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Four-term leaping recurrence relations
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1 Introduction

Given a three-term linear recurrence relation Z, = T'(n)Zp—1+U(n)Zn-2 (n > 2), where the initial values
Zo, Z, are arbitrary integral values, and (T(n))n>0, (U(n))n>0 are integer sequences with U(n) 9é 0 for
allm > 0.

In 2008 Elsner and the author constructed a leaping three-term recurrence relation from the original
relation. Namely, for fixed positive integers k and 0 < i < k, they obtained a three-term relation
concerning zp, = Zgy,44-

For integers a, [ with | > 1 we define the determinant

T(a) 1 0
~U(a+1) T(a+1) 1

Ki(a) = 0 -U(@@+2) T(a+ 2)

T(a+1-2) 1
-U(a+1-1) T(a+1-1)

with Kp(a) = 1. Let
QM) =UM -r)UM-r+1)... UM -1)

with M = (n — 1)r + i + 2. Then we have the following ([3, Theorem 2]).
Theorem 1 Given a three-term recurrence formula
Zy =T(M)Zp-1+U(n)Zn—2 (n>2)

with arbitrary initial values Zy, Z; and two sequences of integers,

(T(n))nzo = (ao,al,ag,...,a,,,Tl(k),Tz(k),...,Tw(k)):o:l
(U(n))nzo = (bo,bl,bg,...,bp,Ul(k),Uz(k),---sUw(k)):l ’

where U(n) # 0 for alln > 0, and p > 0, w > 1 are fized integers. Then, for any integers r and i with
r>20<p<Li<p+randn>2,

Kr—l(M - T) ' Zn — ( r—-l(M)Kr(M - 7') + U(M)Kr I(M - T)KT 2(M + 1)) Z-,;_

+(—-1)TQ(M)K1'—1(M) “Zp—2 =0
holds for zy, = Zynyi. For T(a) > 0 and U(a) > 0 for all a > p one has K,_1(M) #0.
In particular, with Z, =gn, go =1, ¢1 = a1 or Z,, = p,, Pp = Go, P1 = Goa1 + b1, this recurrence formula
for z, is satisfied by the denominators grnii and numerators pe+i, respectively, of the convergents of a
non-regular continued fraction

[0+t b2 b Thi(k) Ua(k) Uwu:)]“
ay +az + -+ ap + Ti(k) + To(k) +--- + Tw(k)

k=1
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In the case of regular continued fractions this result is reduced as follows.

Corollary 1 Given a three-term recurrence formula
Z, = T(n)Zp-1+ Zn-2 (n>2)
with arbitrary initial values Zy, Z, and a sequence of integers,
o0
(T(n))nzo = (aO’ a,az,...,0ap, Tl(k)sT2(k)) vey Tw(k) )k=1 ’

where p > 0 and w > 1 are fized integers. Then, for any integersr andi withr >2,0<p<i<p+r
andn > 2,

Kroa(M —7) - 20 — (K,_,(M)K,(M —7) + Ky (M = ) Kpa(M + 1))  Zm1

+(—1)TK'-_1(M) *2Zp—2 = 0
holds for zp, = Zppyi. For T(a) > 0 for all a > p one has K,_y(M) # 0.
In particular, with Z,, = gn, go = 1, q1 = ay or Z, = pg, Po = Go, P1 = apa, + 1, this recurrence formula
for 2, is satisfied by the denominators qrn+i and numerators prn+i, respectively, of the convergents of a
regular continued fraction

[ <]
[ao;alya21' o 1ap’T1(k)!T2(k)v' .. ’Tw(k)]k"l .

Three-term leaping recurrence relations which are entailed from continued fractions were studied in
the case of e by Elsner ([1]). Similar relations were also studied in the case of e!/® (s > 2) by the author
([7], [8]). Such concepts were extended to the cases of more regular continued fractions and non-regular
continued fractions ([2], [3]).

However, it is not easy to find an anologous result for linear four-term recurrence relations

Z,=Ui(n)Z,—1 + Uz(n)z —2+ U3(n)Z,...3 s

where U;(n), Uz(n) and Us(n) are general sequences of integers. In this article we shall consider the
leaping recurrence relations for four-term recurrence relations where Uy (n) = a3, U2(n) = a2 and Uz(n) =
a3 are integer constants. Then we can have the leaping relation

Zn=01Zp_k+b2Zp_2k +b3Zp_3x (n=3k,3k +1,3k+2,...)
for any leaping step k.

