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1 Introduction
Given an $n\cross n$ matrix $A(\lambda)$ whose elements are analytical functions of acomplex pa-
rameter $\lambda,$ we consider the problem of finding the values of $\lambda$ for which anonzero vector
$x$ that satisfies $A(\lambda)x=0$ exists. This is known as the nonlinear eigenvalue problem
and the $\lambda$ ’s are called eigenvalues. The nonlinear eigenvalue problem has applications in
various fields such as nonlinear elasticity, electronic structure calculation and theoretical
fluid dynamics. In this paper, we focus on finding all the eigenvalues that lie in aspecified
region on the complex plane.

Conventional approaches for the nonlinear eigenvalue problem include multivariate
Newton’s method [9] and its modifications [8], Arnoldi method [4] and Jacobi-Davidson
method [12]. However, Newton’s method requires agood initial estimate both for the
eigenvalue and the eigenvector for stable convergence. Arnoldi and Jacobi-Davidson meth-
$ods$ are efficient for large sparse matrices, but in general, they cannot guarantee that all
the eigenvalues in aspecified region are obtained.

In our approach, we construct acomplex function that has simple poles at the roots
of the nonlinear eigenvalue problem and is analytical elsewhere. Then, by computing
the complex moments through contour integration along the boundary of the specified
region, we can locate the poles [7]. This method has the advantage that it can find
all the eigenvalues in the region. Moreover, the computationally dominant part, the
evaluation of the contour integral by numerical integration, has large-grain parallelism
since function evaluation at each sample point can be done independently. Thus our
algorithm is expected to achieve excellent speedup in virtually any parallel environments.

We implemented our method on the Fujitsu HPC2500 supercomputer. Numerical
experiments using amodel problem show that our method can actually find the eigenvalues
with high accuracy. Also, our method achieved nearly linear speedup using up to 16
processors for matrices of order 500 to 2000.

2 The algorithm
Assume that $A(z)$ is an $n\cross n$ matrix whose elements are analytical functions of a complex
parameter $z$ and that we are interested in computing the (nonlinear) eigenvalues within
a closed curve $\Gamma$ on the complex plane. In the following, we restrict ourselves to the case
where $\Gamma$ is a circle. Now, let $f(z)=\det(A(z))$ . Then $f(z)$ is an analytical function of $z$

and the eigenvalues are characterized as the zeroes of $f(z)$ .
To solve $f(z)=0$, we use the method by Kravanja et al. based on complex contour

integral [7]. Assume that there are $m$ distinct roots of $f(z)$ within $\Gamma$ and define the
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complex moments by

$\mu_{p}=\frac{1}{2\pi i}\oint_{\Gamma}z^{p}\frac{f’(z)}{f(z)}$ $(p=0,1, \ldots, 2m-1)$ . (1)

Then $\mu_{p}$ can be rewritten as
$\mu_{p}=\sum_{k=1}^{m}\lambda_{k}^{p}\nu_{k}$ , (2)

where $\lambda_{1},$ $\lambda_{2},$

$\ldots,$
$\lambda_{m}$ are the distinct roots of $f(z)=0$ within $\Gamma$ and $\nu_{1},$ $\nu_{2},$

$\ldots,$ $\nu_{m}$ are their
multiplicities [7]. To extract the information on $\{\lambda_{j}\}$ from $\{\mu_{p}\}$ , we define the following
matrices:

$H_{m}=(\begin{array}{llll}\mu_{0} \mu_{1} \cdots \mu_{m-1}\mu_{l} \mu_{2} \cdots \mu_{m}\vdots \vdots \vdots\mu_{m-1} \mu_{m} .. \mu_{2m-2}\end{array})$ , $H_{m}^{<}=(\begin{array}{llll}\mu_{1} \mu_{2} .\cdot \mu_{m}\mu_{2} \mu_{3} \cdots \mu_{m+1}\vdots \vdots \vdots\mu_{m} \mu_{m+1} .\cdot.\cdot \mu_{2m-1}\end{array})$ , (3)

