi_{j}\geq\iota(s, q)|\xi|^{2}$ ,

with $\iota(s, q)=\min_{1\leq i\leq n}(1-\lambda_{i}s)^{-2}$ .
Set $g(p)=p^{2}-1$ . In order to solve the equation (3.6), we linearize the

principal term $f(v, \nabla^{2}v)$ near the initial data $(d_{0}, \nabla^{2}d_{0})$ and $g(\nabla d_{0})$ near
$(\nabla d_{0})$ . The existence and uniqueness results of the equation is proved by
the general results for the linear parabolic equations and the usual con-
traction arguments. Let $B(d_{0}, \nabla^{2}d_{0})$ be a bounded open neighborhood
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of the set $\{(d_{0}(x), \nabla^{2}d_{0}(x))\in \mathbb{R}\cross \mathbb{R}^{nxn} ; x\in\overline{D}\}$ such that for each
$(s, q)\in B(d_{0}, \nabla^{2}d_{0})$ , the function $f(s, q)$ is well-defined. Set
(3.8) $\iota$ $:= \inf\{\iota(s, q) ; (s, q)\in B(d_{0}, \nabla^{2}d_{0})\}>0$

(3.9) $K_{f}$ $:= \sup\{|\frac{\partial^{\beta}f}{\partial s\partial q}(s, q)|;(s, q)\in B(d_{0}, \nabla^{2}d_{0}), |\beta|=0,1,2\}$ .

Fix $M>0$ . We assume that the perturbation term $u(t, x)$ belongs to
$\mathcal{U}_{M}$ , the closed subset of $C^{0,\alpha}([0, T]\cross \mathbb{R}^{n})$ , defined as
(3.10)$\mathcal{U}_{M}$ $:=$ $\{u(t, x)\in C^{0,\alpha}([0, T]\cross \mathbb{R}^{n});u(t, \cdot)\in C^{1+\alpha}(\mathbb{R}^{n})$ , and

$\sup_{0<t<T}||u(t, \cdot)||_{C^{\alpha}(\mathbb{R}^{n})}t^{\frac{1-\alpha}{2}}$

$+ \sup_{0<t<T}t^{\frac{1}{2}}[\partial_{x}u(t, \cdot)]_{C^{\alpha}(\mathbb{R}^{n})}\leq M\}$

The following proposition states the existence and uniqueness of the
equa.tion (3.6).

Proposition 3.1 ([15]). Fix $M>0$ . Let $\alpha\in(0,1)$ . Assume that $\Omega_{0}$ is
a bounded domain with uniformly $C^{2+\alpha}$ boundary and let $d_{0}$ be the signed
distance function from $\Gamma_{0}=\partial\Omega_{0}$ . Then there is some $T>0$ such that
for any $u\in \mathcal{U}_{M}$ , there exists a unique $v\in C^{1,2+\alpha}([0, T]\cross\overline{D})$ , solution of
(3.6). Moreover, the solution $v$ satisfies
(3.11) $||v||c1,2+a([0,T]\cross\overline{D})\leq||d_{0}||_{C^{2+\alpha}}+2C(||d_{0}||_{C^{2+\alpha}}, M)$ ,

(3.12) $|| \partial_{x}v||_{C^{1,2+\alpha}([t_{1},t_{2}]x\overline{D})}\leq C(\frac{(t_{2}-t_{1})^{\frac{1}{2}}}{t_{1}}+t_{1}^{-\frac{1}{2}})$,

for any open set $D’\subset\subset D$ and $0<t_{1}<t_{2}\leq T$ . Especially, the existence
time of the solution does not depend on each $u\in \mathcal{U}_{M}$ , and $\Gamma_{t}$ is a $C^{3+\alpha}$

hypersurface for each $0<t\leq T.$ Hence, this $\{\Gamma_{t}\}_{0\leq t\leq T}$ is a unique
family of $C^{2+\alpha}$ hypersurfaces evolving by the perturbed mean curvature
equation (3.1) starting from $\Gamma_{0}$ .

Proof. See [15, Proposition 3.1].

