<table>
<thead>
<tr>
<th>Title</th>
<th>RECIPROCAL SUMS OF ELEMENTS IN A BINARY RECURRENCE SEQUENCE (New Aspects of Analytic Number Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Laohakosol, Vichian; Kuhapatanakul, Kantaphon; Panprasitwech, Oranit</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2009(1639): 12-27</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140561</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
RECIPIROCAL SUMS OF ELEMENTS IN A BINARY RECURRENCE SEQUENCE*

Vichian Laohakosol¹, Kantaphon Kuhapatanakul² and Oranit Panprasitwech³

¹Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
²Department of Mathematics, Srinakharinwirot University, Bangkok 10110, Thailand
³Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: fsrivil@ku.ac.th, ku-kantaphon@yahoo.com, oranit_mape@yahoo.com

February 3, 2009

Abstract

A brief survey of identities about reciprocal sums of products of elements in a binary recurrence sequence is presented. The emphasis is on elements satisfying a second order linear recurrence relation with not necessarily constant coefficients, such as the Fibonacci or the Lucas polynomials.

Mathematics Subject Classification: 11B37, 11B39

Key words and phrases: binary recurrence, reciprocal sums, Fibonacci and Lucas polynomials.

1 Binary sequences with constant coefficients

By a reciprocal sum, we refer to a series of the form \(\sum_{n} 1/E_{n} \), where \(E_{n} \) is an expression involving elements satisfying a linear recurrence relation of fixed order. There have appeared a number of such sums of elements satisfying a second order linear recurrence relation with constant coefficients, with the sequences of Fibonacci and Lucas numbers being investigated most.

Let us recall some facts about second order recurrences with constant coefficients. For fixed \(P, Q \neq 0 \) \(\in \mathbb{R} \), denote by \(L(P, Q) \) the set of sequences \(\{R_{n}\}_{n\in\mathbb{Z}} \) of real numbers satisfying a second order linear recurrence relation of the form

\[R_{n+1} = PR_{n} - QR_{n-1} \quad (n \in \mathbb{Z}). \]

(1.1)

Let \(\alpha, \beta \) be the roots of its characteristic equation

\[x^{2} - Px + Q = 0 \quad \text{with} \quad |\alpha| \leq |\beta|, \quad \Delta = P^{2} - 4Q. \]

The case when \(P = 1 \) and \(Q = -1 \) is historically of most interest. In this case, with initial values \(F_0 = 0, F_1 = 1 \), the unique solution sequence to (1.1) is the sequence \(\{F_{n}\} \) of Fibonacci numbers, while if the initial values are \(L_0 = 2, L_1 = P \), the unique solution sequence of (1.1) is the sequence \(\{L_{n}\} \) of Lucas numbers.

A general discussion about reciprocal sums of the two types

\[\sum_{n=1}^{\infty} \frac{1}{F_{n}F_{n+k_{1}}F_{n+k_{2}} \cdots F_{n+k_{r}}} \text{ and } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{F_{n}F_{n+k_{1}}F_{n+k_{2}} \cdots F_{n+k_{r}}}. \]

*Supported by the Commission on Higher Education and the Thailand Research Fund RTA5180005, and by the National Centre of Excellence in Mathematics, PERDO, Bangkok 10400, Thailand.
up to 1969 was given in [8]; see also [23]. There it was shown that the so-called second degree summation, i.e., the denominator contains a product of two Fibonacci numbers, can be completely settled. The case of alternating series yields
\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{F_n F_{n+k}} = \frac{1}{F_k} \left(\frac{k}{r} - \sum_{j=1}^{k} \frac{F_{j-1}}{F_j} \right) \quad (k \in \mathbb{N}), \]
(1.2)

and for the non-alternating case, \(\sum_{n=1}^{\infty} \frac{1}{F_n F_{n+k}} \) has explicit values when \(k \) is even, while for odd \(k \) it can be reduced to the form
\[a + b \sum_{n=1}^{\infty} \frac{1}{F_n F_{n+1}} \quad \text{with } a, b \in \mathbb{Q}. \]

Moreover, the third degree summation can be put in the form
\[\sum_{n=1}^{\infty} \frac{1}{F_n F_{n+s} F_{n+t}} = c + d \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{F_{n+r-1} F_{n+r-2} \cdots F_{n}} \quad (s, t \in \mathbb{N}), \]

with the constants \(c \) and \(d \) being determined for certain given \(s \) and \(t \). In general, all summations of the shape
\[\sum_{n=1}^{\infty} \frac{1}{\prod_{i=1}^{r} F_{n+k_{i}}} \]
and
\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\prod_{i=1}^{r} F_{n+k_{i}}} \]
can be written under the form
\[a + b \sum_{n=1}^{\infty} \frac{1}{F_{n+r-1} F_{n+r-2} \cdots F_{n}} \quad \text{and} \quad c + d \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{F_{n+r-1} F_{n+r-2} \cdots F_{n}}, \]
respectively, where \(a, b, c, d \in \mathbb{Q} \). Identities of these kinds have regularly been posed as problems in the literature, such as in [42].

A reciprocal sum of Fibonacci numbers with subscripts \(2^n \) was proposed in 1974 as a problem by D.A. Millin in [33], and was subsequently solved by I.J. Good in [15] as
\[\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7 - \sqrt{5}}{2}. \]
(1.3)

Since then, many proofs have been offered, [19]. In 1976, Hoggart and Bicknell [20] gave the following more general formula (see also [7]), when \(k \in \mathbb{N} \),
\[\sum_{n=0}^{\infty} \frac{1}{F_{k \cdot 2^n}} = \begin{cases} \frac{2L_k - F_{2k} \sqrt{5} + 5F_k^2}{2F_k} & \text{if } k \text{ is odd} \\ \frac{2 - F_k \sqrt{5} + L_k}{2F_k} & \text{if } k \text{ is even}. \end{cases} \]
(1.4)

In 1976, using the Lambert series expansion, Bruckman and Good [9] evaluated several reciprocal sums including
\[\sum_{n=0}^{\infty} L_{k,3^n} = \frac{(\sqrt{5} - 1)^k}{2^k F_k}, \quad \sum_{n=0}^{\infty} F_{k,3^n} = \frac{(\sqrt{5} - 1)^k}{2^k \sqrt{5} L_k}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{s(n)} F_{s(n+1)} - s(n)}{F_{s(n)} F_{s(n+1)}} = \frac{1}{F_{s(0)}} \left(\frac{1 - \sqrt{5}}{2} \right)^{s(0)}, \]

where \(s(n) \) is a positive integer-valued function with \(s(n) \to \infty \) as \(n \to \infty \).