$V_{m}=(\begin{array}{llll}l 1 . 1\lambda_{l} \lambda_{2} .\cdot \lambda_{m}\vdots \vdots \vdots\lambda_{1}^{m-l} \lambda_{2}^{m-1} \cdots \lambda_{m}^{m-1}\end{array})$ , (4)

$D_{m}=$ diag $(\nu_{1}, \nu_{2}, \cdots, \nu_{m})$ , $\Lambda_{m}=$ diag $(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m})$ . (5)

Then it is easy to see that $H_{m}=V_{m}D_{m}V_{m}^{T}$ and $H_{m}<=V_{m}D_{m}\Lambda_{m}V_{m}^{T}$ . Noting that $D_{m}$ and
$V_{m}$ are nonsingular, we can conclude that $\lambda=\lambda_{j}$ for some $1\leq j\leq m$ if and only if $\lambda$ is
an eigenvalue of a matrix pencil $H_{m}<-\lambda H_{m}$ . Hence, by computing the complex moments
by eq. (1), forming the two Hankel matrices $H_{m}$ and $H_{m}<$ by eq. (3) and computing the
eigenvalues of $H_{m}<-\lambda H_{m}$ , we can find the roots of $f(z)$ within $\Gamma$ .

In our problem, $f(z)=\det(A(z))$ and it can be shown that

$\frac{f^{l}(z)}{f(z)}=Tr[(A(z))^{-1}\frac{dA(z)}{dz}]$ . (6)

Note that Sakurai and Sugiura propose a complex contour integral method for the linear
eigenvalue problem $Ax=\lambda x[10]$ . They use $u(A-zI)^{-1}v$ , where $u$ and $v$ are random
vectors, instead of $f’(z)/f(z)$ . It is also possible to extend this approach to the nonlin-
ear eigenvalue problem, at least when the eigenvalues of interest are simple, and active
research is being conducted. See [3] and [13] for details.

In the numerical procedure, we use the trapezoidal rule with $K$ points to compute
the complex moments $\{\mu_{p}\}$ . Also, since we do not know $m$ a priori, we replace it with
some estimate $M$ , which hopefully satisfies $M\geq m$ . In that case, the eigenvalues of
$H_{M}<-\lambda H_{M}$ contain spurious solutions of the nonlinear eigenvalue problem. To get rid
of them, we compute the eigenvector $x_{j}$ corresponding to the computed $\lambda_{j}$ by inverse
iteration, evaluate the relative residual 1 $A(\lambda_{j})x_{j}\Vert_{\infty}/(\Vert A(\lambda_{j})\Vert_{\infty}\Vert x_{j}\Vert_{\infty})$ , and discard
$\lambda_{j}$ if the residual is large or $\lambda_{j}$ is outside $\Gamma$ . This works well as we will see in the next
section. We show the computational procedure as Algorithm 1.
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[Algorithml: Solution of the nonlinear eigenvalue problem]
$\langle$ 1} Input $n,$ $M,$ $r,$ $K$ and the procedure to compute $A(z)$

for a complex number $z$ .
$\langle$ 2} $\omega_{K}=\exp(\frac{2\pi i}{K})$

{3} do $j=0,$ $K-1$
{4} $s_{j}=r\omega_{K}^{j}$

{5} $t_{j}= Tr[(A(z))^{-1}\frac{dA(z)}{dz}]|_{z=s_{j}}$ .
$\{6\rangle$ end do
{7} do $p=0,2M-1$
$\{8\rangle$ $\mu_{p}=\frac{r^{p+1}}{K}\Sigma_{j=0}^{K-1}t_{j}\omega_{K}^{(\rho+1)j}$

$\{9\rangle$ end do
$\langle 10\rangle$ Construct $H_{M}$ and $H_{M}<$ from $\mu 0,$ $\mu_{1},$ $\ldots,$ $\mu_{2m-1}$ .
$\langle 11\rangle$ Find the eigenvalues $\lambda_{1},$ $\lambda_{2},$

$\ldots,$
$\lambda_{M}$ of $H_{m}<-\lambda H_{m}$ .

