Some Fundamental Theorems for Integral Equation and Its Applications (Dynamics of Functional Equations and Mathematical Models)

Author(s)
Yanagiya, Akira

Citation
数理解析研究所講究録 2009, 1637: 133-138

Issue Date
2009-04

URL
http://hdl.handle.net/2433/140514

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Some Fundamental Theorems for Integral Equation and Its Applications

Akira Yanagiya
柳谷 晃

Abstract

In this paper we shall investigate the basic theory some functional integral equation which occur in the theory of populational problems. This type integral equation was first treated by Gurtin and MacCamy. Their model included the parameters which were death rate and birth rate depended on the total number of the population. Usual equations for mathematical population model can be solves along the characteristic line. At last those equations will be some shape of integral equations. Also Gurtin and MacCamy made the integral equation which had the functional depended on the integration of the populational distribution.

\[\frac{\partial n}{\partial a} + \frac{\partial n}{\partial t} + \mu(a, N(t))n(a, t) = 0, \quad a > 0, 0 < t < T\]
\[n(0, t) = \int_0^\infty m(a, N(t))n(a, t)da, \quad 0 < t \leq T, \quad (1)\]
\[n(a, 0) = \varphi(a), \quad a \geq 0.\]

where \(n\) is the distribution of the population and \(N\) is the total number of the population, that is,
\[N(t) = \int_0^\infty n(a, t)da. \quad (2)\]

As in the previous case the birth process \(B\) satisfies the equation,
\[B(t) = n(0, t).\]
For we considering the population model, \(\varphi \in L^1(R_+) \), \(\mu(a, N) \), \(m(a, N) \) are all nonnegative function. Especially \(\mu, m \) have the integral term of \(n \), so \(\mu, m \) are the functional of \(n \). In the paper of Gurtin, MacMamy they putted the hypotheses on \(\mu, m \) that those functional have the continuous partial derivative with respect to \(N \). We can remove this assumption instead of the Lipshitz continuous. Then we can get the same theorem with Gurtin and MacCamy under the following two assumptions, that is, under these assumption there exists only one positive solution \(n(a, t) \) for the equation (1).

\((H1) \) \(\varphi \) is piecewise continuous,

\((H2) \mu, m \in C(R^+ \times R^+) \) and with respect to \(N \) these functional are uniformly Lipshitz continuous.

The integral equation along the characteristic line is following.

\[
N(t) = \int_0^t K(t-a; t; N)B(a)da + \int_0^\infty L(a, t; N)\varphi(a)da,
\]

\[
B(t) = \int_0^t m(t-a, N(t))K(t-a, t; N)B(a)da + \int_0^\infty m(t+a, N(t))L(a, t; N)\varphi(a)da,
\]

\[
K(\alpha, t; N) = \exp(-\int_{t-a}^{t} \mu(\alpha+\tau-t, N(\tau))d\tau),
\]

\[
L(\alpha, t; N) = \exp(-\int_{0}^{t} \mu(\tau+\alpha, N(\tau))d\tau).
\]

By using iteralional method, that is, using Banach contraction method, we can prove the existenec of the unique solution on the nonnegative real half line.

2. The Existence Theorems

In this paper we shall consider the following functional integral equation, which is generalization of the integral equation appeared in Introduction.

\[
x(t) = \int_0^t k(t-s, t; x)y(s)ds + \int_0^\infty L(t, s; x)\varphi(s)ds, \quad (3)
\]

\[
y(t) = \int_0^t \beta(t-s, x(t))k(t-s, t; x)y(s)ds + \int_0^\infty \beta(t+s, x(t))L(t, s; x)\varphi(s)ds. \quad (4)
\]

For this rather general integral equation, we put the next assumptions. Through this paper let us call these assumptions as basic hypotheses. We consider the function \(k \) and \(L \) are nonnegative function. In general integral equation theory we do not need this assumption. For the theory of populational problem, this nonnegative assumption must be set for the kernel.

\[
\beta \in C(R^+ \times R), \quad (5)
\]

\[
k(t, s; x) : cont. on[0, T] \times [0, T] \times \Sigma, \quad (6)
\]

\[
L(t, s; x) : cont. on[0, T] \times R^+ \times \Sigma, \quad (7)
\]

\[
|L(t, s; x) - 1| \rightarrow 0 as T \rightarrow 0, on 0 \leq t, s \leq T, x \in \Sigma. \quad (8)
\]

\(\Sigma \) is defined by the following.

\[
\Sigma = \{ f | f \in C^+[0, T], \| f - \Phi \| < r, on [0, T] \},
\]

where,

\[
\Phi = \int_0^\infty \varphi(s)ds.
\]
Theorem 1

For the equations (3)(4), assume the basic hypotheses, and put Lipschitz continuous on the functional k, L for x. Then there exists a positive number T such that on the interval $[0, T]$, only one solution for (3)(4) exists.