Let $u(t, x)$ and $\overline{u}(t, x)$ be two functions in $\mathcal{U}_{M}$ . Let $v,\tilde{v}\in C^{1,2+\alpha}([0, T]\cross$

$\overline{D})$ be solutions of the equation (3.6) with initial data $v(O, x)=\tilde{v}(O,x)=$

$d_{0}(x)$ and with velocity fields $u,\tilde{u}$ , respectively. Note that for fixed
$M>0$ and $d_{0}$ , the above $T$ can be taken uniformly in $u$ belonging to

$\mathcal{U}_{M}$ . In order to solve (FBP) we need the following

Proposition 3.2 ([15]). Fix $M>0$ . Let $\alpha\in(0,1)$ . Assume that $\Omega_{0}$ be
a bounded domain with uniformly $C^{2+\alpha}$ boundaw and let $d_{0}$ be the signed
distance function from $\Gamma_{0}=\partial\Omega_{0}$ . Let $u,\tilde{u}$ , $v_{j}\tilde{v}$ be functions defined
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above. Then it follows that

(3.13) $||v-\tilde{v}||_{C^{1,2+\alpha}(\{0_{\tau}T]x\overline{D})}\leq C||u-\tilde{u}||_{C^{0,\alpha}([0,\eta\cross \mathbb{R}^{n})}$ ,

where $C$ depends only on $n,$ $\alpha,$
$\iota$ . $M,$ $\sigma_{2},$ $K_{f},$ $K_{\alpha}$ , and $||d_{0}||_{C^{2+a}}$ .

Proof. See [15, Proposition 3.3].

3.2. Estimates for layer potential. In this section, we shall recall
the estimates of the term

(3.14) $F(t, x)$ $:= \int_{0}^{t}e^{(t-s)\Delta}Ph\mathcal{H}_{L^{-}}^{n_{\Gamma_{s}}1}ds$ ,

which reflects the boundary condition on $\Gamma_{t}$ when $h=H\nu$ . First, we
define the class of the evolving hypersurfaces which we deal with. Let $\Gamma_{0}$

be a boundary of a smooth bounded domain $\Omega_{0}$ . Let $d_{0}$ be the signed
distance function of $\Gamma_{0}$

(3.15) $d_{0}(x)=\{\begin{array}{l}dist (x, \Gamma_{0}), x\in \mathbb{R}^{n}\backslash \overline{\Omega_{0}},- dist (x, \Gamma_{0}), x\in\Omega_{0}.\end{array}$

We set

(3.16) $D$ $:=\{x\in \mathbb{R}^{n} ; -\delta_{0}<d_{0}(x)<\delta_{0}\}$

for sufficiently small $\delta_{0}$ . We assume that $\Gamma_{0}$ is uniformly $C^{2+\alpha}$ , that is,
$d_{0}\in C^{2+\alpha}(\overline{D})$ . Since $d_{0}$ is a distance function, we have $|\partial_{x}d_{0}(x)|\equiv 1$ on
$x\in\overline{D}$ .

Definition 3.1. Let $R\geq 1$ be a given number and $\alpha\in(0,1)$ . We de-
fine the set $S(\alpha, R\}T, d_{0})$ as the set offamilies of hypersurfaces $\{\Gamma_{t}\}_{0\leq t\leq T}$

such that each $\Gamma_{t}$ is a boundary of a bounded domain $\Omega_{t}\subset \mathbb{R}^{n}$ and rep-
resented as

(3.17) $\Gamma_{t}=\{x\in D;v(t, x)=0\}$

by $fhe$ signed distance function $v\in C^{1,2+\alpha}([0, T]\cross\overline{D})sat?,sfying||v||_{C^{1,2}+a([0,\eta x\overline{D})}\leq$

$R$ and $v(O, x)=d_{0}(x)$ .

The following estimates for the layer potential play essential roles.

