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1. INTRODUCTION

One of the most important unresolved questions concerning the Navier-Stokes

equations is the global regularity and uniqueness of the solutions to the initial value

problem. This question was posed in 1934 by Leray [30, 31] and is still left open

for three dimensional flow. However if we pose some conditions on initial velocity,

the smooth solution exists globally-in-time. More precisely, Kato [25], and Giga

and Miyakawa [20] showed that if the initial velocity is small enough in $L^{n}$ norm,

then the unique smooth solution exists globally-in-time. This smallness condition

is generalized by many authors (see [9, 21, 27, 35, 40]).

When an initial vector is close enough to a two-dimensional vector field, the

unique smooth solution exists globally-in-time (see [12, 24]).

Babin, Mahalov and Nicolaenko [4] considered global solvability of the Navier-

Stokes equations in a rotating frame with periodic initial data (see also [3, 5, 6,

7, 32] $)$ . They proved existence on infinite intervals of regular solutions to the 3D-

Navier-Stokes equations with the Coriolis force. Chemin, Desjardins, Gallagher and

Grenier [11] derived dispersion estimates on a linearized version of the $3D$-Navier-

Stokes equations with the Coriolis force. To construct such estimate, they handled

eigenvalues and eigenfunctions of the Coriolis operator. Using the dispersive effect,

they showed that there exists a global-in-time unique solution to the $3D$-Navier-

Stokes equations with a large Coriolis force with no smallness assumption on the
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initial data provided that the initial data decays at space infinity. Although these

two results resemble each other, the mechanism is quite different. For periodic initial

data there expects no dispersive effect for regularization of the flow, although the
flow looks like two dimensional one for a large Coriolis force.

Problems concerning large-scale atmospheric and oceanic flows are known to be

dominated by rotational effects. The Coriolis force appears in almost all of the

models of oceanography and meteorology dealing with large-scale phenomena. For
example, oceanic circulation featuring Tyhoon, Hurricane and Cyclone are caused
by the large rotation. There is $11O$ doubt that other physical effects are of similar
significance like salinity, natural boundary conditions and so on. However the first
step in the study of more complex model is to understand the behavior of rotating

fluids. This problem attracted many physicists and mathematicians. See [34] for

references.
Let us mention almost periodic functions. Giga, Mahalov and Nicolaenko [19]

proved existence of a local-in-time unique classical solution of the Navier-Stokes
equations (with or without the Coriolis force) when the initial velocity is spatially
almost periodic. They showed that the solutions is always spatially almost periodic
any time provided that the solution exists. This fact follows from continuous depen-

dence of the solution with respect to initial data in uniform topology. Giga, Inui,

Mahalov and Matsui [15] established unique local existence for the Cauchy problem

of the Navier-Stokes equations with the Coriolis force when initial data is in $FM_{0}$ ,

Fourier preimage of the space of all finite Radon measures with no point mass at

the origin. Some almost periodic functions are in $FM_{0}$ . They also showed that

the length of existence time-interval of mild solution is independent of the rotation
speed. Giga, Jo, Mahalov and the author [18] considered properties of the solution
to the Navier-Stokes equations with the Coriolis force in $FM_{0}$ . They showed that
when the initial data is almost periodic, the complex amplitude is analytic in time.

In particular, a new mode cannot be created at any positive time.
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In this paper we discuss existence on long time intervals of regular solutions to the

$3D$-Navier-Stokes equations in a rotating frame with spatially almost periodic data.

(It is equivalent to $3D$-Navier-Stokes equations for fully three dimensional initial

data characterized by uniformly large vorticity. See [7, 23, 33] for example.) Since

the initial data does not decay at space infinity, we are unable to use dispersion

estimate by [11].

