Algebraic independence results for Ramanujan q-series

Carsten Elsner*

Fachhochschule für die Wirtschaft, University of Applied Sciences, Freundallee 15 D-30173 Hannover, Germany

Shun Shimomura†, Iekata Shiokawa‡

Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

1 Introduction

In 1916, Ramanujan [8] defined the function

$$S_{2j+1}(x) = \frac{1}{2} \zeta(-2j-1) + \sum_{n=1}^{\infty} \frac{n^{2j+1}x^n}{1-x^n} \quad (j=0,1,2,\ldots),$$

where $\zeta(s)$ is the Riemann zeta function, in particular

$$P(x) = -24S_1(x), \quad Q(x) = 240S_3(x), \quad R(x) = -540S_6(x),$$

and proved various formulas for these functions.

Nesterenko [7] proved that, for an algebraic number x with $0 < |x| < 1$, the three numbers $P(x), Q(x), R(x)$ are algebraically independent.

In this paper we study, for a given algebraic number x with $0 < |x| < 1$, the algebraic independence of the numbers $S_{2j+1}(x)$ $(j=0,1,2,\ldots)$, or equivalently that of the numbers

$$A_{2j+1} = A_{2j+1}(q) = \sum_{n=1}^{\infty} \frac{n^{2j+1}q^{2n}}{1-q^{2n}} \quad (j=0,1,2,\ldots)$$

for $q^2 = x$ (using the symbol in [10]). We remark that the q-series identity

$$A_7(q) = A_3(q) + 120A_3(q)^2$$

follows from Table I in [8]. Our result is stated as follows:

Theorem 1. The q-series $A_{2i+1}(q)$ and $A_{2j+1}(q)$ with $1 \leq i < j$ are algebraically dependent over $\overline{\mathbb{Q}}(q)$ if and only if $(i,j) = (1,3)$.

Theorem 2. Let q be an algebraic number with $0 < |q| < 1$. Then the three numbers $A_1(q), A_{2i+1}(q)$ and $A_{2j+1}(q)$ with $1 \leq i < j$ and $(i,j) \neq (1,3)$ are algebraically independent.

As an immediate corollary of Theorem 2 we have

Corollary 1. The q-series $A_1(q), A_{2i+1}(q)$ and $A_{2j+1}(q)$ with $1 \leq i < j$ and $(i,j) \neq (1,3)$ are algebraically independent over $\overline{\mathbb{Q}}(q)$.
It is easy to see that, for any positive integers i, j, l, the q-series $A_{2i+1}(q)$, $A_{2j+1}(q)$, $A_{2l+1}(q)$ are algebraically dependent over \mathbb{Q} (cf. Lemmas 2 and 3 in Section 2). Our proof of the theorem depends on three basic tools; namely, a corollary of Nesterenko's theorem (see Lemma 1), expressions of $A_{2j+1}(q)$ in terms of K/π, E/π and k given by Ramanujan [8], Zucker [10] and the authors [2], where K and E are the complete elliptic integrals of the first and second kind with the modulus k (see Lemmas 2 and 3), and an algebraic independence criterion (see Lemma 6). Our method of this paper can be applied to certain sequences of q-series studied by Zucker [10] and the authors [2, 3, 4].

2 Lemmas

Let K and E denote the complete elliptic integrals of the first and second kind

\[K = K(k) = \int_{0}^{1} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} , \quad E = E(k) = \int_{0}^{1} \sqrt{\frac{1-k^2t^2}{1-t^2}} dt, \]

with the modulus k such that $k^2 \in \mathbb{C} \setminus \{0\} \cup [1, +\infty)$. The branch of each integrand is chosen so that it tends to 1 as $t \to 0$. Moreover set $K' = K(k')$, $k^2 + (k')^2 = 1$. For any $q \in \mathbb{C}$ with $0 < |q| < 1$, choose $K'(k)/K(k)$ so that $q = e^{-\pi K'/K}$. Then by Nesterenko's theorem ([7], see also [2, §3]) we have

Lemma 1. If $q \in \overline{\mathbb{Q}}$ with $0 < |q| < 1$, then k, K/π, and E/π are algebraically independent.