Proposition 3.3 ([15]). Let $p\in(1, \infty]$ . $\alpha,$ $\beta\in(0,1)$ . Assume that
$R\geq 1$ is a given number and $\Gamma_{0}$ is a given $C^{2+\alpha}$ hypersurface. Let $d_{0}$ be
the signed distance function and let $\{\Gamma_{t}\}_{0\leq t\leq T}$ be an evolving hypersurface
belonging to $S(\alpha, R, T, d_{0})$ . Then for sufficiently small $T>0$ the function
$F(t, x)$ given as (3.14) satisfies the following estimates.
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(3.18)

(3.19)

(3.20)

$||F||_{c\ovalbox{\tt\small REJECT}.\beta}([0,T]\cross \mathbb{R}^{n})\leq c_{1}\tau^{\frac{1-\beta}{2}||h||_{C([0,T]x\overline{D})}}$,

$\sup_{0\leq t\leq T}||F(t)$ II $L^{p}(\mathbb{R}^{n})\leq c_{2}\tau_{\vec{2}}^{1}||h||_{C([0_{\tau}T]x\overline{D})}$ ,

$\sup_{0\leq t\leq T}||F(t)||_{C^{1+\alpha}(\Gamma_{t})}\leq C_{3}||h||_{C^{0,\alpha}([0T]x\overline{D})})$’

where $C_{1}=C_{1}(n, \beta, r, R),$ $C_{2}=C_{2}(n,p, r, R)$ , and $C_{3}=C_{3}(n, \alpha, r, R)$ .

Proof. See [15, Proposition 4.1].

4. MILD SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

In this section we shall construct the mild solution of the Navier-Stokes
equation with initial velocity $u_{0}\in C^{\alpha}(\mathbb{R}^{n})$ and with a term of the layer
potential $h\mathcal{H}_{L^{-}}^{n_{\Gamma_{t}}1}$ for convenience to reader. Thanks to the estimates for
the layer potential term stated in the previous section, we can obtain
the appropriate regularity for solutions in tangential directions to $\Gamma_{t}$ .
We recall that the mild solution of the Navier-Stokes equations is the
solution of the integral equation

$u(t)=e^{t\Delta}u_{0}- \int_{0}^{t}e^{(t-s)\Delta}P\nabla\cdot u\otimes uds+\int_{0}^{t}r_{s}\cdot$

Let a $\in(0,1)$ . Assume that $u_{0}\in C^{\alpha}(\mathbb{R}^{n})$ satisfies $\nabla\cdot u_{0}=0$ and
$d_{0}$ is the distance function of a $C^{2+\alpha}$ hypersurface $\Gamma_{0}$ . Let $R\geq 1$ be a
given number and let $\{\Gamma_{t}\}_{0\leq t\leq T_{1}}$ be an evolving hypersurfaces belonging
to $S(\alpha, R, T_{1}, d_{0})$ . Then we have the following proposition.

Proposition 4.1. There exists a positive $T\leq T_{1}$ such that the mild
solution $u$ belonging to $C^{\frac{\alpha}{2},\alpha}([0, T]\cross \mathbb{R}^{n})$ uniquely exists. The $e$ vistence
time $T$ can be taken uniformly in $S(\alpha, R, T_{1}, d_{0})$ . Moreover, this solution
satisfies the following estimates.

(4.1) $||u||_{C} g_{([0,Tx\mathbb{R}^{n})}\alpha\leq C||u_{0}||_{C^{\alpha}(\mathbb{R}^{n})}+c_{1}\tau\frac{1-\alpha}{2}||h||_{C([0,T]x\overline{D})}$,

(4.2) $\sup_{0<t<T}t^{\frac{1-\alpha}{2}}||u(t, \cdot)||_{C^{1}(\Gamma_{t})}+\sup_{0<t<T}t^{\frac{1}{2}}||u(t, \cdot)||_{C^{1}+\alpha(\Gamma,)}$

$\leq C||u_{0}||_{C^{a}(\mathbb{R}^{n})}+c_{2}\tau\frac{1-\alpha}{2}||h||_{C^{0,0}([0.T]\cross\overline{D})}$,

where $C=C(n, \alpha),$ $C_{1}(n, \alpha, d_{0}, R)$ , and $C_{2}(n, \alpha, d_{0}, R)$ .
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. Proof. We will follow the contraction argument by Kato [10]. Since
this argument is well-known, we state only the outline of the proof. Set

$F_{0}:=e^{t\Delta}u_{0}$ ,

$B(f, g):= \int_{0}^{t}e^{(t-\theta)\Delta}P\nabla\cdot f\otimes gds$ , $f$ . $g\in C^{0,\alpha}([0, T]\cross \mathbb{R}^{n})$ ,

$F:= \int_{0}^{t}e^{(t-\epsilon)\Delta}Ph\mathcal{H}_{L^{-1}}^{n_{\Gamma_{s}}}ds$ .