In 1977, Greig ([17], [18]) summed a finite reciprocal series of the form \(\sum_{n} 1/F_{k,3^n} \), which after passing to limit yields (1.4) as well as other reciprocal sums expressed as a combination of smaller sums. In the same year, Bruckman, [10], obtain closed form expressions of certain reciprocal sums in terms of complete elliptic integrals of the first and second kind.
In 1984, Popov [37] showed, among other things, that
\[\sum_{n=0}^{\infty} \frac{1}{F_{2nm+2k}F_{2(n+1)m+2k}} = \frac{1}{2F_{2m}} \left(\frac{L_{2k}}{F_{2k}} - \sqrt{5} \right), \]
where \(m \) is odd and \(-(m-1) \leq 2k \leq m-1\). He later extended this result in [38] with \(\ell, m \in \mathbb{N} \) to
\[\sum_{n=0}^{\infty} \frac{Q^{nm}}{U_{\ell+nm}U_{\ell+(n+1)m}} = \frac{\alpha^{-\ell}}{U_{\ell}u_{m}} \]
and
\[\sum_{n=0}^{\infty} \frac{Q^{nm}}{V_{\ell+nm}V_{\ell+(n+1)m}} = \frac{\alpha^{1-\ell}}{\alpha^{2}-Q} \cdot \frac{1}{U_{m}V_{\ell}}, \]
where
\[U_{n} = \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad V_{n} = \alpha^{n}+\beta^{n}. \]

In 1990, Andfe-Jeannin [3] gave explicit formulae for the reciprocal sums of elements satisfying (1.1) with \(Q = -1 \) in terms of the values of Lambert series, namely, when \(k \) is an odd positive integer,
\[\sum_{n=1}^{m} \frac{(-1)^{n}}{G_{n}G_{n+k}} = \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \sum_{n=1}^{k} \frac{(-1)^{n}}{G_{n}G_{n+m}}, \]
where all \(G_{1}, \ldots, G_{m+k} \) are assumed nonzero.

In 1995, Melham and Shanon [31] computed the sums in (1.5), (1.6) for elements \(U_{n}, V_{n} \) satisfying the recurrence (1.1) with \(Q = -1 \) and initial values
\[U_{0} = 0, \quad U_{1} = 1; \quad V_{0} = 2, \quad V_{1} = P. \]

Among the established reciprocal sums are, when \(k \in \mathbb{N} \),
\[\sum_{n=0}^{\infty} \frac{1}{U_{k2^{n}}} = \begin{cases} \frac{1}{U_{k}} + \frac{1}{U_{k-1}} & \text{if } P > 2 \\ \frac{1}{U_{k}} + \frac{1}{\alpha} & \text{if } P < -2 \end{cases} \]
\[\sum_{n=1}^{\infty} \frac{1}{U_{kn}U_{k(n+1)}} = \frac{1}{\alpha^{k}U_{k}^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{V_{kn}V_{k(n+1)}} = \frac{1}{2(\alpha-\beta)U_{k}}. \]
Melham furthered his investigations in two further papers [29] and [30] obtaining more identities of which generalize those of André-Jeannin [3] such as

\[\sum_{i=1}^{n} \frac{L_i}{F_{f(i-1)} + (-1)^k F_{f(i+1)}} = \frac{F_{f(n)} + F_{f(n+k)}}{F_k (k+, n \in N)} \]

\[\sum_{n=1}^{\infty} \frac{1}{U_{kn} U_{k(n+m)}} = \frac{2(\alpha - \beta)}{U_{km}} \left(L(\beta^{2k}) - 2L(\beta^{4k}) + 2L(\beta^{8k}) \right) + \frac{1}{U_{km}} \sum_{n=1}^{m} \frac{1}{\alpha^{kn} U_{kn}} \quad (k, m \text{ odd}) \]

In 1999, Rabinowitz [39] employed a partial fraction decomposition to derive a reduction algorithm which enabled him to obtain various finite reciprocal sums such as, when \(k \in N \),

\[\sum_{n=1}^{N} \frac{(-1)^n}{F_n F_{n+k}} = \frac{1}{F_k} \left(\sum_{j=1}^{k} \frac{1}{F_j F_{k+j}} \right) \]

\[\sum_{n=1}^{\infty} \frac{1}{F_n F_{n+k}} = \frac{1}{F_k} \left(\sum_{j=1}^{k/2} \frac{1}{F_j F_{k+2j}} \right) \]

where \(H_n \) satisfies the recurrence (1.1) with \(P = 1, Q = -1 \).

In 2001, Hu, Sun and Liu, [21], extended the results of second degree summation to the most general situation, which we now elaborate. Let \(\{w_n\} \in L(P, Q) \) and let \(f \) be a function such that \(f(n) \in Z \) and \(w_{f(n)} \neq 0 \) for all \(n \in N \cup \{0\} \).

1) If \(m \in N \), then

\[\sum_{n=0}^{m-1} \frac{Q_{f(n)} U_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} = \frac{Q^{f(0)} U_{f(m)-f(0)}}{w_{f(0)} w_{f(m)}} \]

2) Assume that \(P, Q \in R \setminus \{0\} \) and \(P^2 - 4Q \geq 0 \). If \(\lim_{n \to \infty} f(n) = +\infty \) and \(w_1 \neq \alpha w_0 \), then

\[\sum_{n=0}^{\infty} \frac{Q^{f(n)} U_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} = \frac{Q^{f(0)}}{(w_1 - \alpha w_0) w_{f(0)}} \]

where \(\Delta f(n) = f(n+1) - f(n) \). As pointed out by Hu, Sun and Liu, the above results contain almost all previously known second degree reciprocal sums identities.

Two other aspects about infinite reciprocal sums are their irrationality and transcendentality. It was proved by André-Jeannin, [1], using Apery's method that \(\sum_{n \geq 1} 1/F_n \) and \(\sum_{n \geq 1} 1/L_n \) are irrational; an alternative proof using \(q \)-exponential and \(q \)-logarithm is due to Duverney, [13]. Badea [4] (see also [2], [5], [28]) proved that \(\sum_{n \geq 1} 1/F_{2n+1} \) and \(\sum_{n \geq 1} 1/L_{2n+1} \) are irrational, while \(\sum_{n \geq 1} 1/F_{2n} \) and \(\sum_{n \geq 1} 1/L_{2n} \) are clearly irrational from their explicit shapes in (1.3), (1.8). Tachiya, [41], proved results about irrationality of certain Lambert series with applications to reciprocal sums of the form \(\sum_{n=1}^{\infty} 1/R_{n \in+b} \). Quantitative results about irrationality measure have appeared, e.g. in [27]. Regarding transcendentality and algebraic independence, Mignotte, [32], showed that \(\sum_{n \geq 1} 2(1+(-1)^n)/F_{2n} \) is transcendental. Bundchuh and Pethó, [11], used Schmidt's simultaneous approximation theorem and Mahler's method to deduce transcendence results about reciprocal sums of the form \(\sum_{n} B_n/R_{f(n)} \), where the numerators \(B_n \) do not grow too fast and the denominators \(R_{f(n)} \) satisfy (1.1) with exponential growth. Nishioka, [34], using Mahler's method proved algebraic independence.
of numbers of the form $\sum_{n} a_{n}/R_{g(n)}$, where $g(n) \approx d^{n}$, $d \geq 2$. Algebraic independence results along this line have been of much progress, see e.g. [14], [24]. Nyblom ([35], [36]) using Roth’s theorem proved transcendence of numbers with reciprocal sums $\sum_{n} 1/R_{n}, \sum_{n} 1/2^{n} F_{n}, \sum_{n} 1/2^{n} L_{n}$ as special cases.

