goooboooogn
0O 1640 O 2009 O 67-84 67

Abstract approach to the Dirac equation
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Abstract
A new existence and uniqueness theorem is established for linear evolution
equations in a separable Hilbert space. The result is applied to the Dirac equation
with time-dependent potential.

1. Introduction and statement of the result

In this paper we consider the Cauchy problem for the Dirac equation in L?(R3)*:

zgt—u + Hpu + V(z)u+gq(z, t)u = f(z,t),

with u(-,0) = up € H*(R3)* N H;(R%)*, where Hp is the free Dirac operator, H'(R3) is
the usual Sobolev space and H;(R?) := {u € L%(R3); (1 + |z|*)?u € L?(R3)}. We shall
show the existence of a unique strong solution under some conditions on potentials V, ¢
and inhomogeneous term f. To do so we employ an abstract approach.

Let {A(?);0 < t < T} be a family of closed linear operators in a separable complex
Hilbert space X. Then the Dirac equation is regarded as one of linear evolution equations
of the form

(E) %u(t)+A(t)u(t)=f(t) on (0,T).

So we first establish the existence of a unique strong solution to the Cauchy problem of
(E) with initial condition. Now let S be a selfadjoint operator in X, satisfying

(1.1) (u, Su) > |jul|® for u € D(S).

Then the square root S*/2 is well-defined and Y := D(S/?) is also a separable Hilbert
space, with inner product (u,v)y := (§Y%u, $'/?v), embedded continuously and densely
in X.

Let B(Y,X) be the space of all bounded linear operators on a Banach space Y to
another X, with norm ||-|l,_ . We shall also use the following abbreviation. Namely,
B(X) := B(X,X) and B(Y) := B(Y,Y). We use the subscript , to refer the strong
operator topology in B(Y, X). For instance, F(-) € L?(0,T,B(Y,X)) for 1 < p < oo
means that F'(¢) € B(Y, X) is defined for a.a. t € (0,7), is strongly measurable, and
there exists yp € LP(0,7T) such that [|[F(t)|ly—~x < vr(t) for a.a. t € (0,T) (for this
notation see Kato [8] and Tanaka [16]).

The first purpose of this paper is to prove
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Theorem 1.1. Let {A(t)} be a family of closed linear operators in a separable Hilbert
space X, S a selfadjoint operator in X, satisfying (1.1). Assume that A(t) satisfies
following four conditions.

(I) There ezists o € L'(0,T), o > 0, such that

(1.2) | Re(A(t)v,v)| < aft) |lv)?, v € D(A(t)), aa.te (0,T).
(I1) Y = D(S*?) c D(A(t)), a.a. t€ (0,T).

(I11) There ezists B € L*(0,T), B > a, such that

(1.3) | Re(A(t)u, Su)| < B@t) ||SV?u|*, we D(S), aa te(0,T).
(IV) A(-) € L1(0,T; B(Y, X)), i.e., there ezists v € L*(0,T) such that
(1.4) A ly—x <), aa te (0,T).

Then there exists a unique evolution operator {U(t,s); (t,s) € A}, where A := {(t,s);0 <
s <t < T}, having the following properties.

(i) U(,-) s strongly continuous on A to B(X), with

t
(1.5) 1t 8)ll ey < exp( / a(r)dr), (ts)€ A,
(i) U(t,r)U(r,s) = U(t,s) on A and U(s, s) = 1 (the identity).
(iii) U(t,s)Y C Y and U(:,-) is strongly continuous on A to B(Y), with

(16) 10 aer <ex( [ Bar), ()€ a,

Furthermore, let v € Y, Then U(-,-)v € Wh(A; X), with
(iv) (8/8t)U(t,s)v = —A@)U(t,s)v, (t,s) €A, aa.t€ (s,T), and
(v) (8/8s)U(t,s)v = U(t,s)A(s)v, (t,s) € A, a.a. s € (0,¢).

In particular, if A(-) € C({0,T); B(Y, X)), then Theorem 1.1 has already been proved in
Mori [9] (unpublished). For lack of the continuity to the contrary we cannot approximate
the family {A(:)} by a sequence {A,(:)} of piecewise constant families. Therefore, we
should consider some other approximation (see Definition 2.2 below).

Here we note that (III) is a consequence of conditions (I), (II) and the commutator
type condition

(K) There exists B(-) € L1(0,T; B(X)) such that
S12A()S™Y? = A(t) + B(t), aa.te (0,T),
in which the domain relation is exact. Under condition (K) and the so-called stability
condition, a similar theorem as in Theorem 1.1 was first established by Kato [4] and [5].
Under conditions (I)-(III) with t = t, fixed both a(ty) £ A(to) become m-accretive
in X (see Lemma 2.1). Thus A(to) together with —A(%o) is not in general the negative

generator of an analytic Cy-semigroup on X. That is, (E) is definitely an equation of
hyperbolic type. In other words, “hyperbolic” may be replaced with “non-parabolic”.
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In order to state the main theorem we need the notion of a strong solution. We say
that u(-) is a strong solution of (E) if

(i) u() € WH(0,T; X),

(ii) u(t) e Y (0<t<T), and

(iii) u(-) satisfies (E) almost everywhere.