$\langle 12\rangle$ Compute the eigenvectors $x_{1},$ $x_{2},$
$\ldots,$ $x_{M}$ by inverse iteration.

{13} Compute the relative residual
$\Vert A(\lambda_{i})x_{i}\Vert_{\infty}/(\Vert A(\lambda_{i})\Vert_{\infty}\Vert x_{i}||_{\infty})$ for $i=1,2,$ $\ldots,$

$M$ .
$\langle$ 14} Output the pair $(\lambda_{i}, x_{i})$ as the true eigenvalue-eigenvector

pair if the corresponding relative residual is small.

The computationally dominant part in the above algorithm is the computation of
$bedonecomeyindependent1y,thisalgorithmhaslarge- grainedparallelism.Hencen[(A(z))^{-1}\frac{dA(z)}{p^{dz}1et}t^{fortheKintegrationpoints.Sincethecomputationateachpointcan}$

it should be able to achieve excellent speedup in virtually any parallel environments.

3 Numerical results
We implemented our algorithm using $C$ and MPI and evaluated its performance on
the Fujitsu HPC2500 supercomputer. In parallelizing the algorithm, we distributed
$otfh[(A(z))^{-1}\frac{dA(z)on}{dz}7^{ointseven1yamongPprocessorsandperformedthecomputation}atthesepointsinparal1e1.Otherpartsofthealgorithm,suchasthe$

computation of the eigenvalues of $H_{M}<-\lambda H_{M}$ , were executed on one processor. We used
vendor-supplied optimized LAPACK routines to compute $(A(z))^{-1} \frac{dA(z)}{dz}$ and to find the
eigenvalues of $H_{M}<-\lambda H_{M}$ . The test matrices used are of the form $A(z)=A-zI+\epsilon B(z)$ ,
where $A$ is a real nonsymmetric matrix whose elements follow uniform random numbers in
$[0,1],$ $B(z)$ is an anti-diagonal matrix with anti-diagonal elements $e^{z}$ , and $\epsilon$ is a parameter
that determines the strength of nonlinearity. In our experiments, we set $K=128$ and
$M=10$ and varied $n$ from 500 to 2000, $P$ from 1 to 16, and $\epsilon$ from $0$ to 0.1. The center
of $\Gamma$ is origin in all cases and the radius of $\Gamma$ is 0.7, 0.7 and 0.5 for the $n=500$ , 1000 and
2000 cases, respectively.

We show the results for the $n=1000$ and $\epsilon=0.01$ case in Fig. 1 and Table 1. In
this case, it is known that the number of (nonlinear) eigenvalues in $\Gamma$ is 9. Our algorithm
computed 10 candidates from the eigenvalues of $H_{M}^{\text{く}}-\lambda H_{M}$ , discarded one of them (the
open diamond) as the spurious solution since the residual was around $10^{-2}$ , and output
9 solutions (the solid diamonds). The residuals for these nine solutions were all under
$10^{-11}$ . Hence, our algorithm succeeded in locating all the eigenvalues in $\Gamma$ with high
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accuracy. The situation was similar in other cases and our algorithm always found the
correct number of eigenvalues in $\Gamma$ with high accuracy. We also show the execution time
as a function of $n$ and $P$ in Fig. 2. It is clear that almost linear speedup is achieved for
all the cases.

Figure 1: Computed eigenvalues for the Figure 2: Execution time of our algorithm
$n=1000$ and $\epsilon=0.01$ case. on Fujitsu HPC2500.