2 Binary sequences with non-constant coefficients

A natural question arisen from the investigation of reciprocal sums of elements satisfying a binary recurrence with constant coefficients is whether the identities previously discovered continue to hold when the coefficients in the binary recurrence are not necessarily constant. It is shown in [25] that the answer is generally positive. In principle, this is achieved by extending results analogous to the two main assertions of Hu, Sun and Liu mentioned in the last part of the previous section. In the rest of this paper, a discussion along this line is given with emphasis being placed on deriving reciprocal sums for Fibonacci and Lucas polynomials.

Let $A := \{a_{n}\}_{n \in \mathbb{Z}}$ and $B := \{b_{n}\}_{n \in \mathbb{Z}}$ be two sequences of elements in a field and assume that $a_{n} \neq 0$ for all $n \in \mathbb{Z}$. Let $\mathcal{L}(A, B)$ be the set of all second order recurrence sequences $\{W_{n}\}_{n \in \mathbb{Z}}$ satisfying

$$W_{n+2} = b_{n+2}W_{n+1} + a_{n+2}W_{n} \quad (n \in \mathbb{Z}). \tag{2.1}$$

For a fixed $m \in \mathbb{Z}$, define

$$C_{m,0} = 0, \quad C_{m,1} = 1, \quad C_{m,n} = b_{m+n}C_{m,n-1} + a_{m+n}C_{m,n-2} \quad (n \in \mathbb{Z}) \tag{2.2}$$

$$\delta_{n} = \frac{1}{a_{2}a_{3}\cdots a_{n+1}} \quad \text{if } n > 0$$

$$\delta_{n} = 1 \quad \text{if } n = 0$$

$$\delta_{n} = (a_{1}a_{0}a_{-1}\cdots a_{n+2})^{-1} \quad \text{if } n < 0. \tag{2.3}$$

Recently, in [25], the following general results about reciprocal sums of elements satisfying (2.1) were proved.

Theorem 1. Let $\{A_{n}\}, \{B_{n}\} \in \mathcal{L}(A, B)$, $D = A_{1}B_{0} - A_{0}B_{1}$ and let $\{C_{m,n}\}, \delta_{n}$ be defined as above. Let $f : \mathbb{N} \cup \{0\} \rightarrow \mathbb{Z}$. Assume that $B_{f(k)} \neq 0$ for all $k \in \mathbb{N} \cup \{0\}$.

I. If $t \in \mathbb{N}$, then

$$\sum_{k=0}^{t-1} \frac{(-1)^{f(k)}\delta_{f(k)}DC_{f(k), f(k+1)-f(k)}}{B_{f(k)}B_{f(k+1)}} = \frac{(-1)^{f(0)}\delta_{f(0)}DC_{f(0), f(t)-f(0)}}{B_{f(0)}B_{f(t)}} = \frac{A_{f(t)}}{B_{f(t)}} - \frac{A_{f(0)}}{B_{f(0)}}$$

II. If $\lim_{k \rightarrow \infty} f(k) = +\infty$ and $\lim_{n \rightarrow \infty} A_{n}/B_{n} = \xi$ (with respect to a suitable topology of the field), then

$$\sum_{k=0}^{\infty} \frac{(-1)^{f(k)}\delta_{f(k)}DC_{f(k), f(k+1)-f(k)}}{B_{f(k)}B_{f(k+1)}} = \xi \frac{A_{f(0)}}{B_{f(0)}}$$

If we take, in Theorem 1,

$$a_{n} = -Q, \quad b_{n} = P, \quad B_{n} = w_{n}, \quad C_{m,n} = A_{n} = U_{n} \quad (n \in \mathbb{Z}),$$

we simply recover the results of Hu, Sun and Liu mentioned earlier.

Special cases of Theorem 1 are the Fibonacci polynomials $F_{n}(x)$, and the Lucas polynomials $L_{n}(x)$, which satisfy the recurrence (2.1) with $b_{n} = x \neq 0$, $a_{n} = 1$, i.e.,

$$F_{n+2}(x) = xF_{n+1}(x) + F_{n}(x), \quad L_{n+2}(x) = xL_{n+1}(x) + L_{n}(x) \quad (n \in \mathbb{Z}),$$

and respective initial values

$$F_{0}(x) = 0, \quad F_{1}(x) = 1, \quad L_{0}(x) = 2, \quad L_{1}(x) = x.$$
Putting
\[
\alpha(x) = \frac{x + \sqrt{x^2 + 4}}{2}, \quad \beta(x) = \frac{x - \sqrt{x^2 + 4}}{2},
\]
it is well-known that
\[
F_n(x) = \frac{(\alpha(x))^n - (\beta(x))^n}{\alpha(x) - \beta(x)}, \quad L_n(x) = (\alpha(x))^n + (\beta(x))^n.
\]

Applying Theorem 1 to these two particular cases of Fibonacci and Lucas polynomials, we get

Proposition 1. Let \(f : \mathbb{N} \cup \{0\} \rightarrow \mathbb{Z}. \) Assume that \(F_{f(n)}(x) \) and \(L_{f(n)}(x) \) are nonzero for all \(n \in \mathbb{N} \cup \{0\}. \)

I. If \(t \in \mathbb{N}, \) then

1. \[
\sum_{k=0}^{t-1} \frac{(-1)^{f(k)+1} F_{f(k+1)-f(k)}(x)}{F_{f(k)}(x) F_{f(k+1)}(x)} = (-1)^{f(0)+1} \frac{F_{f(t)-f(0)}(x)}{F_{f(t)}(x) F_{f(0)}(x)} = \frac{\alpha(x) - \beta(x)}{\alpha(x) + \beta(x)},
\]
2. \[
\sum_{k=0}^{t-1} \frac{(-1)^{f(k)}(x^2 + 4) F_{f(k+1)-f(k)}(x)}{L_{f(k)}(x) L_{f(k+1)}(x)} = \frac{(-1)^{f(0)}(x^2 + 4) F_{f(t)-f(0)}(x)}{L_{f(t)}(x) L_{f(0)}(x)} = \frac{\alpha(x) - \beta(x)}{\alpha(x) + \beta(x)}.
\]