The Cauchy problem for the $3D$-Navier-Stokes equations with the Coriolis force

(NSC) are described as follows:

(1.1) $\{\begin{array}{l}\partial_{t}v^{\Omega}+(v^{\Omega}, \nabla)v^{\Omega}+\Omega e_{3}\cross v^{\Omega}-\triangle v^{\Omega}=-\nabla p^{\Omega},\nabla\cdot v^{\Omega}=0, v^{\Omega}|_{t=0}=v_{0},\end{array}$

where $v^{\Omega}=v^{\Omega}(x, t)=(v^{\Omega,1}(x, t), v^{\Omega_{r}2}(x, t), v^{\Omega,3}(x, t))$ is the unknown velocity vector

field and $p^{\Omega}=p^{\Omega}(x, t)$ is the unknown scalar pressure at the point $x=(x_{1}, x_{2}, x_{3})\in$

$\mathbb{R}^{3}$ in space and time $t>0$ while $v_{0}=v_{0}(x)$ is the given initial velocity field. Here
$\Omega\in \mathbb{R}$ is the Coriolis parameter, which is twice the angular velocity of the rotation

around the vertical unit vector $e_{3}=(0,0,1)$ , the kinematic viscosity coefficient in

normalized by one. By $\cross$ we denote the exterior product, and hence, the Coriolis

term is represented by $e_{3}\cross u=Ju$ with the corresponding skew-symmetric $3\cross 3$

matrix $J$ .
We shall give the main ideas of the proof. First, we analyze the nonlinear term

of NSC. We introduce operators

$\{\begin{array}{l}F_{(0,0,0)} : operator for pure two dimensional interactions,F_{(1,0,1)} : skew- symmetric- catalytic operator,F_{(1,1,0)} : non- skew- symmetric- catalytic operator,F_{(1,1,1)} : operator for strict three dimensional interactions,F_{c}^{\Omega,t}: non- resonant operator,\end{array}$

and write NSC in the form

$\partial_{t}u=\Delta u+\sum_{\mu\in D}F_{\mu}(u, u)+F_{c}^{\Omega}’{}^{t}(u,$
$u)$ ,

where $D=\{((0,0,0),$ $(1,0,1),$ $(1,1,0),$ $(1,1,1)\}$ . If the term $F_{c}^{\Omega,t}$ is vanishing, then

the equations are similar to the $2D$-Navier-Stokes equations. We call such a system
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an extended $2D$-Navier-Stokes equation $(E2DNS)$ . In fact, the solution to $E2DNS$

is independent of the Coriolis force. The key is to prove global existence of a
unique smooth solution to $E2$DNS. Babin, Mahalov and Nicolaenko [4] used energy
inequality of $E2$DNS to show global unique existence of a solution. However, a
straightforward application of energy inequality is impossible if the initial data is
almost periodic function. What is worse, there is no good Hilbert space for almost
periodic functions, so we cannot use eigenvalues and eigenfunctions of the Coriolis
operator as Chemin, Desjardins, Gallagher and Grenier [11] did. To overcome these
difficulties, we use $FM_{0}$ spaces (Fourier preimage of the space of all finite Radon

measures with no point mass at the origin) proposed by Giga, Inui, Mahalov and
Matsui (see [15]). We instead employ mild solutions of $E2$DNS in $FM_{0}$ so that this
equation tums into a linear one if we choose an appropriate frequency set. Once
the equation becomes linear, it is easy to show that the solution to $E2$DNS exists
globally-in-time.

Babin, Mahalov and Nicolaenko [4] handled periodic $L^{2}$ Sobolev spaces, and
Chemin, Desjardins, Gallagher and Grenier [11] handled $L^{2}$ Sobolev spaces in $\mathbb{R}^{3}$ .
Thus our result is not included in such results since we use almost periodic functions.
Moreover we introduce useful decomposition to clarify the analysis of the nonlinear
term of NS, which have never been used before.

2. FUNCTION SPACES, RIESZ TRANSFORMS, THE HELMHOLTZ PROJECTION AND

LOCAL SOLUTION

In this section we shall give definition of function spaces suitable for almost
periodic functions included in $BUC(\mathbb{R}^{3})$ (Bounded uniformly continuous functions)

Note that almost periodic functions in the sense of Bohr belonging to $BUC$ are
already studied. See [8, 10] for example. To define such function spaces, we need the

definition of frequency sets $\Lambda$ and $\Lambda(\gamma)$ . These sets are different from one defined
in $[$ 16, Definition 1.1. $]$
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Definition. (Countable sum closed frequency set in $\mathbb{R}^{3}.$ ) We say that $\Lambda\subset \mathbb{R}^{3}$ is

countable sum closed frequency set in $\mathbb{R}^{3}$ if $\Lambda$ is countable set in $\mathbb{R}^{3}$ and it satisfies

the following equality:

$\Lambda=\{a+b:a, b\in\Lambda\}$ .