From the pointwise estimate of the kernel $e^{t\Delta}P\nabla$ . in [16], it is not
difficult to derive the estimate

(4.3) $||B(f, g)||_{c9_{([0,T]\cross \mathbb{R}^{n})}^{\alpha}},\leq CT^{\frac{1}{2}}||f||_{C^{0.\alpha}([0,T]\mathbb{R}^{n})}X^{1}||g||_{C^{0\alpha}([0,T]x\mathbb{R}^{n})}$

where $C$ depends only on $n$ and $\alpha$ . Combining the estimates for the heat
semigroup and Proposition 3.3, we easily see that

(4.4) $G(w):=F_{0}-B(w, w)+F$

is a contraction mapping from the usual closed ball in $C^{\frac{a}{2}.\alpha}([0, T]\cross \mathbb{R}^{n})$

with radius $2(||F_{0}||_{C^{0.\alpha}([0,T]\cross R^{n})}+||F||_{C^{0,\alpha}([0.T]\cross \mathbb{R}^{n})})$ into itself for suffi-
ciently small $T\leq T_{1}$ . This implies the time-local existence of the unique
solution $u$ . Note that the existence time can be taken uniformly in
$S(\alpha, R, T_{1}, d_{0})$ since the constants in Proposition 3.3 do not depend on
each family of hypersurfaces in $S(\alpha, R, T_{1}, d_{0})$ . The estimate (4.1) is
obvious. We shall show the estimate (4.2). Note that we have

$||\partial_{x}F_{0}(t, \cdot)||_{C(\mathbb{R}^{n})}\leq Ct^{-\frac{1-\alpha}{2}||u_{0}||_{C^{\alpha}}}$ ,
$[\partial_{x}F_{0}(t, \cdot)]_{C^{a}(\mathbb{R}^{n})}\leq Ct^{-\frac{1}{2}}||u_{0}||_{C^{\alpha}}$ .

As for the nonlinear term $B(f, g)$ , we recall the estimates
$||\nabla e^{t\Delta}\mathbb{P}\nabla\cdot f||_{C(\mathbb{R}^{n})}\leq Ct^{-1}||f||_{C(\mathbb{R}^{n})}$ ,
$||\nabla e^{t\Delta}\mathbb{P}\nabla\cdot f||_{C(N^{n})}\leq Ct^{-\frac{1}{2}}||\nabla f||_{C(N^{n})}$ ,

for any $f\in(C^{1}(\mathbb{R}^{n}))^{n\cross n}$ ; for example, see [16, Corollary 3.1]. By inter-
polating these estimates, we have

(4.5) $||\nabla e^{t\Delta}\mathbb{P}\nabla\cdot f||_{C(\mathbb{R}^{n})}\leq Ct^{-1+\frac{a}{2}}||f||_{C^{\alpha}}$.
Hence we have

$||\nabla B(f, g)(t, \cdot)||_{C(\mathbb{R}^{n})}$ $\leq$ $C \int_{0}^{t}(t-s)^{-1+\frac{\alpha}{2}}||f\otimes g(s)||_{C^{\alpha}(\mathbb{R}^{n})}ds$

$\leq$ $Ct^{\frac{\alpha}{2}}||f||_{C^{0,\alpha}([0,T]x\mathbb{R}^{n})}||g||_{C^{0,\alpha}([0,T]x\mathbb{R}^{n})}$ ,

thus
$||\nabla B(f, g)||’\leq CT^{\frac{\alpha}{2}}||f||_{C^{0_{r}\alpha}([0,T]x\mathbb{R}^{n})}||g||_{C^{0,\alpha}([0_{r}T]x\mathbb{R}^{n})}$ .