II. If \(\lim_{n \to \infty} f(n) = \infty, \) then

1. \[
\sum_{k=0}^{\infty} \frac{(-1)^{f(k)+1} F_{f(k+1)-f(k)}(x)}{F_{f(k)}(x) F_{f(k+1)}(x)} = (-1)^{f(0)+1} \frac{F_{f(\infty)-f(0)}(x)}{F_{f(\infty)}(x) F_{f(0)}(x)} = \Omega(x),
\]
2. \[
\sum_{k=0}^{\infty} \frac{(-1)^{f(k)}(x^2 + 4) F_{f(k+1)-f(k)}(x)}{L_{f(k)}(x) L_{f(k+1)}(x)} = \frac{(-1)^{f(0)}(x^2 + 4) F_{f(\infty)-f(0)}(x)}{L_{f(\infty)}(x) L_{f(0)}(x)} = \Omega(x),
\]

where \(\Omega(x) = \begin{cases} \alpha(x) & \text{if } x > 0 \\ \beta(x) & \text{if } x < 0 \end{cases}. \)

Proof. I. For the case of Fibonacci polynomials, in Theorem 1 take
\[
A_n = F_{n+1}(x), \quad B_n = F_n(x), \quad C_{m,n} = F_n(x) \quad \text{with } \delta_f(k) = 1, \ D = -1.
\]

For the case of Lucas polynomials, in Theorem 1 take
\[
A_n = L_{n+1}(x), \quad B_n = L_n(x), \quad C_{m,n} = F_n(x) \quad \text{with } \delta_f(k) = 1, \ D = x^2 + 4.
\]

II. The assertions follow from Part I observing that
\[
\lim_{n \to \infty} \frac{F_{n+1}(x)}{F_n(x)} = \lim_{n \to \infty} \frac{L_{n+1}(x)}{L_n(x)} = \begin{cases} \alpha(x) & \text{if } x > 0 \\ \beta(x) & \text{if } x < 0 \end{cases}.
\]

Applying Proposition 1, we deduce a number of identities about infinite reciprocal sums generalizing those of Fibonacci and Lucas numbers.

Corollary 1. Let \(a, j, t, k, r \in \mathbb{N} \) with \(k \) even, \(r \) odd, \(s \in \mathbb{N} \cup \{0\} \) and let \(\Omega(x) \) be as defined in Proposition 1. Then

1. \[
\sum_{n=0}^{\infty} \frac{(-1)^{tn} F_{tn+j}(x) F_{t(n+1)+j}(x)}{F_{tn+j}(x) F_{t(n+1)+j}(x)} = \left(\Omega(x) - \frac{F_{j+1}(x)}{F_j(x)} \right).
\]
2) \[\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)/t}t}{F_{n}(x)F_{n+t}(x)} = \frac{t\Omega(x)}{F_{t}(x)} - \sum_{j=1}^{t} \frac{F_{j+1}(x)}{F_{j}(x)} + \frac{1 - (-1)^{t}}{2F_{t}(x)} \Omega(x). \]

3) \[\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)/t}t}{F_{n}(x)F_{n+t}(x)} = \frac{1}{F_{t}(x)} \left(t\Omega(x) - \sum_{j=1}^{t} \frac{F_{j+1}(x)}{F_{j}(x)} \right). \]

4) \[\sum_{n=0}^{\infty} \frac{(-1)^{n+1}F_{(t-1)n+1}(x)}{F_{n}(x)F_{n+t}(x)} = \Omega(x) + \frac{F_{t+1}(x)}{F_{t}(x)}. \]

5) \[\sum_{n=0}^{\infty} \frac{1}{F_{2^{n}k}(x)} = \frac{\Omega(x)^{2} + 1}{\Omega(x)(\Omega(x)^{2k} - 1)}. \]

6) \[\sum_{n=1}^{\infty} \frac{1}{\alpha(x)^{m}F_{rn}(x)} = \frac{1}{\alpha(x)^{r}F_{r}(x)} - F_{r}(x) \sum_{n=1}^{\infty} \frac{1}{F_{rn}(x)F_{r(n+1)}(x)}. \]

7) \[\sum_{n=0}^{\infty} \frac{(-1)^{n}L_{t(2n+1)+j}(x)}{L_{n}(x)L_{n+t}(x)} = \frac{(-1)^{j}F_{j+1}(x)}{F_{j}(x)} + \frac{1 - (-1)^{t}}{2(x^{2}+4)F_{t}(x)} \Omega(x). \]

8) \[\sum_{n=1}^{\infty} \frac{(-1)^{n}L_{t(2n+1)+j}(x)}{L_{n}(x)L_{n+t}(x)} = \frac{1}{F_{2t}(x)} \left(t\Omega(x) - \sum_{j=1}^{t} \frac{F_{j+1}(x)}{F_{j}(x)} \right). \]

9) \[\sum_{n=1}^{\infty} \frac{1}{F_{(2n+2)r+2\epsilon}(x)^{2} - (-1)^{j}F_{r}(x)^{2}} = \frac{1}{F_{2t}(x)} \left(\Omega(x) - \frac{F_{j+1}(x)}{F_{j}(x)} \right). \]

10) \[\sum_{n=0}^{\infty} \frac{1}{F_{(2n+2)r+2\epsilon}(x) - (-1)^{j}F_{r}(x)} = \frac{1}{F_{2t}(x)} \left(\Omega(x) - \frac{F_{j+1}(x)}{F_{j}(x)} \right). \]
\[\sum_{n=0}^{\infty} \frac{x^2 + 4}{L_{(2n+1)k+2j}(x) + L_k(x)} = \frac{1}{F_k(x)F_{2j}(x)} + \frac{L_k(x)}{F_{2k}(x)} \left(\Omega(x) - \frac{F_{2j+1}(x)}{F_{2j}(x)} \right). \]

\[\sum_{n=0}^{\infty} \frac{x^2 + 4}{L_{(2n+1)k+2j}(x) - L_k(x)} = \frac{1}{F_k(x)F_{2j}(x)} - \frac{L_k(x)}{F_{2k}(x)} \left(\Omega(x) - \frac{F_{2j+1}(x)}{F_{2j}(x)} \right). \]

Proof. For parts 1) and 6), put \(f(n) = tn + j \) in Proposition 1 part II 1) and 2), respectively.

Parts 2) and 7) follow from summing the identities in parts 1) and 6), respectively, over \(j \) from 1 to \(t \) and rearranging.