Note that A(t)u(t) is meaningful. Under this definition we have

Theorem 1.2. Let up € Y and f(-) € L}0,T;Y). Ifu(-) is defined by

ult) = U(t, 0)uo + / Ut $)f(s) ds,

then u(-) € Wh10,T; X) N C([O T);Y) and u(-) is a unique strong solution of (E) with
u(0) = uy.

In Section 2 we prepare some lemmas. Then we shall prove Theorems 1.1 and 1.2 in
Sections 3 and 4, respectively. In Section 5 we show the selfadjointness of some operators
for applications. Last, in Section 6 we apply Theorem 1.1 to the Dirac equation.

2. Preliminaries
Let X be a separable Hilbert space.

Lemma 2.1. Let A be a closed linear operator in X, satisfying
Re(Av,v) > —aljv]|?, ve D(A),

where o > 0 is a constant. Let S be a selfadjoint operator in X, with D(S) C D(A),
satisfying (1.1). Assume that there exist nonnegative constants 3 and vy such that for all
u € D(S),

Re(Au, Su) 2 =7 |[ull® = 8 |ul| - |Su]l -

Then
(a) A+ ais m-aceretive in X.
(b) D(S) is a core for A.
This lemma was obtained by Kato [6]. For a complete proof see Okazawa [11].
Definition 2.2 (Ishii [3]). Let {A(¢)} be a family as above, satisfying (1.2)-(1.4). Put

-1

1
An(t) = A(t)(l + 5 (t)A(t)) = Up(2) [1 - (1 o t>A(t)) ]
Un(t) :=n(l1+7(t)) +26(t), neN, aate(0,7).

Then {An(t)}nen is called a modified Yosida approzimation of {A(t)}.
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If t, € (0,7) is fixed, then a(to), B(to), ¥(to) and An(to) are considered as nonnegative
constants a, G, v and the usual Yosida approximation of A(tg) (provided v,(to) > 205),
respectively. Therefore the following lemmas are proved in the same way as in [12].

Lemma 2.3. Let A(t) be as in Definition 2.2. Then

(a) ”(1 + unl(t)A(t))—lus(X> = ( - :m((tt))

a(t)
(b) Re(An(t)w,w) 2 ~a(t) (1 - ;=5

(©) 1An(W)llpx) S a(t), n€eN, aa te(0,T).

-1
) , neN, aa.te(0,7).

-1
) i, weX, aate(T).

Lemma 2.4. Let A(t) be as in Lemma 2.3. Assume that there exist 8 € L'(0,T) and
~v € R such that 3> o > 0 and

(2.1) Re(A(t)u, Su) > —v |lul)® = B(t)(u, Su) Yue D(S), aa.te(0,T),
where S is a selfadjoint operator in X satisfying (1.1). Then, for S; := S(1+¢&S)7!,
Re(A(t)u, Seuw) > — |Jul|® — B(t)(u, Seu) Y u € D(A(t)), aa.te (0,T).

Lemma 2.5. Let A(:) and S be as in Lemma 2.4. Assume that (2.1) with v = 0 is
satisfied. Then

(a) (1 + ’—/—s(t—)A(t))—lD(Sl/?) c D(SY?), aa.te(0,T), with

1 -1 5(,5) ~1
1/2 < (1- P8 1/2 D(§1/2 . Y.
s12(1+ Vn(t)A(t)) UH <(1 u,,(t)) |52, ve D(SY2), aate(0,T)
B(¢)
Vn(t)
Lemma 2.6. Let {A,} be the Yosida approzimation of a linear m-accretive operator A
in X. Let {w,} be a sequence in X such that w, — u (n — oo) weakly in X. If {Aw,}
is bounded, then u € D(A) and A w, — Au (n — o0) weakly in X.

(b) Re(An(t)w, Sew) > -—ﬁ(t)(l - )_1(w,S€w), we X, aate(0T).

3. Construction of evolution operators

In this section we shall prove Theorem 1.1. Let {A(t)} be a family of closed linear
operators in a separable Hilbert space X. Let S be a selfadjoint operator in X, satisfying
(1.1). Since we need conditions (I) and (III) as a whole only in the last step of the proof
(see Lemmas 3.9 and 3.11 below), we may introduce weaker conditions (I)_ and (III),.
Namely assume that

(I), There exists a € L*(0,T), o > 0 such that

Re(A(t)v,v) > —a(t) |vl)>, v e D(A(t)), a.a. t e (0,7).
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(I) Y = D(SY?) c D(A(t)), a.a. t € (0,T).
(IIT) . There exists 8 € L*(0,T), 8 > a such that

Re(A(t)u, Su) > —5(t) HSl/zuﬂz, u € D(9), a.a. t € (0,7T).

(IV) A() € LL(0,T; B(Y, X)) with [|A@®)]ly_x < 7(t), aa.te (0,T).