22



Next since the Helmholtz projection $P$ is bounded in the homogeneous
counterpart of $C^{\alpha}(\mathbb{R}^{n})$ , we see

$[ \nabla B(f, g)(t, \cdot)]_{C^{\alpha}(\mathbb{R}^{n})}\leq C[\nabla\int_{0}^{t}e^{(t-\delta)\Delta}\nabla\cdot f\otimes gds]_{C^{a}(\mathbb{R}^{n})}$ .

Then, from the maximal regularity estimates for the heat equation (see
$[$ 14$])$ , we easily obtain
(4.6) $||\nabla B(f, g)||_{C^{0,\alpha}([0,T]xR^{n})}\leq C||f||_{C^{0,\alpha}([0_{y}T]x\mathbb{R}^{n})}||g||_{C^{0,\alpha}([0,T]x\mathbb{R}^{n})}$ .

Combining the above estimates with the estimate for $F$ in tangential
direction to $\Gamma_{t}$ established in Proposition 3.3, we have the desired esti-
mates. This completes the proof.

5. CONSTRUCTION OF THE SOLUTION FOR FREE BOUNDARY
PROBLEM

Now we return to the problem (FBP). In this section we shall prove the
main theorem. Let $u_{0}$ be a function in $C^{\alpha}(\mathbb{R}^{n})$ and satisfy $\nabla\cdot u_{0}=0$ . Let
$\Gamma_{0}$ be a $C^{2+\alpha}$ hypersurface which is a boundary of a bounded domain $\Omega_{0}$

and let $d_{0}$ be the signed distance function of $\Gamma_{0}$ . We set $F_{0}(t, \cdot)=e^{t\Delta}u_{0}$

and
(5.1)
$M:=2(||F_{0}||_{C}+t^{\frac{1-\alpha}{2}}$ .

Recall that $\mathcal{U}_{M}$ is the closed subset of $C^{0,\alpha}([0, T]\cross \mathbb{R}^{n})$ defined as
(5.2) $\mathcal{U}_{M}=\{u(t_{\dot{v}}x)\in C^{0.\alpha}([0, T]\cross \mathbb{R}^{n});u(t, \cdot)\in C^{1+\alpha}(\mathbb{R}^{n})$ ,

$L_{u}:= \sup_{0<t<T}||u(t, \cdot)||_{C^{a}(\mathbb{R}^{n})}t^{\frac{1-\alpha}{2}}$

$+t^{1}[\partial_{x}u(t, \cdot)]_{C^{\alpha}(N^{n})}\leq M\}$

From Proposition 3.1 there exists a positive $T_{1}$ such that for any
$u\in \mathcal{U}_{M}$ , there exists a unique family of hypersurfaces $\{\Gamma_{t}^{u}\}_{0\leq t\leq T_{1}}$ evolving
via perturbed mean curvature equation (3.1) starting from $\Gamma_{0}$ . More-
over, this $\{\Gamma_{t}^{u}\}_{0\leq t\leq T_{1}}$ belongs to $S(\alpha, R, T_{1}, d_{0})$ with $R=$ I $d_{0}||_{C^{2+\alpha}}+$

$2C(||d_{0}||_{C^{2+a}(\overline{D})}, K_{f}, M)$ . Let $v$ be the signed distance function of $\{\Gamma_{t}^{u}\}_{0\leq t\leq T_{1}}$ .
From Proposition 3.1 we also have

$\sup_{0<t<T_{1}}t^{\frac{1}{2}}||\partial_{x}^{3}v(t, \cdot)||_{C^{cv}(\overline{D’})}<\infty$ ,

for any open set $D^{t}\subset\subset D$ . Then if $T_{2}<T_{1}$ is sufficiently small, we can
set

(5.3) $C_{4}:= \sup_{0<t<T_{2}}t^{\frac{1}{2}}||\partial_{x}^{3}v(t, \cdot)||_{C^{\alpha}(\cup\overline{O})}1\leq k\leq mk$ ’
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where $\{O_{k}\}_{k=1}^{m},$ $O_{k}\subset\subset D$ is a suitable family of open sets covering any
hypersurfaces belonging to $S(\alpha, R, T_{2}, d_{0})$ . Note that $C_{4}$ is bounded uni-
formly in each function belonging to $\mathcal{U}_{M}$ . Set