Part 3) follows from multiplying the identity in part 1) by \((-1)^{j+1}\), summing over \(j \) from 1 to \(t \) and rearranging.

For parts 4) and 9), put \(f(n) = at^n + s \) in Proposition 1 part II 1) and 2), respectively.

Part 5) follows easily by putting \(t = 2, s = 0 \) in the identity of part 4) and simplifying. This is a particularly pleasing identity with each denominator in the left hand sum containing only one term of exponential index; this is the only such case derivable from part 4).

Part 8) follows from multiplying the identity in part 6) by \((-1)^j\), summing over \(j \) from 1 to \(t \) and rearranging.

Part 10) follows from dividing through by \(\alpha(x)^{r(n+1)}F_{m}(x)F_{r(n+1)}(x) \) in the identity

\[\alpha(x)^{r}F_{r(n+1)}(x) + F_{m}(x) = \alpha(x)^{r(n+1)}F_{r}(x) \] \((n \in \mathbb{N})\),

and summing over \(n \).

Part 11) follows in the same manner as part 10) but using instead the identity

\[\alpha(x)^{r}L_{r(n+1)}(x) + L_{rn}(x) = \{ \alpha(x) - \beta(x) \} \alpha(x)^{r(n+1)}F_{r}(x). \]

For part 12), we start with the identity

\[\frac{x^2 + 4}{L_{t+2a}(x) - (-1)^aL_t(x)} = \frac{1}{F_a(x)F_{a+t}(x)}. \]

Putting \(a = j, j + t, \ldots, j + Nt, \) and multiplying by \((-1)^0t, (-1)^1t, \ldots, (-1)^Nt\), respectively, we get

\[\frac{(-1)^0t(x^2 + 4)}{L_{t+2j}(x) - (-1)^jL_t(x)} = \frac{(-1)^0t}{F_j(x)F_{j+t}(x)}; \]

\[\frac{(-1)^1t(x^2 + 4)}{L_{t+2j+1}(x) - (-1)^{j+1}L_t(x)} = \frac{(-1)^1t}{F_{j+1}(x)F_{j+2t}(x)}, \ldots, \]

\[\frac{(-1)^Nt(x^2 + 4)}{L_{t(2N+1)+2j}(x) - (-1)^{j+Nt}L_t(x)} = \frac{(-1)^Nt}{F_{j+Nt}(x)F_{j+(N+1)t}(x)}. \]

Summing these expressions and letting \(N \to \infty \), we get

\[(x^2 + 4) \sum_{n=0}^{\infty} \frac{(-1)^{tn}}{L_{t(n+1)+2j}(x) - (-1)^{tn+j}L_t(x)} = \sum_{n=0}^{\infty} \frac{(-1)^{nt}}{F_{j+nt}(x)F_{j+(n+1)t}(x)} \]

and the result follows from replacing the right hand expression by the result of part 1).

Part 13) follows along the same line of proof as in part 12) but starting instead with the identity

\[\frac{1}{L_{t+2a}(x) + (-1)^aL_t(x)} = \frac{1}{L_a(x)L_{a+t}}. \]

and using the result of part 6) at the end.

For part 14), we start with the identity

\[\frac{1}{F_{a+t}(x)^2 - (-1)^aF_t(x)^2} = \frac{1}{F_a(x)F_{a+2t}(x)}. \]
Putting \(a = j, j + 2t, \ldots, j + 2Nt \), we get

\[
\frac{1}{F_{j+t}(x)^2 - (-1)^j F_t(x)^2} = \frac{1}{F_j(x)F_{j+2t}(x)},
\]

\[
\frac{1}{F_{j+3t}(x)^2 - (-1)^j F_t(x)^2} = \frac{1}{F_{j+2t}(x)F_{j+4t}(x)},
\]

\[
\frac{1}{F_{j+(2N+1)t}(x)^2 - (-1)^j F_t(x)^2} = \frac{1}{F_{j+2Nt}(x)F_{j+2(N+1)t}(x)}.
\]

Summing these expressions and letting \(N \to \infty \), we get

\[
\sum_{n=0}^\infty \frac{1}{F_{t(2n+1)+j}(x)^2 - (-1)^j F_t(x)^2} = \sum_{n=0}^\infty \frac{1}{F_{2tn+j}(x)F_{2t(n+1)+j}(x)},
\]

and the result follows from the result of part 1) with \(2t \) in place of \(t \).

Part 15) follows along the same line of proof as in part 14) but starting instead with the identity

\[
\frac{x^2 + 4}{L_{a+t}(x)^2 - (-1)^a L_t(x)^2} = \frac{1}{F_{a}(x)F_{a+2t}(x)}.
\]

To prove the first identity of part 16), we start with the identity

\[
F_n(x)^2 - (-1)^n F_r(x)^2 = F_{n-r}(x)F_{n+r}(x).
\]

Replacing \(n \) by \((2n+1)r+2j \) and rearranging, we get

\[
\frac{1}{F_{(2n+1)r+2j}(x)+F_{r}(x)} = \frac{F_{(2n+1)r+2j}(x)-F_{r}(x)}{F_{2nr+2j}(x)F_{(2n+2)r+2j}(x)}.
\]

Next, from the identity

\[
L_r(x)F_{(2n+1)r+2j}(x) = F_{(2n+2)r+2j}(x)+(-1)^r F_{2nr+2j}(x),
\]

using the fact that \(r \) is odd, we get

\[
\frac{F_{(2n+1)r+2j}(x)}{F_{2nr+2j}(x)F_{(2n+2)r+2j}(x)} = \frac{1}{L_r(x)} \left(\frac{1}{F_{2nr+2j}(x)} - \frac{1}{F_{(2n+2)r+2j}(x)} \right).
\]

Summing (2.4) over \(n \) from 0 to \(N \) and using (2.5) to simplify the first term on the right side which becomes a telescoping sum, we get

\[
\sum_{n=0}^N \frac{1}{F_{(2n+1)r+2j}(x)+F_{r}(x)} = \frac{1}{L_r(x)} \left(\frac{1}{F_{2N+2j}(x)} - \frac{1}{F_{(2n+2)r+2j}(x)} \right).
\]

The result now follows by taking \(N \to \infty \), making use of the result in part 1) and the fact that \(1/F_N(x) \to 0 \) \((N \to \infty) \). The second identity is proved similarly.