Under these conditions we shall construct a two parameter family {U(¢, s); (t,s) € A}
in B(X), satisfying among others (i), (ii), (iv) and (v) of Theorem 1.1.

First of all, by virtue of conditions (I)_, (II) and (III), we see from Lemma 2.1 (a)
that A(t) + a(t) is m-accretive in X for almost all ¢t € (0, 7).

Lemma 3.1. Let {A,(t)} and {v,(t)} be as in Definition 2.2. Then
(a) An(+) € L(0,T; B(X)) with 1An()llgx) < valt), aa.te(0,T).
(b) JA(t)v — Ax(t)v|| = 0, Vv e D(A(t)), aa.te (0,T).

Proof. (a) follows from Lemma 2.3 (c).

(b) is well-known as a property of the Yosida approximation. O

Proposition 3.2. Let s € [0,T). Then the approzimate problem:

(3.1) {(d/dt)un(t) + An(Bun(t) =0, aa.te (s, T),

Un(8) = w
has a unique strong solution u, € Wh(s, T; X).

In particular, if A,(-) € C([0,T); B(Y, X)), then the assertion is found in Pazy [15,
Section 5.1). The proof is standard (see e.g. Brézis [1, Theorem VIL.3]).

We define the “solution operator” of the approximate problem by
Un(t, s)w :=u,(t) for (t,s) € A

where u, is the solution of (3.1). The main properties of U,(t, s) are given in the next
lemma (cf. [15, Section 5.1]).

Lemma 3.3. For every n € N, let {A,(t)} and {U,(t,s)} be as defined above. Then
{Un(t,8)} is a sequence of bounded linear operators on X, with

(8) 1Un(t, )l ax, < exp( / () dr) on A.

(b) Un(t,r)Un(r,s) = Un(t,Z) on A and Uy,(s,s) = 1.

(¢) Un(:, ) is uniformly continuous on A.

(d) (8/8)Un(t, 8)w = —An(O)Un(t, 8)w, w € X, (t,5) € A, a.a.t € (s,T).

(€) (0/08)Un(t, s)w = U,(t, s)An(s)w, w € X, (t,8) € A, a.a.s € (0,t).



72

For the limiting procedure we need the following

Lemma 3.4. Let {U,(t,s)} and vy(t) be as in Lemma 3.3. Then

(@) |Un(t, 8)ll pexy < xp [/: a(r)(l - :f(’;)))A dr] < exp(2 /st a(r) dr) on A.
(b) Un(t,s)Y C Y and

“Un(t»S)HB(y) < exp [/: B(r) (1 - ,3(7‘) )-l dT‘] < exp(? ‘/: B(r) d’") on A.

Vn(T)

(c) ForveY, ||A.(t)Un(t, s)v|| < 2v(2) exp(Q/ B(r) dr)“v}]y, a.a. (t,s) € A.

Proof. First we prove (b). Let {S.} be the Yosida approximation of S. Since S is a
bounded linear operator on X, we see from Lemma 3.3 (d) and Lemma 2.5 (b) that for
veVYaa re(sT),

(3.2) (8/0r) ||S22U,(r, 3)v“2 = —2Re(An(r)Un(r, 8)v, SeUn(r, s)v)
< 2,3(7‘)(1 - -V%—((%)~1 HSEVZU,”(T, s)v“2 .

Integrating this inequality on [s,t]. By the Gronwall inequality we have

122U (r, sYo]|” < exp|2 /t By (1- Blr) )*1 dr] |82

va(T)
t
B(r) \~! 1/2, 1|12
< exp[?/s 8y (1= 2275) " ar] sl
Letting € | 0, we can obtain the first inequality of (b). The second inequality is trivial
because v,(t) > 26(t) a.a. t € (0,T).

(a) is proved similarly by Lemma 2.3 (b), starting with
(8/0r) ||Un(r, s)w||* = =2 Re(An(r)Un(r, s)w, Un(r, s)w).

(c) follows from (b). In fact, we see from conditions (II), (IV) and Lemma 2.3 (a) that

a(t) \~?
(3.3) | An(t)v]| < (1 - 'u_,:(_tj) Al < 2v(@)llvlly, aa.te(0,T).
The assertion follows from (b). a

Lemma 3.5. Let {U,(t, s)} be as in Lemma 3.3. Then there is a family {U(t, s); (t,s) €
A} in B(X) such that

(a) U(t,s) = s-limy—.oo Un(t,s), where the convergence is uniform on A, and hence
U(-,-) is strongly continuous on A to B(X), with

B4 W= Unt 9l < 2 Il exe(s [ o) ar) ol vey

t
and ||[U(t, 8)lpx) < exp(/ o(r) dr) on A.
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(b) U(t,r)U(r,s) =U(t,s) on A and U(s,s) = 1.
(¢) U(t,s)Y C Y and SY2U(t, s)v = w-limn,_, SV2U,(t, s)v, with

(3.5) 152U (t, s)]| < exp(/tﬁ(r) ar) s, veY, (ts)eA.