Theorem 2

For the equations (3)(4), assume the basic hypotheses. Then there exists a positive number T such that on the interval $[0, T]$, the solutions for (3)(4) exist.

We shall sketch the proofs for these theorems. For concerned integral equations φ is a initial functions. Hence we must look for the solutions near by the value Φ.

From the integral equation (4), we put

$$y(t) = B(x)(t) = \int_{0}^{t} \beta(t - s, x(t))k(t - s, t; x)y(s)ds + \int_{0}^{\infty} \beta(t + s, x(t))L(t, s; x)\varphi(s)ds.$$

There exists a positive number M, such that the inequality,

$$|B(x)(t)| \leq M \int_{0}^{t} |B(x)(s)|ds + M\Phi,$$

is satisfied. By using Gronwall inequality we can prove the following inequality.

$$|B(x)(t)| \leq Me^{Mt}.$$

We can think that the integral equation (4) as one operator for the solution x. Define the operator X by the following equation,

$$X(x)(t) = \int_{0}^{t} k(t - s, t; x)y(s)ds + \int_{0}^{\infty} L(t, s; x)\varphi(s)ds.$$

For this operator, we can apply the contraction or, Schauder-Tychonoff fixed point theorem. Hence Theorem 1or 2 are established.

For proving Theorem 1, the operator,

$$X(x)(\cdot) : \Sigma \longrightarrow \Sigma; \text{contractive}$$

must be satisfied. For this prove we must establish the next two inequalities.

$$\|X(x)(\cdot) - \Phi\| \leq r, \|X(x) - X(x')\| \leq \kappa\|x - x'\|, 0 < \kappa < 1.$$

These two inequalities will be proved by the evaluation the following three inequality by using the basic hypotheses. The positive number r can be calculated by same process.

$$\int_{0}^{t} |k(t - s, t; x) - k(t - s, t; x')||B(x)(s)|ds,$$

$$\int_{0}^{t} k(t - s, t; x')|B(x)(s) - B(x')(s)|ds,$$

$$\int_{0}^{\infty} |L(t, s; x) - L(t, s; x')|\varphi(s)ds.$$

135
For the proof on Theorem 2, we use the Schauder-Tychonoff fixed point theorem. By evaluation on the following three inequalities we can prove that operator $X(x)(\cdot)$ maps Σ into the set of equicontinuous functions.

\[
|X(x)(t) - X(x)(t')| \leq \int_0^t k(t - s, s; x) - k(t' - s, t'; x)||B(x)(s)| ds \\
+ \int_t^{t'} |k(t' - s, t'; x)B(x)(s)| ds \\
+ \int_0^\infty |L(t, s; x) - L(t', s; x)|\varphi(s) ds.
\]

3. Kneser Type Theorem

If Schauder-Tychonoff type is established, there is the possibility that the integral equations have more than one solution. In this case we can consider Kneser type theorem.

Theorem 3 (Kneser)
Assume the basic hypotheses on the functional integral equation (3)(4). Call the set of the graph of the solution set from the point P which belongs to the domain of the functional equation as $R(P)$, and call the cross section of $R(P)$ by the hypersurface $x = \xi$ as $S_{\xi}(P)$. Then $S_{\xi}(P)$ is continuum.

The proof of the theorem we establish that the solution set $F(P)$ with initial point P, which means the couple of the initial data for the solution (x, y), is continuum. This process is devided into four steps.

1. $F(P)$ is totally compact and closed.
2. Generally, for the decreasing series of compact and continuum set \(\{C_{\nu}\}, C = \bigcup C_{\nu} \) is continuum.
3. ϵ-asymptotic solution set $F(P; \epsilon)$ is continuum.
4. $S_{\xi}(P)$ is continuum.