2 Leaping convergents

Let a be a real number. Continued fraction expansion of « is denoted by

1
a=[ao;a1,a2,...]=ao+ 1
a
1+ az +
The n-th convergent is given by the irreducible rational number
Pr — laoia1,a2...,a4].
gn

It is well-known that p,,’s and g,,’s satisfy the recurrence relations:

Pn = GnDn_1+ Pn—2 (n2>0), p1=1, p2=0,
On = GnQn—1 + Qn—2 (n 20), g1 =1, q-2=0.



Leaping convergents of continued fractions are those of every r-th convergent of continued fractions;

Pi  Prii Porgi DPrn+i
&' Qi Q2r4i " Grati
For example, consider
=[1;(2k - 1)s —~1,1,1]f2, =[1;6-1,1,1,3s —1,1,1,...] (s=>2),

then psn, = 28(2n — 1)psn—3 + Pan—6 and gsn = 28(2n ~ 1)gan—3 + gan-6 (n = 2) ([7]).

3 Three-term relations

Three-term relations have been considered as in the continued fra.ctlon expansion of e ([1]), as in that of
e/* (s > 2) ({7], [8]), as in that of the type | 1;T1(k), T2(k), Ta(k) 132, ([9], [10]). Recently , three-term
relations have been developed in the non-regular continued fractions ([2]), and finally as in Theorem 1
here ([3]).
On the other direction, one can simplify the general theorem, entailing some classical results. If
T(n) = a1, U(n) = az (a2 # 0) are integer constants in Theorem 1, we have the following.

Theorem 2 If the sequence {Z,}, satisfies the three-term recurrence relation Z, = a1Zn-1 + 022,
(a2 # 0), then for any positive integer k we have

Lk/2]

k—-i-1)! . :
Zn=k E (,l(k - 2,))| a¥~ %0} - Zn_p + (—1)* 0§ - Zn_2 (n>2k).

Moreover, if a; = az = 1, then the sequence {Z,},, is called Fibonacci-type sequence. Moreover, if
Zy =0 and Z; =1, then {Z,}, is the Fibonacci sequence {Fy }n.

Corollary 2 For any positive integer k we have

/2] o 1y
F.=k z (k 1 1).

< k-2 kT (-1)* Fa_ax  (n22Kk). @

If we put k= 2,3,...,10, then we have

Fpo=3F, 3 —Fny,
F,=4F, 3+ Fn s,
Fn = T.Fn_4 ol Fn..g 5
F,=11F,_s+ Fr_10,
Fn = 18Fn-—6 - Fn-—l2 )
F, = 29Fﬂ—7 + Fn—u ’
F, =47F, g — Fy_16,
=T76F,-9+ Fn_1s,
Fo=123F,_10 — Fn-20.

There i8 a classical result corresponding to this corollary (Ruggles, 1963 [11, identity 105, p.92]):
= LiFok + (~1)**'Fo_g, : @)



where F,, and L,, are Fibonacci number and Lucas numbers, respectively. Namely, they satisfy the
three-term relations

Fo=F,_1+F,_, (n22)7 F =0, =1
Lo=Lp 14+ Lpn_2 (n22), Lo =2, L=1

Comparing (2) with (1), we have

Corollary 3
Lk/2)
(k—i-1)!
= >21).
L=k E ik — 26)! (k=1)
Proof of Theorem 2. Set K; = K;(c). Then, {Ki}i>0 satisfies the recurrence relation:
Ki=aKi-1+aKi-2 (122), Ko=1, Ki=a;.

Hence, for [ > 0 we have
Li/2) (L —i)!

= Nt 2
K= z;o -2 "
Applying Theorem 1 with Q(M) = a}, we have
Zyp=(Ke+a2Ke—3)Zpn—1 — (—1)'a'2' < Zp-so.