Proof. (a) Let v € Y. Then we shall show that

1 1 2 't
(36) Ut 9)0 —Un(t, )0l < 2| 2= = —= [lsg exp(4 | B ar) ol
The computation is similar as in [12]. Put

Unm (T, 8) 1= Up(r, 8)v — Upn(7, 8)v,
Wrm (7, 8) 1= Jo(r)Un(r, 8)v — T (1) Upe (7, 8)v,

where J,(r) := (1+v,(r) ' A(r)) ™! = 1= 14, (r) "1 An(7). Then by Lemma 3.3 (d) we have

19 2
20r l|nm (r, $)I
= —Re(An(r)Un(r, 8)v — Am(T)Un(T, $)V, Unm (T, 8) — Wam(r, 5))

— Re (A () Wnm(T, ), Wam(r, 5)).
Noting that
BT U1, 8) = Wam(T, ) = V(1) "L An(P)Un(r, 8)0 — ()~ A (r)Una(r, 8)0,
we see that |

— Re(An(r)Un(r, $)v = Am(1)Unn(7, )0, Unm (T, 8) = Wom (T, 5))
= (Un(r) " + Um(r) ) Re(An(r)Un(r, 8)v, Am(r)Upn(r; s)v)
~n (1) T | An(r)Un(7, 8)0[|* = v (r) ™1 | Am (1) U (1, )| .

On the other hand, it follows from condition (I), that

— Re(A(7)Wam (T, 8), Wam(r, 8)) < a(r) |wpm(r, 8)|2
< B() [ wam(r, 812

We see from (3.7) that ||wam(r, s)||? is estimated as follows:

5 1, I = (. 9) 2

< |[vn(r) T An(T)Un(r, $)V = Uin (1) " A (1) Unn (, s)vl|2
= vn(r) 7 | An(r)Un(r, )0II° + v (1) 2 | A (r)Unn (1, s)0||?
— 20 (P) () T Re (An (1)U (7, 8)0, A (1) Un(r, s)v) .
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Combining these estimates and using Lemma 3.4 (c), we have
10

257
<| 7= - o= rexe(a [ sr)ar) i

Integrating this inequality on [s,t], we obtain (3.6). Since Y is dense in X, we see from
Lemma 3.4 (a) that the family {U(t, s); (t,s) € A} in B(X) is defined: for w € X,

Un(, ) w—U(,)w in C(A;X) as n— oo.
(b) follows from Lemma 3.3 (b).

[t (, )% = 28(r) l[ttrm (7. 8)11*

(c) is a consequence of (a) and Lemma 3.4 (b). O
Lemma 3.6. Let {U(t,s)} be as in Lemma 3.5. Letv € Y and (t,s) € A. Then
(a) U(t,s)v € D(A(t)), and
4@ sl < 1@ [ 80 lolly st 6)
with
(3.8) AR)U(t, s)v = ‘7[_1.15.51 A, (U, (t,s)v aa. te€ (s, T).

(b) /lt U(t,r)A(r)vdr = i—l}gl /t Un(t,?)An(r)vdr in X.
(c) (8/8s)U(t,s)v = U(t,s)A(s)v a.a.s € (0,t).

Proof. (a) A(1)U(-, s)v € L*(s,t; X) follows from condition (IV) and (3.5). By virtue of
Lemma 2.6, (3.8) follows from Lemmas 3.4 (c) and 3.5 (c).

(b) For a.a. r € (s,t), it follows from Lemmas 3.1 (b), 3.4 (a) and 3.5 (a) that
U(t,r)A(r)v = s-lim U, (¢, r)Ap(r)v in X.
On the other hand, Lemma 3.4 (a) and (3.3) yield that
T
[Ua(t, ) An(r)oll < 22)exp(2 [ a(r)dr) olly € Li(s.t),

Therefore we obtain the assertion by the Lebesgue convergence theorem.

(c) By Lemma 3.3 (e) we have

v—Uy(t,s)v = /t Un(t,r)Ap(r)vdr, vevY.
Letting n — oo, we see from (3.4) a_nds (b) that
(3.9) v —U(t, s)v = / Ut ATy dr, veY.

Since condition (IV) and Lemma 3.5 (a), U(t,-)A(-)v € L*(0,¢; X). Therefore (3.9) is
strongly differentiable on a.a. s € (0,t) and we obtain the assertion. O
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Lemma 3.7. Let {U(t,s)} be as in Lemma 3.5. Letv € Y. Then
(a) For each s € [0,T], A(-)U(-, s)v is Bochner integrable on [s, T, with

t
(3.10) Ui, s)v=v— / A(r)U(r,s)vdr, tels,T],
and hence U(-, s) is absolutely continuous on [s, T):

/t’t ~¥(r) dr' exp [/OT B(r) dr} lvlly -

(b) (8/0)U(t,s)v = —AR)U(t,s)v, a.a.te (s,T).

(3.11) U, s)v - Ut s)v|| <

Proof. (a) It follows from Lemma 3.6 (a) that A(-)U(-, s)v is Bochner integrable on [s,T].
Now Lemma 3.3 (d) implies that for each w € X,

(Un(t, s)v,w) = (v, w) —/ (An(r)Up(r, 8)v, w) dr.