At first note that ϵ-approximate solution for the equation (3), (4), we can make the following process.

\[
x_j(t) = \Phi, 0 \leq t \leq \alpha/j, \\
y_j(t) = \int_0^t \beta(t - s, x_j(t))k(t - s, s; x_j) y_j(s) ds \\
+ \int_0^\infty \beta(t + s, x_j(t)) L(t, s; x_j) \varphi(s) ds, 0 \leq t \leq \alpha/j, \\
x_j(t) = \int_0^{t - \alpha/j} k(t - \alpha/j, s; x_j) y_j(s) ds \\
+ \int_0^\infty L(t, s; x_j) \varphi(s) ds, \alpha/j < t \leq \alpha, \\
y_j(t) = \int_0^t \beta(t - s, x_j(t))k(t - s, s; x_j) y_j(s) ds \\
+ \int_0^\infty \beta(t + s, x_j(t)) L(t, s; x_j) \varphi(s) ds, \alpha/j < t \leq \alpha.
\]

First step. Suppose that $(x_n, y_n) \in F(P)$ and $(x_n, y_n) \to (x, y)$, then from the hypotheses $(x, y) \in F(P)$. This fact proves that $F(P)$ is closed. Also We can prove that each series \(\{(x_n, y_n)\} \subset F(P) \) is equicontinuous and equibounded. Then there exists a sub-sequence of \(\{(x_n, y_n)\} \), which converges to one solution of $F(P)$. Hence first step was established. Second step is the general fact of topological theory.

Third step. We can make the ϵ-asymptotic solutions for every positive ϵ. The set of ϵ-asymptotic solutions are no empty. Note that $F(P) = \cap F(P; \epsilon_n)$. If $F(P; \epsilon_n)$ is continuum, by the step two $F(P)$ is also continuum. For every $\epsilon > 0$, choose sufficiently small $\delta > 0$ and choose $(x, y), (x', y') \in F(P; \epsilon)$ with $\rho((x, y), (x', y')) < \delta$, with supremum norm ρ. Let the interval $[0, T]$, where the solutions exist, divide into the subintervals on which we can make the ϵ-asymptotic solutions. Put $\xi \in [0, T]$, and call the point $(\xi, x(\xi), y(\xi)), (\xi, x'(\xi), y'(\xi))$ as Q and Q' respectively. Let (x_ξ, y_ξ) and (x'_ξ, y'_ξ) be ϵ-asymptotic
solutions with initial points Q and Q' respectively. Define two ϵ-asymptotic solutions as follows. If $0 \leq t \leq \xi$, $(X_\xi(t), Y_\xi(t)) = (x(t), y(t))$, $(X'_\xi(t), Y'_\xi(t)) = (x'(t), y'(t))$, and if $\xi \leq t \leq T$, $(X_\xi(t), Y_\xi(t)) = (x_\xi(t), y_\xi(t))$, $(X'_\xi(t), Y'_\xi(t)) = (x'_\xi(t), y'_\xi(t))$. Then we can define the ϵ-asymptotic solution, $u_\xi(t) = (1 - \lambda)X_\xi(t) + \lambda X'_\xi(t), v_\xi(t) = (1 - \lambda)Y_\xi(t) + \lambda Y'_\xi(t), 0 \leq \lambda \leq 1$. If we change the value of λ from 0 to 1, (u_ξ, v_ξ) goes from (X_ξ, Y_ξ) to (X'_ξ, Y'_ξ) continuously. And if ξ moves from 0 to T, then (x, y) goes to (x', y') continuously. At last we can prove that the set of ϵ-asymptotic solutions is continuum.

The proof of the step four is same as usual theory of differential equation. Hence Kneser type theorem will be established.

Second Problem

4. Introduction

In the next part, we will present some stationary solution for nonlinear partial differential equation called Mullins Equation which is ocurred in the theory of grain boundary grooving.

\[u_t = -C^E(u)(1 + u_x^2)^{1/2}exp(-C^E(u) \frac{u_{xx}}{(1 + u_x^2)^{3/2}}) + C^C(u)(1 + u_x^2)^{1/2}. \] (1)

The main tool, which we can use, is the admissibility property between weighted continuous function spaces for the integral operator, as follows.

\[T_\xi x(t) = - \int_t^\infty e^{\zeta_1(t-s)}F(x(s), y(s))ds, \]
\[T_\xi y(t) = \xi e^{\zeta_2 t} + \int_0^t e^{\zeta_2(t-s)}F(x(s), y(s))ds. \] (2)

From this admissibility we can prove the existence theorem for the special simultaneous differential equation. This existence theorem can be applied for the second order differential equation,

\[u'' = f(u, u') = \frac{kT(u)(1 + u'^2)^{3/2}}{v\gamma}ln\left(\frac{P_0(u)}{P_c}\right). \] (3)

The solution of this equation is one of the stationary solution for Mullins Equation.