Since
lr/2) . Lr/2)-1 .
_ (r—4)! o (r=i=2)1 92 i+1
Kr+ 02Kz = ;o a2y 27 § ir-2i-oin @
tr/2]

_ (r=di=1)! 5

=T g; Ar—2 1
we obtain the desired result. |

4 Four-term relations

Consider the four-term recurrence relation
Zy =U1(n)Zpn—1 + Ua(n)Zp_2 + Us(n)Zn_3.

For the moment, the corresponding result to Theorem 1 has not been known. However, one can relax
the conditions, in order to get some typical results. If U;(n) = a;, Ua(n) = aa, Us(n) = ag are constants
for all n, we have the following four-term leaping recurrence relation.

Theorem 3 If the sequence {Z,}n satisfies the four-term recurrence relation Z, = a1Zn-1 + a2Zn-2 +
a3Zn—3 (ag # 0), then for any positive integer k

Lk/3] {(k—33)/2] (k —
Za=k D
j=0 i=0 ‘
Lk/3) L(k—35)/3} \
- kitg (=i =2 =) L ai gy ‘_’_21
* JZ; ; =1 ﬂJ!(k 2i — 3;)‘“ 1% *Zn-

1—27— 1) ke 2i-3j 5 5
ik — 2i — 3])"'1 9303 " Zn-k

2k +af - Zn_sk

(n > 3k).



In 2001 F. T. Howard obtained a similar result ([5]):

Zn=JZnk — 05T _kZn_ok + 0t Zpn_3k, (3)
where J,, satisfies

Jn=a1Jn-1 + yJn—2 +asJn_3 (n > 3)$

Jo=3, Ji=ai, Jo=a?+2a;.
J-n (n=1,2,...) are determined by

1
Jon= E;(J-n+3 —a1Jony2 —a2J_ny1) (n21).

Comparing (3) with Theorem 3, we obtain
Corollary 4

Le/3) L(k—37)/2} (k ~

Jk=kz i—2j—1)! ok %-3 j

o a; ajaj,
= = iljl(k — 26 — 35)!
Lk/3] L(k—35)/2) . ( i-2j— 1)1 —26m8j  —kib2
+it e A A A8l g RTiTes
J-k =k Z > (1) Jz']'(k 2% — 33)'“‘“2 %

i=0

In the case of k =12,

Zy — (ai® + 12a}%a; + 54aa? + 112a8a3 + 105atat + 36a2ad + 248
’ + 12a$a3 + 96a]aza; + 252a3a2as + 240aadas + 60a;adas + 42ada2
+ 180ataza? + 180a2a2a? + 24a3a? + 40a3ad + 48a1a203 + 3a8)Z,_12
+ (a3? — 1201a}%a; + 54a2ada? — 12a9a? — 112a3a8ad + 96a,alad
+ 105a%aja$ — 252a2a5ad + 42aSa} ~ 36aSaad + 240adadal — 180a,aial
+2a$a$ — 60atazad + 180a?a2a$ — 40a3af — 24ala]
+ 48a1a2a] + 3a8)Zn—24 — a}?Zp_36 = 0.
Put a; = a; = az3 = 1. Then the four-term recurrence relation Ty, = Ty_1 + T2 + Th—3 yields

Tribonacci numbers {T, }n>0. If (To =0,) T} = T3 = 1 and T3 = 2, then the Tribonacci sequence is given
by

1,1,2,4,7,13,24,44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, .. .-
([11, p.527), [12, A000073]). Putting k = 2,3,...,10 in Theorem 3, we have

T, =3Th—2+Tn-s+Ths )
T.=7"T,3—-5Tn—6+Tn-o9,

I =111 4 + 5T 8 + Th-12 ’

Tn =21T, 5 + Tp-10 + Tpn-15,

Tn =39Tp-6 — 11Th—12 + Th18,
Tn =TTy 7+ 15T 14 + Tpn—-21,
T, =1317T, s — 3T—16 + Tn—24,
Thn =241T,,_9 — 23T 18 + Tp—27,
T, =443T,,_10 + 41T, 20 + Tph_30 -



5 Five-term relations

Consider the sequence {Z,}, satisfying the five-term recurrence relation Z, = a1Z,-1 + a2Zp-2 +
a3Zyp-3 + asZn—4 (a4 # 0). Then how can we determine the integer constants by, bz, bs, by, satisfying