Next we investigated the behavior of our algorithm when there are eigenvalues of
multiplicity greater than one. Our test problem is a sma115 $\cross 5$ symmetric quadratic
eigenvalue problem [11] for which $A(z)$ is given by

$A(z)=\{\begin{array}{llll}-z^{2}-3z+1 sym z^{2}-1 -2z^{2}-3z+5 -z^{2}-3z+1 z^{2}-1 -2z^{2}-5z+2 -2z^{2}-6z+2 2z^{2}-2 -4z -9z^{2}-19z+14\end{array}\}$ . (7)

This quadratic eigenvalue problem has four simple eigenvalues $-4\pm\sqrt{18}$ and $-4\pm\sqrt{19}$

and two eigenvalues 1 and-2 of multiplicity 2.
To solve this problem, we used as $\Gamma$ a circle centered at the origin and with radius

2.1. In this case, two simple eigenvalues and two multiple eigenvalues lie in $\Gamma$ . In the
computation, $K=128$ and $M=6$ and only one processor was used. The computed
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eigenvalues, along with the errors and residuals, are shown in Table 2. The multiplicity
of each eigenvalue computed with the method of [1] is also shown in the table. From the
value of the residual, eigenvalues 5 and 6 are judged to be spurious eigenvalues. So the
number of computed true eigenvalues is four, which coincides with the actual number of
eigenvalues in $\Gamma$ . In addition, the computed multiplicity of each eigenvalue was correct.
Thus we know that our algorithm can be applied to a problem with multiple eigenvalues.

4 Efficient computation of Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$

In our algorithm, the computationally dominant part is the evaluation of Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$

at the $K$ integration points. In the implementation used in the previous section, we used
LAPACK routines to compute this quantity because the test matrices were dense. More
precisely, we first computed the LU decomposition of $A(z)$ , computed $(A(z))^{-1} \frac{dA(z)}{dz}$ by
repeating forward/backward substitution $n$ times with $\frac{dA(z)}{dz}$ as the right hand sides, and
then summed up the diagonals of the resulting matrix to obtain the trace. This process
requires $O(n^{3})$ work for each integration point.

When the matrix is sparse, one can use sparse LU decomposition instead to reduce the
computational work. However, the required work is still large. Let Str $(L_{*i})$ and Str $(U_{i*})$

be defined by

Str $(L_{*i})$ $=$ $\{j|j>i, l_{ji}\neq 0\}$ and (8)
Str $(U_{i*})$ $=$ $\{j|j>i, u_{ij}\neq 0\}$ , (9)

respectively [5]. Then the work to repeat forward/backward substitution $n$ times is

$O(n \sum_{i=1}^{n}\{|Str(L_{*i})|+|Str(U_{i*})|\})$ . (10)

To further reduce the work, a new efficient algorithm for computing Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$

was proposed in [14]. Since this algorithm uses Erisman&Tinney’s algorithm to compute
partial elements of the inverse of a sparse matrix [6], we explain the latter algorithm first.

Assume that $A$ is a sparse matrix that admits LU decomposition and its $L$ and $U$

factors are given. Also, denote $A^{-1}$ by $C$ . Then it can be shown that the elements of $C$
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satisfy the following recursion formulae [14]:

1
$c_{ip}$ $=$

$- \sum_{k\in Str(U_{i}.)}u_{ik}c_{kp}\overline{u_{ii}}$ ’ (11)

$c_{pi}$ $=$
$-\underline{1}$

$l_{ii} \sum_{k\in Str(L,:)}c_{pk}l_{ki}$
, (12)

$c_{ii}$ $=$ $- \frac{1}{u_{ii}}\sum_{k\in Str(U_{i}.)}u_{ik^{C}ki}+\frac{1}{l_{i1}u_{ii}}$ , (13)

where $1\leq i\leq p\leq n$ . Using these equations, Erisman &Tinney’s algorithm can be
described as Algorithm 2 below.