Remark. $\mathbb{Z}^{3},$ $\{e_{1}m_{1}+\sqrt{2}e_{2}m_{2}+e_{2}m_{3}+e_{3}m_{4}:m_{1}, \cdots, m_{4}\in \mathbb{Z}\}$ and $\{e_{1}m_{1}+(e_{1}+$

$e_{2}\sqrt{2})m_{2}+(e_{2}+e_{3}\sqrt{3})m_{3}$ : $m_{1},$ $m_{2},$ $m_{3}\in \mathbb{Z}\}$ are countable sum closed frequency

sets, where $\{e_{j}\}_{j=1}^{3}$ is a standard orthogonal base in $\mathbb{R}^{3}$ .

Definition. (Countable sum closed frequency set in $\mathbb{R}^{3}$ (depending on $\gamma$ ) $.$ ) Let

$\Lambda(\gamma)$ $:=\{(n_{1}, n_{2}, n_{3})\in \mathbb{R}^{3} : (n_{1}, n_{2}, n_{3}/\gamma)\in\Lambda\}$

for $\gamma\in \mathbb{R}\backslash \{0\}$ .

Remark. Let $\gamma\in \mathbb{R}\backslash \{0\}$ . $\Lambda(\gamma)$ is a countable sum closed frequency set in $\mathbb{R}^{3}$

if and only if $\Lambda$ is also countable sum closed hequency set in $\mathbb{R}^{3}$ .

First, we define scalar valued function spaces $X^{\epsilon,\Lambda(\gamma)},$ $X_{0}^{s_{2}\Lambda(\gamma)}$ and $\dot{X}^{s,\Lambda(\gamma)}$ .

Definition. ($3D$-scalar valued function spaces.) For $s\geq 0$ , let

$X^{s,\Lambda(\gamma)}:= \{g\in BUC(\mathbb{R}^{3}):g(x)=\sum_{n\in\Lambda(\gamma)}a_{n}e^{in\cdot x}, \Vert g\Vert_{\epsilon}<\infty\}$
,

where

$\Vert g\Vert_{s}:=\sum_{n\in\Lambda(\gamma)}(1+|n|^{2})^{s/2}|a_{n}|$
.

The infinite suin is understood in the sense of absolute uniform convergence. Let

us define $X_{0}^{s,\Lambda(\gamma)}$ as follows:

$X_{0}^{\epsilon,\Lambda(\gamma)}:=\{g\in X^{s_{t}\Lambda(\gamma)}:a_{0}=0\}$.

Remark. $X_{0}^{s,\Lambda(\gamma)}$ is a closed subspace of $X^{s,\Lambda(\gamma)}$ with the norm $\Vert\cdot\Vert_{\epsilon}$ .
Second, we define three-dimensional vector valued function spaces $\mathcal{X}^{s,\Lambda(\gamma)}$ and

$\mathcal{X}_{\sigma}^{s,\Lambda(\gamma)}$ .
Definition. ($3D$-vector valued function spaces.) Let

$\mathcal{X}^{s,\Lambda(\gamma)}:=\{v=(v^{1}, v^{2}, v^{3})\in(X^{s,\Lambda(\gamma)}(\mathbb{R}^{3}))^{3}$ :

$\Vert v\Vert_{\epsilon}:=\Vert v^{1}\Vert_{s}+i1v^{2}||_{s}+\Vert v^{3}\Vert_{s}<\infty\}$ .
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Let us define three-dimensional vector valued divergence free function spaces as
follows:

$\mathcal{X}_{\sigma}^{s,\Lambda(\gamma)}:=\{v=(v^{1}, v^{2}, v^{3})\in \mathcal{X}^{s_{t}\Lambda(\gamma)}$ :

$n^{1}a_{n}^{1}+n^{2}a_{n}^{2}+n^{3}a_{n}^{3}=0$ for $n=(n^{1}, n^{2}, n^{3})\in\Lambda(\gamma)\}$ .

We define $\mathcal{X}_{0^{s,\Lambda(\gamma)}},$ $\mathcal{X}_{0,\sigma}^{s,\Lambda(\gamma)}$ and $\dot{\mathcal{X}}^{s,\Lambda(\gamma)}$ in the same way since the definitions are
similar to $X_{0}^{s,\Lambda(\gamma)},$ $X_{0,\sigma}^{\epsilon,\Lambda(\gamma)}$ and $\dot{X}^{s,\Lambda(\gamma)}$ . Clearly, $\mathcal{X}^{s,\Lambda(\gamma)}=\mathcal{X}_{0^{s,\Lambda(\gamma)}}\oplus \mathbb{C}^{3}$ (topological

direct sum).