Zp=b1Zp_k +b2Zn_2k +b3Zp 3k +b4Zn_sk

for any positive integer k (1 < k < n/4)?
In the case of k =5

Z, = (a% + 5ada; + 5a:142 + 5a2a; + 5aza3 + 50104) Zp—5
+ (a§ - bajadas + 5alaza? — 5a%a? + 5a1a3 + 5alalas + 5a3as
- 5adaza, + 5a1a2a3a4 + 5a2as — 50202 + 5a2a2)Z,_ 10

+ (a§ — Bazadaq + 5a2azal + 5aialal — 5aiazad + 5a3ad) Za_15 + @ Zn—20.

In the case of k = 6,

Z, = (a$ + 6ata; + 9a2a3 + 24a3 + 6alas + 12a1a2a3 + 302 + 6aaq + 6a2a4)Zn—s
+ (~a$ + 6a1adas — 9a%a3a? + 6a3a? + 2aad — 12a;02a3 — 30} — 6a%aday
— 6ajaq + 1203020304 + 18aladas — 3afa? — 9afa? + 18a;0302 + 203)Zn-12

+ (a8 — 6azadas + 9a2a2a? + 6a,ada? — 2a3ad — 12a;a2a303 + 6a3al + 3aal — 6a2a)Zn_1s

- a'gzn—%-

Tetranacci Numbers {Fk4)}k21 are the n = 4 case of the Fibonacci n-step Numbers, defined by

F® = F® L F® 4 O L F® (k> 5) with F¥
are

=F® =1, F{Y =2 and F{¥ = 4. The first terms

1,1,2,4,8,15,29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, 76424, 147312,
283953, 547337, 1055026, 2033628, 3919944, 7555935, 14564533, 28074040, 54114452, 104308960, . . .

([12, A000078]). They satisfy the recurrence relations:

F® =3FQY, +3F,

_F® _F®

F’ﬁ“) = 7Fl§4) F(4) F(‘) F“)n ,

F® =15F®, - 17FY +

4 (4)
7FA(=—)12°'F’¢ 16’

F® = 26FY, + 16K, + 6FY, + FYy0,
F® =51F®, +15F®, - F®  — FWY,,
F® =99F®, - 1350, + F{Y,, + F{¥,,
F® = 191FY, — 81F® ¢ + 15F\Y,, — FY,,,
F® =367FY, +127F%), o + 191?,5“’27 + F%%,
F® = 108F(, +58F(Y,0 + 4F0y, - FY,, .

b1, bs and by are calculated as follows.



Theorem 4
Lk/4) [(k—dx)/3] | (k—35—4r)/2 . .
S DD S S (= B ST IOV
il5lkl(k — 2 — 35 — 4k)! * 20307,

x=0 7=0 =0
Lk/4] [(k—4r)/3} [(k—3j—4r)/2]
_ (k—i—2j—3x—1)! k~2i—3j—4K _i+2j+3x
by =k Z E Z (= )‘Z{Jlnl(k 2 — 35 — 4k )1 {agas Q4 ’

k=0 j=0 i=0
by = (—1)¥"1ak.

However, it is not easy to find an explicit form of b;. This shall be discussed in the next section.

In 2005 Latushkin and Ushakov ([6]) obtained a different form of five-term leaping relations.

H,, — H?
2k, ok 4 (~0a)* H  Zn_ 3k — (—04)* Znax, 4)

Z,=HyZ, ; + D)

where
H,=z0+z3 +25 +2z} (neZ)

and z1, T2, z3 and z4 are the complex roots (including multiple roots) of the equation z* — a,z% — azz? —
a3z — a4 = 0. On the other hand, the sequence {H,}, satisfies the recurrence relation:

H,=a1H, 1+aH, 2+ a3Hp 3+a4Hyo—y (n€Z).
The initial values are determined by

Hy =4,
Hl = a3,
Hy =a1Hy + 2ag = af + 2as,,
Hsz =a;Hy +axH, + 3ag = a? + 3aiaz + 3as,
H; =a1H3 + azHz + azHy + 4a4 = a’f + 4a1a2 + 4a;a3 + 20.% + 4ay.
Comparing their results (4) with ours in Theorem 4, we get the following.
Corollary 5