Letting n — oo, we see from (3.4) and (3.8) that

t
Ut 9v.0) = @) = [ (ADU( s, w) dr.
Thus we obtain (3.10) and (3.11).
(b) is a direct consequence of (3.10). O
It is easy to prove the uniqueness of the evolution operator constructed above.

Lemma 3.8. Let {U(t,s)} be as in Lemma 3.5. Suppose that {V (¢, s)} is another family
in B(X) with the properties (i), (ii) and (v). Then U(t,s) = V (¢, s) on A.

In fact, we see from Lemma 3.7 (b) that for v € Y,
(0/0r)V(t,r)U(r,s)u =0 a.a.r € (s,t).
Hence we obtain U(t, s)v = V/ (¢, s)v. Since Y is dense in X, the assertion follows.

Lemma 3.9. Let {A(t)} and S be as in Theorem 1.1. Assume that conditions (I)
and (III) are satisfied, with the inclusion D(S) C D(A(t)). Let {S:} be the Yosida
approzimation of S. Then

| Re(A(t)v, Sev)| < B(t)(v, Sev), v € D(A(Y)), a.a.te (0,T).
In particular, if D(SY%) C D(A(t)) (this is condition (I1)), then
(3.12) | Re(A(t)v, Sev)| < B(2) ||SY%||°, v e D(SY?), aa.te(0,T).

The conclusion follows from Lemma 2.4 (this fact is first noted in [13]).
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Lemma 3.10. Let {U(t,s)} be as in Lemma 3.5. Let v € Y. Then

(a) SY2U(t,s)v is weakly continuous on A.

(a’) SYM4U(t, s)v is strongly continuous on A.

(b) SY2U(t, s)v — SY?v as (t,s) — (to,to).

(c) Fort € (0,T), U(t,-)v € C([0,T};Y).

Proof. (a) Let {S.} be the Yosida approximation of S. Then for v € Y, S2U(t, s)v is
continuous on A. Noting that (1 +¢S)~*?2w — w (e | 0), we see by (3.5) that

SY2U(t, s)v = w-}%m S2U(t, s)v,
€
where the convergence is uniform on A and hence the limit function is also weakly
continuous on A.

(a’) is a direct consequence of Lemma 3.5 (a) and (3.5).

(b) Let to € [0,T]. Then it suffices by (a) to show that
HSan(t,s)vH — ||Sl/2v|| as (t,s) — (to,to)-
We see again by (a) that

HSI/QUHS liminf ||SY2U(t, s)v|| .

(tvs)—*(t()‘to)

On the other hand, it follows from (3.5) that

limsup ||SY2U(t,s)v|| < ||SY?v]|.

(t,8)—(to,to)
(c) follows from (b) and (3.5). O
Now we are in a position to prove (iii) and U(-,-) € Wt1(A; B(Y, X)) of Theorem 1.1.

Lemma 3.11. Let {A(t)} and S be as in Theorem 1.1. Assume that conditions (I)-(IV)
are satisfied. Let {U(-, )} be as in Lemma 3.5. Then

(a) ForveY and s € [0,T), U(-,s)v € C([s, T} Y).

(b) U(-,-) is strongly continuous on A to B(Y).

(c) ForveY, U(-, v e WH(A; X).

Proof. (a) Lemmas 3.5 (a) and 3.7 (b) yield that U(-, s)v € Whi(s, T, X) € C([s,T); X).
Thus it suffices to show that

(3.13) SY2U (-, s)v € C([s,T); X).
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Let to € [s,T]. Then we have
”Sl/ZU(t, s)v — SY2U (to, s)v“2 = “Sl/zU(t, s)v”2 — “Sl/zU(to, s)v”2
— 2Re(SY2U(t, s)v — SY2U (to, s)v, SY2U (to, s)v).

Since $/2U (¢, s)v is weakly continuous on A (see Lemma 3.10 (a)), we obtain (3.13) if
we show that

(3.14) 182U s)||P = ||SY2U (b, s||” as t — to.
To this end we can use (3.2). Integrating (3.2) on [to,t], we have
HSel/zUn(t,s)v“2 — |IS¥2U,(to, s)v||2 = -2 /tt Re(An(r)Un(r, 8)v, SeUn(r, s)v) dr.
Letting n — oo, we see from (3.4), (3.8) and Leronma 3.4 (c) that
| S22U (¢, s)v“2 — ||5H2U (to, s)v”2 = —2/: Re(A(r)U(r, s)v, S.U(r, s)v) dr.
It follows from (3.12) and (3.5) that 0

Is220t, 9)* = ||S22U ko, s)el|"| <2

[ swyen(z [0y ar] arl o
= Iexp [2 /st B(r) dr] — exp [2 /sto B(r) d’"] ' vl -

Noting that (1 +&S) *w — w (¢ | 0) for every w € X, we have

“ISl/?U(t,s)U”2 — ”51/2U(t0,s)v”2l < 'exp [2 /St B(r) dr] — exp [2

Thus we obtain (3.14).