(5.4) $F^{u}(t, \cdot)$ $:= \int_{0}^{t}e^{(t-s)\Delta}P\sigma_{1}H^{u}\nu^{u}\mathcal{H}_{\llcorner}\Gamma^{u}ds$ ,

where $H^{u},$ $\nu^{u}$ are the mean curvature and the exterior unit normal vector
of $\Gamma_{t}^{u}$ , respectively. For the signed distance function $v$ , the exterior unit
normal vector $\nu^{u}(t, x)$ and the mean curvature $H^{u}(t, x)$ of the surface $\Gamma_{t}$

are given by

(5.5) $\nu^{u}(t, x)$ $=$ $\nabla_{x}v(t, x)$ ,

(5.6) $H^{u}(t, x)$ $=$ $- \frac{1}{n-1}div\nu(t, x)=-\frac{1}{n-1}\Delta v(t, x)$ .

Since $v$ is a function on $[0, T]\cross\overline{D},$ $\nu$ and $H^{u}$ can be also regarded as
functions on $[0, T]\cross\overline{D}$ . Especially, if $\{\Gamma_{t}\}_{0\leq t\leq T}$ is an evolving hypersur-
face belonging to $S(\alpha, R, T, d_{0})$ , then the mean curvature vector $H^{u}\nu^{u}$

belongs to $C^{0,\alpha}([0, T]\cross\overline{D})$ as the function on $[0, T]\cross\overline{D}$ . Moreover, if
the above $v$ satisfies $\sup_{0<t<T}t^{\frac{1}{2}}||\partial_{x}v^{3}(t, \cdot)||_{C^{\alpha}(\overline{D})}<\infty$ for an open set
$D’\subset\subset D$ , then

(5.7) $\sup_{0<t<T}t^{\frac{1}{2}}||\partial_{x}H^{u}(t, \cdot)||_{C^{\alpha}(\overline{D’})}\leq C\sup_{0<t<T}t^{\frac{1}{2}}||\partial_{x}^{3}v(t, \cdot)||_{C^{a}(\overline{D’})}$ .

From Proposition 3.3, the function $F^{u}$ satisfies

(5.8) $||F^{u}||_{c8_{([0,T_{2}]x\overline{D})}^{\alpha}},\leq\sigma_{1}CT^{\frac{1-\alpha}{2}}$ ,

(5.9) $\sup_{0\leq t\leq T_{2}}||F^{u}(t)||_{C^{1+a}(\Gamma_{t})}\leq\sigma_{1}C$
,

where $C$ depends only on $n,$ $\alpha,$
$R$ , and $\Gamma_{0}$ . Since $F^{u}(t, \cdot)$ belongs to

$C^{1+\alpha}(\Gamma_{t}^{u})$ for each $t\in(0, T_{2}]$ , we can construct the function in $C^{1+\alpha}(\mathbb{R}^{n})$

as the extension of $\gamma_{\Gamma_{t}^{u}}F^{u}(t, \cdot)$ , where $\gamma_{\Gamma_{t}^{u}}$ is the restriction operator on
$\Gamma_{t}^{u}$ . We fix the way of the extension as in [15, Section 5]. Then obviously
we have $E^{v}(F^{u})(t, x)=F^{u}(t, x)$ for all $x\in\Gamma_{t}$ and

(5.10) 1 $E^{v}(F^{u})||_{c^{a}}\tau^{\alpha}([0,T_{2}]x\overline{D})\leq C_{5}\sigma_{1}CT^{\frac{1-\alpha}{2}}$ ,