Remark. $X^{s,\Lambda(\gamma)},$ $X_{0}^{s,\Lambda(\gamma)}\mathcal{X}^{s,\Lambda(\gamma)}\mathcal{X}_{\sigma}^{s,\Lambda(\gamma)}\mathcal{X}_{0^{s,\Lambda(\gamma)}},$ $\mathcal{X}_{0,\sigma}^{s,\Lambda(\gamma)}$ are Banach spaces.

Let us consider the function space $X_{0}^{0_{t}\Lambda(\gamma)}$ more precisely. It is easy to see that
this function space is a closed subspace of $FM_{0}$ (the Fourier preimage of the space
of all finite Radon measures with no point mass at the origin) which is introduced
in [15]. The space $FM_{0}$ is strictly smaller than $\dot{B}_{\infty,1}^{0}$ as is proved in [15, Appendix
$A]$ . Thus the space $X_{0}^{0,\Lambda(\gamma)}$ is strictly smaller than $BUC$ .

Third, we define two-dimensional $ve$ctor valued function spaces. To treat the two-
dimensional Navier-Stokes equations, it is convenient to set the following operators
$\mathcal{Q}_{0},$ $\mathcal{Q}_{1}\mathcal{Q}_{0}^{h},$ $\mathcal{Q}_{0}^{3}$ and function spaces $\mathcal{Q}_{0}^{h}\mathcal{X}_{0^{s_{I}\Lambda}},$ $\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{s,\Lambda}$ .

Deflnition. (Splitting vertically oscillating and non-oscillating parts. )

For $u=(u^{1}, u^{2}, u^{3})\in \mathcal{X}^{\epsilon,\Lambda(\gamma)}$ ,

$u^{j}(x)= \sum_{n\in\Lambda(\gamma)}c_{n}e^{in\cdot x}$
$(j=1,2,3)$ ,

let $\mathcal{Q}_{\ell}u$ $:=(\mathcal{Q}_{\ell}u^{1}, \mathcal{Q}_{\ell}u^{2}, \mathcal{Q}_{\ell}u^{3})(\ell=0,1)$ with

$Q_{0}u^{j}(x_{1}, x_{2}):= \sum_{n\in\Lambda(\gamma),n_{3}=0}\dot{d}_{n}e^{in\cdot x},$ $\mathcal{Q}_{1}u^{j}(x):=\sum_{n\in\Lambda(\gamma),na\neq 0}c_{n}^{;}e^{in\cdot x}$
,

for $j=1,2,3$ .

Remark. A direct calculation yields

$\mathcal{Q}_{0}u^{j}(x_{1}, x_{2})=\lim_{rarrow\infty}\frac{1}{2r}\int_{-r}^{r}u^{j}(x_{1}, x_{2}, x_{3})dx_{3}$

and

$Q_{1}u^{j}(x)=u^{j}(x)-\mathcal{Q}_{0}u^{j}(x_{1}, x_{2})$ .
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See [10] for example.

Definition. (Splitting $2D$-two vector and $2D$-one vector parts.)

Let $\mathcal{Q}_{0}^{h}w$ $:=(\mathcal{Q}_{0}w^{1}, \mathcal{Q}_{0}w^{2},0)$ and $\mathcal{Q}_{0}^{3}w$ $:=(Q_{0}w^{3},0,0)$ .
Remark. It is easy to see that $u=(\mathcal{Q}_{0}+Q_{1})u=(Q_{0}^{h}+\mathcal{Q}_{0}^{3}+\mathcal{Q}_{1})u$ and that

$\Vert w\Vert_{8}=\Vert \mathcal{Q}_{0}w\Vert_{s}+\Vert \mathcal{Q}_{1}w\Vert_{s}=\Vert \mathcal{Q}_{0}^{h}w\Vert_{\epsilon}+\Vert \mathcal{Q}_{0}^{3}w\Vert_{s}+\Vert \mathcal{Q}_{1}w\Vert_{s}$ .