(b) We follow the idea in Kato [4,’ Remark 5.4]. First let ¢, = so. Then the assertion
follows from Lemma 3.10 (b). Next let so < tg. Set a :== 271(sp + tp). Then s < a <t
for (¢,s) € B((to,S0), 27 (to — 80)) N A. Thus we have

" 8 ar]| 1ol

8

“U(tv S)U - U(to, So)'U”y
< UGE )l sy 1U(a, )v = Ula, so)vlly + [[(U(E, @) — Ulto, a))U(a, so)vlly -

Therefore the assertion follows from (a), (3.5) and Lemma 3.10 (c).

(c) U(:,-)v € C(A; X) is a direct consequence of (b). It follows from Lemma 3.5 (c) and
3.7 (b) that

/ /A 1(8/0)U (¢, )| dtds = / /A LA U (2, s)o]| dtds

< //A ~(t) exp [/: B(r) dr] lvlly dtds

T
<Tllpan e[ Ar)dr] ol
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Similarly by Lemma 3.5 (a) and 3.6 (c) we have

T
[ werosut syl drds < Talsomyexn] [ atryar] vl

Therefore the assertion follows. QO

4. Inhomogeneous equations

In this section we prove Theorem 1.2. Let A(¢) and S be as in Theorem 1.1. First
assume that condition (I)., (II), (III)+ and (IV) are satisfied. Let {U(t, s); (¢, s) € A} be
the evolution operator with the properties stated in Lemmas 3.5-3.7. Then for uy € Y,

(4.1) (d/dt)U (¢, 0)uo + A)U(t,0)uo = 0 a.a. t € (0,T).
Let f(-) € L'(0,7T;Y) and put

(4.2) v(t) := /t Ul(t,s)f(s)ds.

0
Then clearly v(-) € L*(0,7T; X). We want to show that
(4.3) (d/dt)v(t) + A(t)v(t) = f(t) a.a.te (0,7).
Lemma 4.1. Let v(-) be as above and t € [0,T]. Then

T

(a) v(-) € L=(0,T;Y), with [[v(t)|ly < exp [/0 5(7')d7'] “f(‘)”Ll(o,T;Y)-
(b) S¥2y(-) is weakly continuous on [0,T].

(c) v(t) € D(A(t)) and “A(‘)U(')HLI((),T;X) < ”’7’“1,1(0,7') HU(‘)“Loo(o,T;y)'

Proof. (a) Let {S.} be the Yosida approximation of S. Then we have
t
SH2y(t) = / S2U(t,s)f(s) ds.
0

Since HS’el/z'wH < HSl/QwH < JJwlly, it follows from (3.5) that

t T
sl < [ MU 5 law, 156y ds < exp [ B0)ar] 17Ol o
Hence we see that v(t) € Y and
(4.4) SY2y(t) = w;}iom S2y(t), telo,T].

Thus the assertion follows.

(b) The convergence in (4.4) is uniform on [0, 7] and therefore S*/2v(-) is weakly contin-
uous on [0, 7).

(c) follows from (a) and the condition (II). a
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Next let {U,(t,s)} be as in Theorem 3.2 and put

vn(t) = /0 “Un(t,5)f(s) ds.
Then v,(-) € Wh1(0,T; X) and
(4.5) (d/dt)vn(t) = —A.(t)un(t) + f(t) a.a.te (0,7).
Now we can prove (4.3).

Lemma 4.2. Let v(-) be as above. Then

(@) vp(:) = () in C([0,T); X) as n — oo.

(b) A(®)v(t) = vxiior.PAn(t)vn(t) a.a. t e (0,7).
(c) A(:)v(-) is Bochner z'ntegmblé on [0,T] and

(4.6) u(t) = — / tA(s)v(s) ds + / " Fis) ds.
(d) (d/dt)o(t) = ~AR)o(t) + f(£) aa.te(0,T).

Proof. (a) follows from (3.4).

(b) (a) and Lemma 4.1 (c) implies by Lemma 2.6 that A(-)v(-) is the weak limit of
An()vn(:) as n — oo.

(c) It follows from (b) that A(-)v(-) is strongly measurable. Furthermore, by Lemma 4.1
(c) we have A(-)v(-) € L'(0,T; X). Therefore A(-)v(-) is Bochner integrable on [0, 7.
On the other hand, we see from (4.5) that for each w € X,

 (un(®),w) =—At(An(§)vn(s),w) ds+/0t(f(s),w) ds.

Letting n — oo, we have

¢ ¢
(v(t), w) = -—/ (A(s)v(s),w) ds +/ (f(s),w)ds.
0 0
Hence we obtain (4.6).
(d) Strong differentiability of v(t) is a consequence of (4.6). O

The next lemma guarantees that the strong solution of (E) is expressed by the variation
of constant formula.

Lemma 4.3. Let {U(t,s)} be the evolution operator with properties (i), (ii) and (v). Let
u(-) be a strong solution of (E) with u(0) =uo € Y. If f € L*(0,T; X) then

(4.7) u(t) = U(t,0)up + /t U(t, s)f(s) ds.
: 0
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In fact, it suffices to integrate the identity:
(8/0s)U(t,s)u(s) = U(t,s)f(s) a.a. se€(0,t).