Lk/4]) L(k—4x)/3] L(k—38j—4x)/2]

— (k=1—2j—3k— 1) & _9i 3j4x ¢ j x
He=k de:, jgo 2 TljkI(k — 20— 3j — dr)l 930504 »
Lk/4] L(k—4x)/3] [(k—3j—4x)/2}
- _qyi+k_(k—i—2j -3k —1)! k—2i—3j—drx_—k+i+2j+3K
Hog =k ; jz_‘:) ‘,Z‘; (=1) mm'(k 2i — 35 — 4x)! alaies % '

Pentanacci Numbers {F( )}k>1 are the n = 5 case of the Fibonacci n-step Numbers, defined by
FP =FO +F®,+FO + F® + F¥ (k> 6) with F® = F{® =1, F{® =2, F® =4 and F{® =38.
The first terms are

1,1,2,4,8,16,31,61, 120, 236, 464, 912, 1793, 3525, 6930, 13624, 26784, 52656, 103519, 203513,
400096, 786568, 1546352, 3040048, 5976577, 11749641, 23099186, 45411804, 89277256, 175514464, . . .



(12, A001591]). They satisfy the recurrence relations:

F® =3F®, +3F®, + FOs + F¥ + F®,y,
F® = 1O, + aF®¢ + aFO, + F®, + X,

F® =155, - F¥ + F®,, + FO, + FY,,

Fiia) = 31Fr§‘?5 - 49Fl£5—)10 + 31F1§5)15 - 9Fl$i)zo + F:55)25 )
F® = 57F®, + 42F® , + 22F® o + TF, + F,,
FO) =113F, + 57TF®  + FOy + FPs + V%,

F® = 223F®) + 31F®) ¢ + 33F, + FOy + FO,
F® = 439F%), — 140F® ; + 4F®,, + F,£5’35 +F®,
F® =863F®, — 497F®,0 + 141F®, —19F®, + F&y, .

6 A form of b, in five-term leaping relations

An explicit form of by has not been known yet. Instead, there is a way to express by by matrices.

bz = az2Ak-1 — 2a3Px—1 + 3aq¥r—1
— a3®i—1 + 2a4Ak—2 — 0103Ak_2 + 202a4Ak_3 — 3aFAsk—q,

where
—-a2 - 1 0
—az —a —Q 1
—a4 —az —az -—a
An=| O s
—a; -—a; 1 0
—agz —az —ai 1
-a4 —az —a2 —Q
0 —a4 —az —az
—ai 1 0
—az -—az —a 1 0
~ay —asz =—az —a; 1
Qn= 0 ’
—az —a 1 0
—az —az —ai 1
—a4 —a3 —az —a1
0 —a4 =—a3 =—a2
—a1 1 0
—as —ay 1 0
—-a4 —az —Q2 —a 1
v,=| 0
—Q2 —a 1 0
—-az —az —ay 1
—aq4 —az —az —o
0 —Q4 —agz -—az




Notice that

An =—az2An 1 +a3®n_; —ay¥py ’
@, = —a1An1 +azhn2 — 048,
U, =—-a1®Pp_1 +02An_3 —~agAp_3.

b2 may be expanded as follows.
by = (-—1)’“‘1&:((15c ~ (a1a3 — a4)a¥~? - (a? — alay)ak™?

(k=3)! ,, (k=—4) k=3 5\ res
+(2!(Ic—4)!a‘a3_(lc—4)!('°‘6)“1“3““' 50 )93

+ (ag - afa.4) (E—E——:—;—;ialaa - (k- 6)a4) a§‘5
(k — 4)! (k — 5)!
- (3!(k = 6)!"?”‘g " 2k - 6)!
(k—4)! , k-5
T3k-61"T T2

2 2 (k - 5)! 2 2 (k - 6)! k2 - 15k +60 2 k-7
— (a3 — afay) (2!(k — 7)!a1a3 Tk 7)!(k - 10)a;azaq + — % %)