To prove the first identity of part 17), we start with the identity

\[
L_n(x)^2 - (-1)^n L_k(x)^2 = (x^2 + 4)F_{n-k}(x)F_{n+k}(x).
\]

Replacing \(n \) by \((2n+1)k + 2j \) and rearranging, we get

\[
\frac{x^2 + 4}{L_{(2n+1)k+2j}(x)+L_{k}(x)} = \frac{L_{(2n+1)k+2j}(x)-L_{k}(x)}{F_{2nk+2j}(x)F_{(2n+2)k+2j}(x)}.
\]

Next, from the identity

\[
F_k(x)L_{(2n+1)k+2j}(x) = F_{(2n+2)k+2j}(x)+(-1)^{k+1}F_{2nk+2j}(x),
\]
using the fact that k is even, we get
\[
\frac{L_{(2n+1)k+2j}(x)}{F_{2nk+2j}(x)F_{(2n+2)k+2j}(x)} = \frac{1}{F_k(x)} \left(\frac{1}{F_{(2N+2)k+2j}(x)} - \frac{1}{F_{2nk+2j}(x)} \right).
\]
(2.7)

Summing (2.6) over n from 0 to N and using (2.7) to simplify the first term on the right side which becomes a telescoping sum, we get
\[
\sum_{n=0}^{N} \frac{x^2 + 4}{L_{(2n+1)k+2j}(x) + L_k(x)} = \frac{1}{F_k(x)} \left(\frac{1}{F_{2j}(x)} - \frac{1}{F_{(2N+2)k+2j}(x)} \right) - \sum_{n=0}^{N} \frac{L_k(x)}{F_{2nk+2j}(x)F_{(2n+2)k+2j}(x)}.
\]
The result now follows by taking $N \rightarrow \infty$, making use of the result in part 1) and the fact that $1/F_N(x) \rightarrow 0$ ($N \rightarrow \infty$). The second identity is proved analogously.

Some of these and similar identities have already appeared in [6], [37] and [38]. Next, we prove some identities about finite reciprocal sums of Fibonacci and Lucas polynomials, cf. [3], [16].

Corollary 2. Let $t, a, m \in \mathbb{N}$, $a \geq 2$. Then
1) \[
\sum_{n=1}^{2t} (-1)^n \frac{F_{[(n+1)/2]a+(1+(-1)^n)/2}(x)}{F_{[(n+1)/2]a+(1+(-1)^n)/2-1}(x)} = \sum_{n=1}^{t} \frac{(-1)^{an}}{F_{an}(x)F_{an+1}(x)}.
\]
2) \[
\sum_{n=1}^{2t} (-1)^n \frac{F_{[(n+1)/2]a-(3-(-1)^n)/2}(x)}{F_{[(n+1)/2]a-(3-(-1)^n)/2+3}(x)} = \sum_{n=1}^{t} \frac{(-1)^{an}(x^2 + 1)}{F_{an+1}(x)F_{an+2}(x)}.
\]
3) For constants λ, ν, define $G_n(x) := \lambda F_n(x) + \nu L_n(x)$ $(n \in \mathbb{N})$. Then
\[
F_m(x) \sum_{n=1}^{t} \frac{(-1)^n}{G_n(x)G_{n+m}(x)} = F_t(x) \sum_{n=1}^{m} \frac{(-1)^n}{G_n(x)G_{n+t}(x)}.
\]
(2.8)

Proof. For part 1), using the analogue of Cassini's formula (Theorem 53 on p. 74 of [23]), which is easily checked by induction,
\[
F_{n-1}(x)F_{n+1}(x) - F_n(x)^2 = (-1)^n \quad (n \in \mathbb{N}),
\]
we have
\[
\sum_{n=1}^{2t} (-1)^n \frac{F_{[(n+1)/2]a+(1+(-1)^n)/2}(x)}{F_{[(n+1)/2]a+(1+(-1)^n)/2-1}(x)} = \sum_{n=1}^{t} \left(\frac{F_{an+1}(x)}{F_{an}(x)} - \frac{F_{an}(x)}{F_{an-1}(x)} \right) = \sum_{n=1}^{t} \frac{(-1)^{an}}{F_{an}(x)F_{an-1}(x)}.
\]

For part 2), using the identity
\[
F_{n-1}(x)F_{n+1}(x) - F_{n-2}(x)F_{n+2}(x) = (-1)^n(x^2 + 1) \quad (n \in \mathbb{N}),
\]
we have
\[
\sum_{n=1}^{2t} (-1)^n \frac{F_{[(n+1)/2]a-(3-(-1)^n)/2}(x)}{F_{[(n+1)/2]a-(3-(-1)^n)/2+3}(x)} = \sum_{n=1}^{t} \left(\frac{F_{an-2}(x)}{F_{an+1}(x)} - \frac{F_{an-1}(x)}{F_{an+2}(x)} \right) = \sum_{n=1}^{t} \frac{(-1)^{an}(x^2 + 1)}{F_{an+1}(x)F_{an+2}(x)}.
\]

To prove part 3), we start from the two identities, when $m, n \in \mathbb{N}$,
\[
F_{m+1}(x)F_{m+n}(x) - F_m(x)F_{m+n+1}(x) = (-1)^m F_n(x)
\]
\[
F_{m+1}(x)L_{m+n}(x) - F_m(x)L_{m+n+1}(x) = (-1)^m L_n(x)
\]
which yield $F_{m+1}(x)G_{m+n}(x) - F_m(x)G_{m+n+1}(x) = (-1)^m G_n(x)$, and so
\[
\frac{1}{G_n(x)} \left(\frac{F_{m+1}(x)}{G_{m+n+1}(x)} - \frac{F_m(x)}{G_{m+n}(x)} \right) = \frac{(-1)^m}{G_{m+n}(x)G_{m+n+1}(x)}.
\]
(2.9)
Without loss of generality, assume that $m \geq t$. We establish (2.8) by induction on m, the case $m = t$ being valid trivially. Assuming (2.8) holds up to m, to prove it holds for $m + 1$ is equivalent to proving that

$$
\frac{(-1)^{m+1}F_t(x)}{G_{m+1}(x)G_{m+t+1}(x)} = \sum_{n=1}^{t} \frac{(-1)^n}{G_{n}(x)} \left(\frac{F_{m+1}(x)}{G_{n+m+1}(x)} - \frac{F_{m}(x)}{G_{n+m}(x)} \right).
$$

Using (2.9), this is equivalent to proving that

$$
\frac{F_t(x)}{G_{m+1}(x)G_{m+t+2}(x)} = \sum_{n=1}^{t} \frac{(-1)^{n+1}}{G_{m+n}(x)G_{n+m+1}(x)}.
$$

Since $F_{t}(x) = 1$, (2.10) clearly holds when $t = 1$. Assuming it holds up to t, to show it holds at $t + 1$, we must verify that

$$
\frac{F_{t+1}(x)}{G_{m+1}(x)G_{m+t+2}(x)} = \frac{F_{t}(x)}{G_{m+1}(x)G_{m+t+1}(x)} + \frac{(-1)^{t}}{G_{m+t+1}(x)G_{m+t+2}(x)}.
$$

This last equation follows easily from (2.9).