Consequently, it follows from (4.1) and (4.3) that if f(-) € L}(0,T;Y) then u(-) given
by (4.7) is a unique solution of (E) with u(0) =up € Y.
Now we are in a position to prove Theorem 1.2.

Lemma 4.4. Let {A(t)} and S be as in Theorem 1.1. Assume that conditions (I)-(IV)
are satisfied. Let {U(t,s)} be the evolution operator on X generated by {A(t)}. For
f() € LY0,T;Y) let v(:) be as in (4.2). Then

v(-) € WH(0,T; X) N C([0,T); Y).

Proof. It follows from Lemma 4.2 (d) that v € W1(0,T; X). Hence it suffices to show
that

(4.8) v(-) € C([0,T);Y).

This is shown by the similar way as in Lemma 3.11 (a). Let {S;} be the Yosida approx-
imation of S. Then it follows from (4.5) that

(d/ds) ||SY?un(s)||” = 2Re((d/ds)vn(s), Scvn(s))
= 2Re(—An(s)vn(s) + f(s), Sevn(s)) a.a.s€ (0,7T).

Integrating this equality from s = t; to s = ¢, we have

15220, ()| = || 8M?vn (to)]||”

= — 2[ Re(An(8)vn(s), Sevn(s)) ds + 2/ Re(f(s), Sevn(s)) ds.

to

Letting n — oo, we see from Lemma 4.2 (a) and (b) that
I15220(@)|[* - || S22 to)||”
—_2 / "Re(A(s)u(s), Sev(s)) ds + 2 / “Re(f(s), Sov(s)) ds.
It follows from (3.12) and Lemma 4.1 (a) that )
[I1520®)|* = ||s¥20(to)|I

gzl[ﬁ(t) 115220 (s)||” ds‘ +2|[ 1S 2 £(s)]| - ||S*2v(s)]| dsl

<218l 1oty ”U(')”iw(o,T;Y) + 2| F ()l eo,tvy 1V oo 0,77y -

Thus we have
(4.9) 1S 2u(@)||” — ||SM2u(to)||” (¢ — to)-
By both Lemma 4.1 (b) and (4.9) we obtain (4.8). a

In view of Lemma 4.2 (d) and Lemma 3.11 this completes the proof of Theorem 1.2.
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5. Preliminaries for applications

Put (z) := (1 + ’x|2)1/ ?_ In this section we consider the selfadjointness of
(51)  S:=(Hp+V)?+(2)’I for ue D(S):={ue L*R3* Su e L?(R®)*}.

Here Hp is the free Dirac operator

3
0
HD :=a-p+mﬁ= E aji‘1%+m[3,
J

j=1

acting in the Hilbert space L2(R®)*; a = (a;,,a3) and 3 = a4 are the usual 4 x 4
Hermitian matrices satisfying the commutation relations

(52) QO -+ Qply; = 25jk1 (], k= 1, 2, 3, 4),

and m is a positive constant (cf. Fattorini [2]).
The potential V' is an operator of multiplication with a 4 x 4 Hermitian matrix-valued,
measurable function V'(z) defined on R3. It is assumed that

(5.3) [V(z)| < alz|™! + b,

where |V (z)| denotes the operator norm of V(z) : C* — C* and a,b are nonnegative
constants with a < 1/2.
First, we consider the selfadjointness of Hp + V.

Theorem 5.1 (Kato-Rellich theorem). Let A be a selfadjoint operator in a Hilbert space
H and B a symmetric operator in H, with D(A) C D(B). Assume that there exist two
constants ag, by > 0 such that for all u € D(A),

| Bull < aollull + bof| Au].
If bg < 1 then A+ B is also selfadjoint on D(A).
For a proof see (7, Theorem V.4.3].
Lemma 5.2. Let Hp and V be as above. Then Hp + V is selfadjoint on H'(R3)%.

Proof. Let u € H'(R®)*. Hp is selfadjoint and V is symmetric. It follows from (5.3) and
the Hardy inequality that

IVull < alllel™ull + bllull < 2a]|Vu| + bljull.

On the other hand, we see from (5.2) that ||Hpu||? = ||Vul||?2 + m?||u||?. Therefore, V is
Hp-bounded, with Hp-bound 2a < 1. Now the assertion follows from Theorem 5.1. O

The selfadjointness of (Hp + V')? is clear. Let us consider the selfadjointness of S.
Clearly, S is symmetric. Thus we have only to consider the m-accretivity of S.
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Lemma 5.3 ([10]). Let A and B be linear m-accretive operators in a Hilbert space H.
Let D be a linear manifold invariant under (1+n~'A)~! forn € N. Assume that D is a
core of B and there exist two constants a, b > 0 such that for allu € Do := (1 + A)1D,

0 < Re(Au, Bu) + a ||ul|® + b || Au||®.
Ifb< 1 then A+ B is also m-accretive in H.
Lemma 5.4. Let Hp and V be as above. Then S is selfadjoint on D(S).
Proof. Let u € S(R%)?, where S(R?) is the Schwartz space. Then we have
Re((Hp + V)u, (z)?*u) = Re((Hp + V)u, (Hp + V) ((z)*u))
= ||{z)(Hp + V)uH2 —2Im((Hp + V)u, a - zu)
> |[(2)(Hp + V)ul|* - 2|(z) (Hp + V)ul| - ju]
> —lufl®.