* (4(!?{—55);;!“?“3 - 3(1?,0__63!), (k — 20)afa3aq

2 _ 6
(k — 12)a%a2aq + k—-——l—g-k—i-—o-alaaaﬁ

(ﬁﬁ+@0ﬁ*

(k = 7)! 222 (E—10)(k2—17h+84) 4
+ s — gy % ~ 12)(k ~ 15)ala3e] - arazad
k-5 , k-7 B
+ 4(:(k = i)ﬂﬁ — ~5—(aiad + af)((k - 6)aras — (k - 10)a4))a’2‘ 8

+ (08 - afan) (Gitr—gyyated - pamsik ~ 15)atad

4 -———-_2520‘_82);! (k* - 23k + 140)a,aza — %(k —10)(k* — 17k + 84)a2)
- (0 - afa) g0 )ab

_)

However, its simplified form has not been known.

7 (s+ 1)-term recurrence relations

We may extend terms to five, six, seven, and so on. In 1999 Howard got a general term leaping relation
([4]). Young also found a different form ([13]). This result holds for more-term recurrence relations, but
it is not so useful practically in order to obtain an explicit form for any given s.

If the sequence {Z,}»>¢ satisfies the relation

Zn=0a1Zn-14+ 062203+ + 05725 (a,#0),
where Zy, Z1, ..., Z,—1 are arbitrary initial values, then we have

Zepyi = Cr,rZr(n—l)-H - Cr,2rZr(n—2)+¢' +-o+ ("'1)’—lcr,arzr(n—s)+i ’
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where ¢rr, Cr2r, ..., Crsr are determined by
r—1
H(l —a;1(¢"T) — a2(¢¥z)? — -+ — s ((¥Z)*) = 1 — ¢ o™ + Cr2rZ?" — -+ + (=1)%Crerz””,
v=_0

where ( is a primitive r-th root of unity.
As straight generalization of our theorems 2, 3, 4, we obtain the following .

Theorem 5 If
Zn = blZn—k + ng,,_gk LR bl—lz‘n—(c—l)k + baZn-ak ,
then
by =k (k—t1—2ip — -+ = (8 = 1)is—1 = 1)!
1 = - _ ' ) :
201 +34g++aip_1Sk iplal . daq (k=26 —3iy — -+ — 8i,—1)!
$3.,6g.000 194120
x aF=¥i-3a—meleghigla | gl
1 (k=i —2ig—---—(8=1)i,—1 — 1)}
bs—1 =k Z (.._1)’ 11: T T _(31: _”..— ]
26y 4+Big4-Foig_ 1Sk 1:220 ... 251" 71 2 8tg-1)!
$1.83,11g-120
x ai-2gi - L gl ,aP 2 TS T s gi A 2t (0= |
where
I= i1+i3+"'+in—2+ia—1 1f8180dd,
ity +ig+ -+ 1,3 if 8 is even,
and

b, = {af z:fs 113 odd;
(=1)k~tak if s is even.
8 Periodicity
In [2, Theorem 3] a result about periodicity of three-term leaping relations is obtained.
Theorem 6 Given a three-term recurrence formula
Zy, = T(n)Zp—1 +U(N)Z,—2 (n>2)

with arbitrary initial values Zo, Z1 and two sequences of integers (T'(n)),»o and (U(n)),>q, which both
are (ultimately) periodic modulo m with periods of length r, say

(T(n) mod m), 5, = (a0, a1,a2,...,0p,11,T2,...,17v ) ,

(U(n) mOdm)nzo = (bﬂablvbﬁa--'sbanlyUZs--~1Ur) .

Then, the sequence (Z(n)),.o 8 (ultimately) periodic modulo m. If p € {0,1} and U(n) = 1 for all
n > p, then the sequence (Z (71.))"20 is periodic modulo m.

This result can be extended to the case of any term leaping relations.

Theorem 7 Given a (s+1)-term recurrence formula Z, = Ty (n)Zpn—1+T2(n)Zn—2+- - -+Ts(n)Zpn_s (n >
2) with arbitrary initial values Zo, 21, ..., Z, and s sequences of integers (Tj(n)),>o (G = 1,2,...,8),
which all are (ultimately) periodic modulo m with periods of length r, then, the sequence (Z(n))p>o 18
(ultimately) periodic modulo m. -
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