The Jacobian elliptic function $w = \text{sn} z = \text{sn}(z, k)$ may be defined by

\[z = \int_{0}^{w} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} , \]

and we write

\[\text{ns} z = \text{ns}(z, k) = \frac{1}{\text{sn}(z, k)} , \quad \text{cs} z = \text{cs}(z, k) = \frac{\text{cn}(z, k)}{\text{sn}(z, k)} , \quad \text{cn}(z, k) = \sqrt{1-\text{sn}^2(z, k)}. \]

Let a_j and $c_j = c_j(k)$ ($j \geq 0$) denote the coefficients of the series expansions

\[\cosec^2 z = z^{-2} + \sum_{j=0}^{\infty} a_j z^{2j} , \quad \text{ns}^2(z, k) = z^{-2} + \sum_{j=0}^{\infty} c_j(k) z^{2j} , \]

respectively; in particular

\[a_j := \frac{(-1)^j(2j + 1)2^{2j+2}B_{2j+2}}{(2j+2)!} (j \geq 0) \]

with the Bernoulli numbers $B_2 = 1/6$, $B_4 = -1/30$, $B_6 = 1/42$, $B_8 = -1/30$, ..., etc. The following evaluations of $A_{2j+1}(q)$ in terms of k, K/π and E/π were given by Ramanujan [8] for $j = 1, 2, \ldots, 15$ and completed by Zucker [10].

Lemma 2. For $q = e^{-\pi K'/K}$, the q-series $A_{2j+1}(q)$ is expressed in the form

\[A_1(q) = \frac{1}{24} - \frac{1}{24} \left(\frac{2K}{\pi}\right)^2 \left(3E/K - 2 + k^2\right) , \]

\[A_{2j+1}(q) = (-1)^j \left(\frac{2j}{2j+3}\right)! \left(a_j - \left(\frac{2K}{\pi}\right)^{2j+2} c_j(k) \right) (j \geq 1) . \]

The coefficients of the series for $\text{ns}^2(z, k)$ are determined recursively ([2, Lemma 2]):
Lemma 3. The coefficients $c_j = c_j(k)$ are given by
$$
c_0 = \frac{1}{3}(1 + k^2), \quad c_1 = \frac{1}{15}(1 - k^2 + k^4), \quad c_2 = \frac{1}{180}(1 + k^2)(1 - 2k^2)(2 - k^2),$$
$$(j - 2)(2j + 3)c_j = 3 \sum_{i=1}^{j-2} c_i c_{j-i-1} \quad (j \geq 3).$$

It follows from this lemma that $c_j = c_j(k) \in \mathbb{Q}[k^2]$ with deg $c_j(k) = 2(j + 1)$. Put
$$c_j(k) = \alpha_{j,0} + \alpha_{j,1}k^2 + \cdots + \alpha_{j,j+1}k^{2j+2} \quad (j \geq 1). \quad (5)$$

It is easy to see that $z^2 \text{ns}^2(z, k)$ is analytic around $(z, k) = (0, 0)$, and that $z^2 \text{ns}^2(z, k) = 1 + O(|z|^2 + |k|^2)$. The following lemma gives a detailed expression.

Lemma 4. Around $(z, k) = (0, 0)$ we have
$$\text{ns}^2(z, k) = \cos^2 z + f(z)k^2 + g(z)k^4 + O(k^6),$$
with
$$f(z) = \frac{z}{4}(\cot z)'' + \frac{1}{2}(\cot z)' + \frac{1}{2} = \frac{1}{2} - \sum_{j=0}^{\infty} \frac{(-1)^{j+1}2^{2j}B_{2j+2}}{(2j)!}z^{2j},$$
$$g(z) = -\frac{z^2}{32}(\cot z)^{(3)} - \frac{3z}{64}(\cot z)'' + \frac{3}{32}(\cot z)' + \frac{1}{16} - \frac{1}{32}\cos 2z$$
$$= \frac{1}{16} + \sum_{j=0}^{\infty} \frac{(-1)^j 2^{2j-5}}{(2j)!} (2(4j - 3)B_{2j+2} - 1) z^{2j}.$$

From (3), (4), (5) and Lemma 4 we deduce the following corollary.