The assertion follows from Theorem 5.3. 0O

6. Applications to the Dirac equation

Let Hp and V be as in Section 5. In this section we consider, as an application of
Theorem 1.1, the Cauchy problem for the Dirac equation:

z%u = H(t)u+ f(t) for te 1),
u(0) = up

in the Hilbert Space X = L?(R®)%, where up € Y := H*(R®)* N H,(R3)*.
First we define H(t) precisely. Let

H(t) :=Hp+V +q(t)I

(DE)

with domain D(H(t)) = C$*(R3)4. ¢(¢)I is a maximal multiplication operator by ¢(z, ),
where g(z,t) : R3 x [0,00) — R is the time-dependent measurable real-valued potential.
Furthermore, we impose q(t) satisfying following conditions:

(q1) q(-) € L*(0,T; (z) L= (R?)),
(a2) |Vq(-)| € L' (0,T; L>(R?)),

where (z) L®°(R3) := {¢ € L} (R3); (z) ¢ € L=(R3)}.

Since H(t) is symmetric, H(t) is closable. Then we take as H(t) the closure H(t) of
H(t), ie., H(t) = H(t).

Let S be as in (5.1). Then S is selfadjoint on D(S), with S > 1. Thus Y = D(5'2?) is
regarded as a Hilbert space, embedded continuously and densely in L?(R3)*, with inner
product

(u,v) p(sirzy = (S, SY%v), u, v e D(S'?).
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Lemma 6.1. Let S be as above. Then D(SV?) = HY(R®*)* N H(R*)* and there exist
positive constants ¢y, ¢z such that

6.1) SV < Jjul)? + || Vul]® + l|lzlul® < cf|SY?u|)?,  we D(SY?).
Proof. Let u € D(S). Then we have
18*2u])” = (Su,u)
= ((Hp + V)*u + u + [z|*u, u)
= [|ull + || (Hp + V)ul|* + fll<]ul®

On the other hand, there exist positive constants ¢/, ¢’ such that

(6.2) ci(llull + IVull) < llull + ||[(Hp + V)ul| < ch(llull + [[Vul]).

Since D(S) is a core for S*/2, (6.1) holds for u € D(S'/?) = H'(R®)* N H;(R3)4. O
Now we shall verify conditions (I)-(IV) of Theorem 1.1.

Lemma 6.2. Let A(t) = iH(t) and S be as above. Assume that (ql), (q2) are satisfied.
Then for each T > 0

(I) Re(A(t)v,v) =0, v € D(A(t)), a.a.t € (0,7).
(1) Y = HY(R3)* N Hy(R3)* C D(A(¢)), a.a.t € (0,T).
(II1) There exists B € L*(0,T), B > 0 such that
| Re(A(t)u, Su)| < B(8)||SYV?u||®, u € D(S), a.a.te(0,T).
(IV) A(-) € L1(0,T; B(H'(R®)* N H,(R®)4, L2(R%)%)).

Proof. Noting that Re(A(t)u,u) = —Im(H (t)u, u), the assertion follows from symmetry
of H(t). Therefore, it is sufficient to show that there exist 8,v € L*(0,T) such that

(6.3) IH@)ull < v®)||SY?u)), ue H*R®* N Hi(R%)*,  aa.te (0,T).
(6.4) |Im(H(t)u,Su)| < ﬂ(t)“S'lnu“z, u € D(9), a.a. t € (0,7T).
First, we verify (6.3). It follows from condition (ql) that

I1H ()ull < |[(Hp + V)ull + llg(t)ull
< I(Hp + V)ull + @) [[{z)uf,
where v, € L'(0,T) depends on g. Thus we obtain (6.3).
Next, we verify (6.4). By integration by parts we have
Im (H(t), Su) = Im((Hp + V)u, |z|*u) + Im(q(t)u, (Hp + V)?u)
- =Re((a z)u,u) — Re((a - Vg(t))u, (Hp + V)u).
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Hence it follows from the Cauchy-Schwarz inequality and condition (q2) that

Im(H (t), Su)| < lllelull - lull + [[[Ve@®)lul| - || (Hp + V)ul|
< elull - ffull + B@)lull - [|(Hp + V)ul],

where 3, € L!(0,T) depends on ¢. Therefore we obtain (6.4). O

Assume further that

(f1)

f e L'(0,T; H' (R®)* n Hy(R®*)*).

Then we can apply Theorems 1.1 and 1.2 to conclude that the Dirac equation (DE)
admits a unique solution u € W1(0, T; L4(R®)*) N C(0, T; H*(R3)* N H;(R®)*).
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