5. Theorems

On the equation (1), we are interested in the stationary solution. So we shall consider the equation (3) which we can make by putting $u_t = 0$ for the equation (1). To prove the existence theorem for the stationary solution, we use the next two theorems.

Theorem 1

For the second order differential equation,

\[u'' = f(u, u'), \] (4)

suppose that the following hypotheses.

\[f(u, p) \in C^1(R^2), \quad x > 0, \quad \exists \lambda \in R^1 \quad s.t. \quad f(\lambda, 0) = 0, \quad f_u(\lambda, 0) > 0 \]

Then there exits the solution on $(0, \infty)$ and it satisfies that

\[\exists D > 0 \quad s.t. \quad |u(x) - \lambda| \leq Dexp(-\tau x), \]
where
\[0 < \tau < \left| \frac{f_p(\lambda,0) - \sqrt{f_p(\lambda,0)^2 + 4f_u(\lambda,0)}}{2} \right|. \]

Theorem 2

On the differential equation,
\[\omega_1' = \zeta_1 \omega_1 + F(\omega_1, \omega_2), \quad \omega_2' = \zeta_2 \omega_2 + F(\omega_1, \omega_2), \quad x > 0, \]
where,
\[f(\eta_1, \eta_2) \in C^1(\mathbb{R}^2), \quad F(0,0) = 0, \quad F_{\eta_1}(0,0) = 0, \quad \zeta_1 > 0, \quad \zeta_2 < 0, \]
there exists some global nontrivial solution
\[\omega(x) = (\omega_1(x), \omega_2(x)), \quad x > 0, \]
for every \(\tau, 0 < \tau < |\zeta_2| \), and the next inequality is satisfied.
\[|e^{\tau x}\omega_1(x)| + |e^{\tau x}\omega_2(x)| < \infty, \quad x > 0. \]

At first we consider Theorem 2. By using the admissibility of the integral operator (2), we can establish the proof of Theorem 2. Let consider the integral operator on the following function set \(B \),
\[B = \omega(x) = (\omega_1(x), \omega_2(x)) \in C^0([0, \infty)); ||\omega|| \leq 2|\xi|, \]
\[||\omega|| = \sup_{x \geq 0}(e^{\tau x}\omega_1(x) + e^{\tau x}\omega_2(x)). \]

On this set the integral operator (2) satisfies the contraction principle. Then the operator \(T_\xi : B \rightarrow B \) has the unique fixes point \(\omega(x) = (\omega_1(x), \omega_2(x)) \). Hence we can prove Theorem 2. Next we treat Theorem 1, by using the results of Theorem 2. Let define the function \(F(\omega_1, \omega_2) \) in Theorem 2 by the next equation,
\[F(\eta_1, \eta_2) = f(\frac{\eta_1 - \eta_2}{\zeta_1 - \zeta_2} + \lambda, \frac{\zeta_1 \eta_1 - \zeta_2 \eta_2}{\zeta_1 - \zeta_2}) - \frac{\eta_1 - \eta_2}{\zeta_1 - \zeta_2}f_u(\lambda, 0) - \frac{\zeta_1 \eta_1 - \zeta_2 \eta_2}{\zeta_1 - \zeta_2}f_p(\lambda, 0), \]
where
\[\zeta_1 = \frac{f_p(\lambda,0) + \sqrt{f_p(\lambda,0)^2 + 4f_u(\lambda,0)}}{2} > 0, \]
\[\zeta_2 = \frac{f_p(\lambda,0) - \sqrt{f_p(\lambda,0)^2 + 4f_u(\lambda,0)}}{2} < 0, \]
where the function \(f \) as in Theorem 1. By the result of Theorem 2 there exists the solution \(\omega(x) = (\omega_1(x), \omega_2(x)) \). Define
\[u(x) = \frac{\omega_1(x) - \omega_2(x)}{\zeta_1 - \zeta_2} + \lambda, \quad x > 0. \]
This function \(u \) is the solution in Theorem 1. At last, we can apply Theorem 1 for the equation (3), we get the stational solution of (1).

References