[Algorithm2: Erisman&Tinney’s algorithm]
$\{1\rangle$ $c_{\eta n}=1/(l_{nn}u_{nn})$

{2} do $i=n-1,1,$ $-1$

$\langle$ 3} Compute $c_{ip}$ for $p\in$ Str $(L_{*i})$ using eq. (11).
$\langle 4\rangle$ Compute $c_{pi}$ for $p\in$ Str $(U_{i*})$ using eq. (12).
$\langle$ 5} Compute $c_{ii}$ using eq. (13).
$\langle$ 6} end do

After the completion of this algorithm, all the elements of $C=A^{-1}$ which are situated at
the nonzero positions of $L^{T}+U^{T}$ are obtained. The computational work of this algorithm
is

4 $\sum_{i=1}^{n}\{|$ Str $(L_{*i})||$Str $(U_{i*})|\}$ . (14)

Note that this is much smaller than the work of Eq. (10), which would be required if all
the elements of $A^{-1}$ are computed by repeated forward/backward substitution.

Now we show that these partial elements are sufficient to compute Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$ .
In the following, we denote the elements of $\frac{dA(z)}{dz}$ by $a_{ij}’$ . First, notice that

Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]=\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ji}a_{ij}’=\sum_{\{i,j|a_{j}\neq 0\}}c_{ij}a_{1j}’$ . (15)

Hence only those elements of $C=(A(z))^{-1}$ which correspond to the nonzero elements of
$( \frac{dA(z)}{dz})^{T}$ are needed. Then we use the following relationship between the nonzero positions
of the related matrices:

Nonzero positions of $( \frac{dA(z)}{dz})^{T}$

$\subseteq$ Nonzero positions of $(A(z))^{T}$

$\subseteq$ Nonzero positions of $L^{T}+U^{T}$

$=$ Nonzero positions whose value are computed by Erisman&Tinney’s
algorithm. (16)
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From this relationship, it is clear that the partial elements of $(A(z))^{-1}$ obtained by Eris-
man&Tinney’s algorithm are sufficient to compute ‘Ihr $[(A(z))^{-1} \frac{dA(z)}{dz}]$ . Since only diag-
onal elements of $(A(z))^{-1} \frac{dA(z)}{dz}$ need to be computed to evaluate the trace, the computa-
tional work required in addition to Eq. (14) is $O( \sum_{i=1}^{n}\{|Str(L_{*i})|+|Str(U_{i*})|\})$ , which is
negligible compared with Eq. (14).

We did some preliminary experiments to evaluate the efficiency of the new algorithm
stated above. We used four test matrices shown in Table 3 and compared the execution
times of the two algorithms to compute Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$ under the condition that the
sparse LU decompositions are given. The sparse LU decompositions were computed using
the Approximate Minimum Degree algorithm [2]. The experiments were performed on a
Xeon $(2.66GHz)$ processor running on Red Hat Enterprise Linux.

The execution times of the conventional algorithm based on repeated forward/backward
substitution and the new algorithm are shown in Table 4. It can be seen that the new al-
gorithm is 20 to 90 times faster than the conventional one. Thus we can conclude that the
new algorithm is very effective in reducing the work reuired to compute Tr $[(A(z))^{-1\underline{dA(z)}}]$ .
We are now trying to incorporate this algorithm into our nonlinear eigenvalue $so1_{Ver}^{dz}$

5 Conclusion
We proposed a new algorithm for the nonlinear eigenvalue problem $A(\lambda)x=0$ . Our
algorithm has the ability to find all eigenvalues within a specified region on the complex
plane. Also, it is expected to achieve excellent parallel speedup thanks to the large-grained
parallelism. These advantages have been confirmed by numerical experiments. We also
introduced a new algorithm for computing Tr $[(A(z))^{-1} \frac{dA(z)}{dz}]$ efficiently and showed its
effectiveness by preliminary numerical experiments.

More numerical results of our algorithm are found in [1]. Detailed error analysis

Tr $[(A(z))^{-} \frac{(z)}{dz}1$ , will be given in our forthcoming paper.
of the $algo_{1dA}rithm$ along with the effect of employing a new algorithm for computing
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