Now we define two-dimensional vector valued function spaces $\mathcal{Q}_{0}^{h}\mathcal{X}_{0}^{\epsilon,\Lambda},$ $\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{s,\Lambda}$ as

follows.

Definition. ( $2D$-vector valued function spaces.) For $s\geq 0$ , let

$\mathcal{Q}_{0}^{h}\mathcal{X}_{0}^{s,\Lambda}:=\{v(x)=(v^{1}, v^{2})\in(BUC(\mathbb{R}^{2}))^{2}$ :

$\dot{d}=\sum_{n\in\Lambda\backslash \{0\},n_{3}=0}a_{n}^{j}e^{in\cdot x}$
, for

where

$j=1,2,$ $\Vert v\Vert_{s}:=\Vert v^{1}\Vert_{s}+\Vert v^{2}\Vert_{s}<\infty\}$ ,

$\Vert\theta\Vert_{s}:=\sum_{n\in\Lambda\backslash \{0\},n_{3}=0}(1+|n|^{2})^{s/2}|a_{n}^{j}|$
.

Let

$\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{s,\Lambda}:=\{v(x)=(v^{1}, v^{2})\in \mathcal{Q}_{0}^{h}\mathcal{X}_{0}^{s,\Lambda}$ :

$n_{1}a_{n}^{1}+n_{2}a_{n}^{2}=0$ for $n\in\Lambda$ with $n_{3}=0$}.

Theorem. (Local solution.) Assume that $v_{0}= \sum_{n\in\Lambda(\gamma)\backslash \{0\}}a_{n}e^{inx}\in \mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)}$ .
Then there is a local-in-time unique mild solution $v^{\Omega}$ satisfying

$v^{\Omega}\in C([0, T_{v0}], \mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)})$ , $T_{v0} \geq\frac{C}{||v_{0}\Vert_{0}}$ ,
$0<t<T_{v_{0}}$

$\sup$ $\Vert v^{\Omega}\Vert_{0}\leq 10\Vert v_{0}||_{0}$ ,

where $C$ is a positive constant independent of $\Omega$ .

Moreover $v^{\Omega}=v^{\Omega}(x, t)$ is expressed as

$v^{\Omega}(x, t)= \sum_{n\in\Lambda(\gamma)\backslash \{0\}}a_{n}^{\Omega}(t)e^{in\cdot x}$
, $a_{n}^{\Omega}(t)arrow a_{n}$ $(tarrow 0)$ .
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3. GLOBAL SOLVABILITY OF THE $3D$ NAVIER-STOKES EQUATIONS IN A

ROTATING FRAME WITH SPATIALLY ALMOST PERIODIC DATA

In this section we state a result of global solvability of the $3D$-Navier-Stokes
equations in a rotating frame with spatially almost periodic data. This is our main
result.

Theorem. Let $\Lambda$ be a countable sum closed frequency set. There exists a set
$\Gamma\subset \mathbb{R}\backslash \{0\}$ (depending on $\Lambda$ ) whose complement set is countable.

Let us impose the following two assumptions.

(1) Take $\gamma\in\Gamma$ .

(2) Take $v_{0}\in \mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)}$ such that the initial value problem for the $2D$ Navier-Stokes
equations admits a global-in-time unique solution in $C([0, oo)\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)})$ with a
initial data $\mathcal{Q}_{\{}^{h}v_{0}\in \mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)}$ .

Then for any $T>0$ there exists $\Omega_{0}$ depending only on $v_{0}$ and $T$ such that if
$|\Omega|>\Omega_{0}$ , then there exists a mild solution $v^{\Omega}\in C([0, T] : \mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)})$ of equation (1.1)

with an initial data $v_{0}\in \mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)}$ .

Remark If $\mathcal{Q}_{0}^{h}v_{0}$ is a periodic function, there exists a global-in-time unique so-
lution to the $2D$ Navier-Stokes equations in $C([0, oo)\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)})$ .

Remark If 1 $(-\Delta)^{-\frac{1}{2}}\mathcal{Q}_{0}^{h}v_{0}\Vert_{0}$ is small enough, there exists a global-in-time unique

solution to the $2D$ Navier-Stokes equations in $C([0, oo)\mathcal{Q}_{0}^{h}\mathcal{X}_{0,\sigma}^{0,\Lambda(\gamma)})$ . See [16, 17].
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