(5.11) $\sup_{0\leq t\leq T_{2}}||E^{v}(F^{v})(t)||_{C^{1+\alpha}}(\mathbb{R}^{n})\leq C_{5}\sigma_{1}C$ ,

where $C_{5}$ depends only on $n,$ $R$ , and $\Gamma_{0}$ . Note that, although the exten-
sion $E^{v}$ depends on $\{\Gamma_{l}^{u}\}_{0\leq t\leq T_{2}}$ , the constant $C_{5}$ is independent of each
evolving hypersurface belonging to $\bigcup_{0<T\leq T_{2}}S(\alpha, R, T, d_{0})$ . Let $\Psi_{0}(u)$ be
the unique mild solution to the Navier-Stokes equations with initial ve-
locity $u_{0}$ and with the layer potential $\sigma_{1}H^{u}\nu^{u}\mathcal{H}_{L^{-1}}^{n_{\Gamma_{t}}}$ , i.e., $\Psi_{0}(u)$ satisfies
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(5.12) $\Psi_{0}(u)=W$ where $W=F_{0}-B(W, W)+F^{u}$

where $F_{0}$ and $B(W, W)$ are defined in Section 4. We define the map $\Psi(u)$

by

(5.13) $\Psi(u)=F_{0}-B(W, W)+E^{v}(F^{u})=:w+E^{v}(F^{u})$ .
By the estimates in Proposition 4.1, it is not difficult to see that $\Psi(u)$

maps $\mathcal{U}_{M}$ into $\mathcal{U}_{M}$ if we take $T<T_{2}$ sufficiently small. So we shall show
that $\Psi(u)$ is a contraction mapping. Let $u,\tilde{u}\in \mathcal{U}_{M}$ and let $v,\tilde{v}$ be the
signed distance functions of $\{\Gamma_{t}^{u}\}_{0\leq t\leq T},$ $\{\Gamma_{t}^{\overline{u}}\}_{0\leq t\leq T}$ , respectively. Then
from [15, Proposition 5.1] we have

(5.14) 1 $E^{v}(F^{u})-E^{\tilde{v}}(F^{\overline{u}})||_{C^{0,\alpha}}\leq CT^{\frac{1}{2}}||v-\tilde{v}||_{C^{1,2}+\alpha([0,T]_{X\bigcup_{1\leq k\leq m}}\overline{O_{k}})}$ .

Next we estimate $w-\tilde{w}$ where $w=W-F^{u}$ and $\tilde{w}=\tilde{W}-F^{\tilde{u}}$ . Since $w$

solves the equation

$w=F_{0}-B(w, w)-B(w, F^{u})-B(F^{u}, w)-B(F^{u}, F^{u})$ ,
we can show that
$||w-\tilde{w}||_{C^{0\alpha}})$ $\leq$ $C(||B(F^{u}-F^{\tilde{u}}, w)||_{C^{0,\alpha}}+||B(w, F^{u}-F^{\tilde{u}})||_{C^{0,a}}$

$+||B(F^{u}-F^{\tilde{u}}, F^{u})||_{C^{0,\alpha}}+||B(F^{\overline{u}}, F^{u}-F^{\overline{u}})||_{C^{0,\alpha}})$ .
Since $F^{u}(t)-F^{\tilde{u}}(t)$ belongs to $L^{p}(\mathbb{R}^{n})$ for $1<p\leq\infty$ by (3.19), we

obtain

$||B(F^{u}-F^{\tilde{u}}, w)(t)||_{C^{a}}$ $\leq$ $C \int_{0}^{t}(t-s)^{-\frac{1+\alpha}{2}-\frac{n}{2p}}||(F^{u}(s)-F^{\overline{u}}(s))\otimes w(s)||_{L\rho}ds$

$\leq$ $c\tau^{\frac{1-\alpha}{2}-\frac{\iota}{2p}||w||_{C^{0_{1}\alpha}}\sup_{0<t<T}||F^{u}(t)-F^{\tilde{u}}(t)||_{LP}}$

for sufficiently large $p<\infty$ . Here we used the fact that the Helmholtz
projection is bounded in $L^{p}(\mathbb{R}^{n})$ . Similar estimates for other terms lead
to

(5.15) $||w- \tilde{w}||_{C^{0_{1}\alpha}}\leq CMT^{\frac{1-\alpha}{2}\frac{n}{2p}}\sup_{0<t<T}||F^{u}(t)-F^{\tilde{u}}(t)||_{L^{p}}$ .