Besides beautiful identities about reciprocal sums of Fibonacci and Lucas numbers, there are equally beautiful identities relating such numbers with trigonometric and hyperbolic functions such as those in [29]. To end this section, we derive their generalizations to Fibonacci and Lucas polynomials.

Proposition 2. Let $n \in \mathbb{N}$. Then

1. $\tan^{-1} F_{n+4}(x) - \tan^{-1} F_{n}(x) = \tan^{-1} \left(\frac{xL_{n+2}(x)}{F_{n+2}(x)^2 + 1 - (-1)^n x^2} \right)$.

2. $\tan^{-1} \left(\frac{1}{F_{n}(x)} \right) + \tan^{-1} \left(\frac{1}{F_{n+4}(x)} \right) = \tan^{-1} \left(\frac{F_{n+2}(x)^2}{F_{n+2}(x)^2 - 1 - (-1)^n x^2} \right)$ provided $F_{n+4}(x)F_{n}(x) > 1$.

3. $\tanh^{-1} \left(\frac{1}{F_{n}(x)} \right) + \tanh^{-1} \left(\frac{1}{F_{n+4}(x)} \right) = \tanh^{-1} \left(\frac{F_{n+2}(x)^2}{F_{n+2}(x)^2 + 1 - (-1)^n x^2} \right)$.

4. $\tanh^{-1} \left(\frac{1}{F_{n}(x)} \right) - \tanh^{-1} \left(\frac{1}{F_{n+4}(x)} \right) = \tanh^{-1} \left(\frac{xL_{n+2}(x)}{F_{n+2}(x)^2 - 1 - (-1)^n x^2} \right)$.

Proof. The four identities follow from the following facts, with $n \in \mathbb{N}$ and $u, v \in \mathbb{R}$:

- $\tan^{-1} u - \tan^{-1} v = \tan^{-1} \left(\frac{u - v}{1 + uv} \right)$ provided $uv > -1$,
- $\tan^{-1} u + \tan^{-1} v = \tan^{-1} \left(\frac{u + v}{1 - uv} \right)$ provided $uv < 1$,
- $\tanh^{-1} u + \tanh^{-1} v = \tanh^{-1} \left(\frac{u + v}{1 + uv} \right)$,
- $\tanh^{-1} u - \tanh^{-1} v = \tanh^{-1} \left(\frac{u - v}{1 - uv} \right)$,
- $F_n(x)F_{n+4}(x) + (-1)^n x^2 = F_{n+2}(x)^2$,
- $F_{n+4}(x) - F_n(x) = xL_{n+2}(x)$,
- $F_{n+4}(x) + F_n(x) = (x^2 + 2)F_{n+2}(x)$

and the observation that, for $x \neq 0$, $F_n(x)F_{n+4}(x) > 0$.

\[\square\]
Corollary 3. Let $t \in \mathbb{N}$ and $x > 0$. Then

1. $\sum_{i=1}^{\infty} \tan^{-1} \left(\frac{x L_{t+4i-2}(x)}{F_{t+4i-2}(x)^2 + 1 - (-1)^{t}x^2} \right) = \frac{\pi}{2} - \tan^{-1} F_{t}(x)$.

2. $\sum_{i=1}^{\infty} (-1)^{i-1} \tan^{-1} \left(\frac{(x^2 + 2) F_{t+4i-2}(x)}{F_{t+4i-2}(x)^2 - 1 - (-1)^{t}x^2} \right) = \tan^{-1} \left(\frac{1}{F_{t}(x)} \right)$ provided $F_{t+4}(x) F_{t}(x) > 1$.

3. $\sum_{i=1}^{\infty} (-1)^{i-1} \tanh^{-1} \left(\frac{x L_{t+4i-2}(x)}{F_{t+4i-2}(x)^2 - 1 - (-1)^{t}x^2} \right) = \tanh^{-1} \left(\frac{1}{F_{t}(x)} \right)$.

4. $\sum_{i=1}^{\infty} \tanh^{-1} \left(\frac{x L_{t+4i-2}(x)}{F_{t+4i-2}(x)^2 - 1 - (-1)^{t}x^2} \right) = \tanh^{-1} \left(\frac{1}{F_{t}(x)} \right)$.

Proof. Putting $n = t, t + 4, t + 8, \ldots, t + 4N - 4$ in the first identity of Proposition 2 and summing, we get

$$\sum_{i=1}^{N} \tan^{-1} \left(\frac{x L_{t+4i-2}(x)}{F_{t+4i-2}(x)^2 + 1 - (-1)^{t}x^2} \right) = \tan^{-1} F_{t+4N}(x) - \tan^{-1} F_{t}(x).$$

Noting that for $x > 0$, we have $F_{t+4N}(x) \rightarrow \infty$ as $N \rightarrow \infty$. The first assertion thus follows by letting $N \rightarrow \infty$. The remaining three assertions follow in the same manner. \(\square \)

3 Continued fractions

As elements satisfying the recurrence (2.1) are closely related to non-regular continued fraction expansions, it is meaningful to transfer the above results into the language of continued fractions. Define the sequence $\{S_n\}_{n \geq 1}$ by

$$S_n = \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \cdots + \frac{a_n}{b_n}}}} \quad (n \geq 1).$$

If the sequence $\{S_n\}$ converges with respect to some appropriate topology, we write

$$\frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \cdots}}} := \lim_{n \rightarrow \infty} S_n,$$

and call it a (non-regular) continued fraction of the element it represents. The elements a_n, b_n are referred to as its n^{th} partial numerator, respectively, n^{th} partial denominator, and S_n is called the n^{th} approximant (or convergent) of the continued fraction (3.1). If

$$a_1 = a_2 = \cdots = 1 \text{ and } b_i \in \mathbb{N} \ (i \geq 1),$$

then (3.1) is usually called a simple continued fraction, customarily denoted by $[b_1, b_2, b_3, \ldots]$. For a fixed b_0, define

$$A_{-1} = 1, \ A_0 = b_0, \ B_{-1} = 0, \ B_0 = 1,$$

and let

$$\frac{A_n}{B_n} := b_0 + S_n \quad (n \geq 1).$$
It is well-known, see e.g. Chapter 2 of [22] or Chapter 1 of [26], that the two sequences \(\{A_n\} \) and \(\{B_n\} \) satisfy the same system of second order linear recurrence relations but with different initial conditions, viz.,

\[
A_n = b_n A_{n-1} + a_n A_{n-2} \quad (n \geq 1),
\]

\[
B_n = b_n B_{n-1} + a_n B_{n-2} \quad (n \geq 1).
\]

The element \(A_n/B_n \) is called the \(n^{th} \) convergent of the continued fraction (3.1) with \(A_n \) being the numerator and \(B_n \) the denominator of the \(n^{th} \) convergent, respectively. Since the two recurrence relations (3.3) and (3.4) are of the same form as (2.1), Theorem 1 at once yields:

Theorem 2. Let \(\{a_n\}_{n \geq 1} \) and \(\{b_n\}_{n \geq 0} \) be two sequences in a field all of whose elements except \(b_0 \) are nonzero. Let \(\{A_n\}, \ \{B_n\} \) be two sequences satisfying (3.2), (3.3) and (3.4) and the sequence \(\{C_{m,n}\} \) be as defined in (2.2). Let \(f : \mathbb{N} \cup \{0\} \to \mathbb{Z} \). Assume that \(B_f(k) \neq 0 \) for all \(k \in \mathbb{N} \cup \{0\} \).