Corollary 2. For $j \geq 1$ we have
$$\alpha_{j,0} = \frac{(-1)^j(2j + 1)2^{2j+2}B_{2j+2}}{(2j + 2)!},$$
$$\alpha_{j,1} = \frac{(-1)^j 12^j B_{2j+2}}{(2j)!} \quad (j \geq 1), \quad \alpha_{0,1} = \frac{1}{3},$$
$$\alpha_{j,2} = \frac{(-1)^j 2^{2j-5}}{(2j)!} (2(4j - 3)B_{2j+2} - 1) \quad (j \geq 1), \quad \alpha_{0,2} = 0.$$

Lemma 5. All Bernoulli numbers B_{2n} are distinct with the only exception $B_4 = B_8 = -1/30$.

Lemma 6. (cf. [5]) Let $x_1, \ldots, x_n \in \mathbb{C}$ be algebraically independent and let $y_j := U_j(x_1, \ldots, x_n)$, where $U_j(X_1, \ldots, X_n) \in \mathbb{Q}[X_1, \ldots, X_n] (j = 1, \ldots, n)$. Assume that
$$\det \left(\frac{\partial U_j}{\partial X_i}(x_1, \ldots, x_n) \right) \neq 0. \quad (6)$$
Then the numbers y_1, \ldots, y_n are algebraically independent.
3 Sketch of the proof of Theorem 1

We assume that two q-series $A_{2i+1}(q)$ and $A_{2j+1}(q)$ with $1 \leq i < j$ are algebraically dependent over $\overline{\mathbb{Q}}(q)$ and deduce the case $(i,j) = (1,3)$. There exists an algebraic number q_0 with $0 < |q_0| < 1$ such that the two numbers $A_{2i+1}(q_0)$ and $A_{2j+1}(q_0)$ are algebraically dependent. Choose k so that $q_0 = e^{-\pi K'(k)/K(k)}$.

We apply Lemma 6 with Lemma 1 and 2 by putting $x_1 = k$, $x_2 = K/\pi$, $y_\nu = U_\nu(x_1, x_2)$ ($\nu = 1, 2$), where $U_1(X_1, X_2) = X_2^{2i+2}c_i(X_1)$, $U_2(X_1, X_2) = X_2^{2j+2}c_j(X_1)$. Then the vanishing of the determinant implies

$$(j+1)c'_i(k)c_j(k) - (i+1)c'_j(k)c_i(k) = 0$$

as a polynomial of k, or equivalently $c_j(k)^{i+1} = r c_i(k)^{j+1}$ for some $r \in \mathbb{Q} \setminus \{0\}$. Substituting (5) into both sides of the last identity and comparing the coefficients of k^2 and k^4, we get

$$2\alpha_{j,0}\alpha_{j,2} + i\alpha_{j,1}^2 = 2\alpha_{i,0}\alpha_{i,2} + j\alpha_{i,1}^2.$$

This with the explicit values of $\alpha_{i,j}$ given in Corollary 2 leads to

$$2(4j - 3) - 1/B_{2j+2} + 8i(j + 1) = 2(4i - 3) - 1/B_{2i+2} + 8j(i + 1),$$

that is $B_{2i+2} = B_{2j+2}$. By Lemma 5, we see that $(i,j) = (1,3)$. The 'if part' follows from the formula (2), and the proof is completed.

Similarly, we can prove Theorem 2, from which Corollary 1 follows.

References