The calculations using the partition of unity as in [15, Appendix] give
the estiinate of $\sup_{0<t<T}||F^{u}(t)-F^{\tilde{u}}(t)||_{L^{p}(\mathbb{R}^{n})}$ such as

(5.16) 1 $F^{u}(t)-F^{\tilde{u}}(t)||_{L^{p}(\mathbb{R}^{n})}\leq Ct^{\frac{1}{2p}}||v-\tilde{v}||_{C^{1.\alpha}}$

where $C$ dependsonly on $p,$ $n,$ $\alpha$ , and the initial interface $\Gamma_{0}$ . We omit the
details here. Now by Proposition 3.2 we observe that $\Psi$ is a contraction
mapping if $T$ is sufficiently small.

Finally, let $u^{*}$ be the unique fixed point of $\Psi$ in $\mathcal{U}_{M}$ . Then we can
check that the pair $(\Psi_{0}(u^{*}), \{\Gamma_{t}^{u^{*}}\}_{0\leq t\leq T})$ is the unique solution of the
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free boundary problem. Indeed, since $u^{*}=\Psi(u^{*})$ , we have from the
definition of $\Psi_{0}$ ,

$\Psi_{0}(u^{*})(t, x)$ $=$ $F_{0}(t, x)-B(\Psi_{0}(u^{*}), \Psi_{0}(u^{*}))+F^{u}(t, x)$

$=$ $F_{0}(t, x))-B(\Psi_{0}(u^{*}), \Psi_{0}(v^{*}))+E^{v^{*}}(F^{u^{r}})(t, x)$

$=$ $\Psi(u^{*})(t, x)$

$=$ $u^{*}(t,\cdot x)$

for any $(t, x) \in\bigcup_{0\leq t\leq T}\{t\}\cross\Gamma_{t}^{u^{r}}$ Hence, $\{\Gamma_{t}^{u^{*}}\}_{0\leq t\leq T}$ evolves by the
equation

$\{\begin{array}{l}\frac{dx}{dt} =\sigma_{2}H^{*}(t, x)\nu^{*}(t, x)+u^{*}(t, x)=\sigma_{2}H^{*}(t, x)\nu^{*}(t, x)+\Psi_{0}(u^{*})(t, x),x(0) =x_{0}\in\Gamma_{0},\end{array}$

that is, the pair $(\Psi_{0}(u^{*}), \{\Gamma_{t}^{u^{*}}\}_{0\leq t\leq T})$ is a solution of our free boundary
problem.

Although the above mapping $\Psi$ depends on the particular way of the
extension, we can see that the solution, in fact, does not depend on such
extension and is unique in the class stated in the main theorem. To
see this, let $(u, \{\Gamma_{t}\}_{0\leq t\leq T})$ be another pair of the solution for (FBP).
Let $v$ be the signed distance function of $\{\Gamma_{t}\}_{0\leq t\leq T}$ . Then, $v$ belongs to
$C^{1.2+\alpha}([0, T]\cross\overline{D})$ where $D=\{x\in \mathbb{R}^{n} ; -\delta<d_{0}(x)<\delta\}$ for sufficiently
small $\delta>0$ . Since $\{\Gamma_{t}\}_{0\leq t\leq T}$ evolves by the equation in (BC), $v$ satisfies
the equation (3.6) in Section 3. The important fact is that for any $x\in$

$\overline{D}$ , the point $x-v(t, x)\nabla_{x}v(t, x)$ must belong to $\Gamma_{t}$ by the definition
of the signed distance function. This implies that for any $\tilde{u}$ satisfying
$\tilde{u}=u$ on $\bigcup_{0\leq t\leq T}\{t\}\cross\Gamma_{t}$ , the function $v$ is also the solution of the
equation (3.6) with $\tilde{u}$ instead of $u$ . This concludes that the solution
$(u, \{\Gamma_{t}\}_{0<t\leq T})$ does not depend on the particular extension, and the above
$(\Psi_{0}(u^{*}), \overline{\{}\Gamma_{t}^{u^{*}}\}_{0\leq t\leq T})$ is the unique solution solving (FBP) in the class
stated in the theorem. Now the proof of the main theorem is completed.
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