I. For \(t \in \mathbb{N} \) we have

\[
\sum_{k=0}^{t-1} (-1)^{f(k)} C_{f(k), f(k+1)-f(k)} \prod_{i=1}^{f(k)+1} a_i \frac{1}{B_{f(k)}B_{f(k+1)}} = \frac{(-1)^{f(0)} C_{f(0), f(t)-f(0)} \prod_{i=1}^{f(0)+1} a_i}{B_{f(0)}B_{f(t)}}
\]

(3.5)

II. If \(f(k) \) is such that \(\lim_{k \to \infty} f(k) = +\infty \) and if the sequence \(\{A_n/B_n\} \) converges to \(\xi \), then it is a sequence of approximants of the continued fraction representing \(\xi \) and

\[
\sum_{k=0}^{\infty} (-1)^{f(k)} C_{f(k), f(k+1)-f(k)} \prod_{i=1}^{f(k)+1} a_i \frac{1}{B_{f(k)}B_{f(k+1)}} = \xi - \frac{A_{f(0)}}{B_{f(0)}}.
\]

(3.6)

III. If \(f(k) \) is such that \(\lim_{k \to \infty} f(k) = -\infty \) and if the sequence \(\{A_n/B_n\}_{n \in \mathbb{N}} \) converges to \(\psi \), then

\[
\sum_{k=0}^{\infty} (-1)^{f(k)} C_{f(k), f(k+1)-f(k)} \prod_{i=1}^{f(k)+1} a_i \frac{1}{B_{f(k)}B_{f(k+1)}} = \psi - \frac{A_{f(0)}}{B_{f(0)}}.
\]

The results of Theorem 2 are applicable to the theory of continued fractions in the field of Laurent series over a field equipped with the degree valuation which we briefly discuss now.

Let \(K \) be a field, \(x \) an indeterminate, \(K((1/x)) \) the field of all formal Laurent series equipped with the degree valuation, \(|x|_\infty = e^1 \). In \(K((1/x)) \), there is a continued fraction expansion ([12] or [40]), whose basic properties are similar to the one in the real case, which is constructed as follows: since each element \(\xi \in K((1/x)) \backslash \{0\} \) has a unique representation of the form

\[
\xi = c_m x^m + c_{m-1} x^{m-1} + c_{m-2} x^{m-2} + \ldots \quad (m \in \mathbb{Z}),
\]

with coefficients \(c_m (\neq 0), \ c_{m-1}, \ c_{m-2}, \ldots \in K \). Define

\[
\xi = [\xi] + (\xi),
\]

where

\[
[\xi] := c_m x^m + c_{m-1} x^{m-1} + \ldots + c_1 x + c_0,
\]

\((\xi) := c_{-1} x^{-1} + c_{-2} x^{-2} + \ldots, \)

with the customary convention that empty sums are interpreted as 0. Clearly, \([\xi]\) and \((\xi)\) are uniquely determined. Let

\[
\beta_0 = [\xi] \in K[x],
\]

so that \(|\beta_0|_\infty = |\xi|_\infty \geq 1 \), provided \([\xi]\) \neq 0. If \((\xi) = 0\), then the process stops. If \((\xi) \neq 0\), then write

\[
\xi = \beta_0 + \frac{1}{\xi_1},
\]

\[
|\xi|_\infty = |\beta_0|_\infty + 1.
\]
where $\xi_1^{-1} = (\xi)$ with $|\xi_1|_\infty > 1$. Next write
\[
\xi_1 = [\xi_1] + (\xi_1)
\]
and let
\[
\beta_1 = [\xi_1] \in K[x] \setminus K,
\]
so that $|\beta_1|_\infty = |\xi_1|_\infty > 1$. If $(\xi_1) = 0$, then the process stops. If $(\xi_1) \neq 0$, then write
\[
\xi_1 = \beta_1 + \frac{1}{\xi_2},
\]
where $\xi_1^{-1} = (\xi_1)$ with $|\xi_2|_\infty > 1$ and let
\[
\beta_2 = [\xi_2] \in K[x] \setminus K,
\]
so that $|\beta_2|_\infty = |\xi_2|_\infty > 1$. Again, if $(\xi_2) = 0$, then the process stops; otherwise, continue in the same manner. By so doing, we obtain the unique representation
\[
\xi = [\beta_0; \beta_1, \ldots, \beta_{n-1}, \xi_n] := \beta_0 + \frac{1}{\beta_1 + \frac{1}{\beta_2 + \cdots + \frac{1}{\beta_{n-1} + \frac{1}{\xi_n}}}},
\]
where
\[
\beta_i \in K[x] \setminus K \quad (i \geq 1), \quad \xi_n \in K((1/x)), \quad |\xi_n|_\infty > 1
\]
if the process does not stop before, and ξ_n is referred to as the n^{th} complete quotient. The sequence \{\beta_n\} is uniquely determined, called the sequence of partial quotients of ξ.

The two sequences of partial numerators, \{C_n\}, and partial denominators, \{D_n\}, are defined by
\[
C_{-1} = 1, \quad C_0 = \beta_0, \quad C_{n+1} = \beta_{n+1}C_n + C_{n-1} \quad (n \geq 0)
\]
\[
D_{-1} = 0, \quad D_0 = 1, \quad D_{n+1} = \beta_{n+1}D_n + D_{n-1} \quad (n \geq 0).
\]
As an example, note that the partial numerators and partial denominators of the continued fraction
\[
[0; x, x, x, \ldots] := 0 + \frac{1}{x + \frac{1}{x + \frac{1}{x + \cdots}}}
\]
are merely two shifted sequences of Fibonacci polynomials, namely,
\[
C_n = F_n(x), \quad D_n = F_{n+1}(x).
\]
This continued fraction converges, with respect to the degree valuation, to $(\sqrt{x^2 + 4} - x)/2$.

Acknowledgement

The first author is grateful to Takao Komatsu for his hospitality and acknowledges a support from the Fund for the Promotion of International Scientific Research B-1 represented by Takao Komatsu.
References

