Abstract approach to the Dirac equation

東京理科大学・理 岡沢 登 (Noboru Okazawa) 東京理科大学・理 D1 吉井 健太郎(Kentarou Yoshii) Department of Mathematics, Science University of Tokyo

Abstract

A new existence and uniqueness theorem is established for linear evolution equations in a separable Hilbert space. The result is applied to the Dirac equation with time-dependent potential.

1. Introduction and statement of the result

In this paper we consider the Cauchy problem for the Dirac equation in $L^2(\mathbb{R}^3)^4$:

$$i\frac{\partial u}{\partial t} + H_D u + V(x)u + q(x,t)u = f(x,t),$$

with $u(\cdot,0) = u_0 \in H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4$, where H_D is the free Dirac operator, $H^1(\mathbb{R}^3)$ is the usual Sobolev space and $H_1(\mathbb{R}^3) := \{u \in L^2(\mathbb{R}^3); (1+|x|^2)^{1/2}u \in L^2(\mathbb{R}^3)\}$. We shall show the existence of a unique strong solution under some conditions on potentials V, q and inhomogeneous term f. To do so we employ an abstract approach.

Let $\{A(t); 0 < t < T\}$ be a family of closed linear operators in a *separable* complex Hilbert space X. Then the Dirac equation is regarded as one of linear evolution equations of the form

(E)
$$\frac{d}{dt}u(t) + A(t)u(t) = f(t) \quad \text{on} \quad (0, T).$$

So we first establish the existence of a unique strong solution to the Cauchy problem of (E) with initial condition. Now let S be a selfadjoint operator in X, satisfying

(1.1)
$$(u, Su) \ge ||u||^2 \text{ for } u \in D(S).$$

Then the square root $S^{1/2}$ is well-defined and $Y := D(S^{1/2})$ is also a separable Hilbert space, with inner product $(u, v)_Y := (S^{1/2}u, S^{1/2}v)$, embedded continuously and densely in X.

Let B(Y,X) be the space of all bounded linear operators on a Banach space Y to another X, with norm $\|\cdot\|_{Y\to X}$. We shall also use the following abbreviation. Namely, B(X):=B(X,X) and B(Y):=B(Y,Y). We use the subscript $_*$ to refer the strong operator topology in B(Y,X). For instance, $F(\cdot)\in L_*^p(0,T,B(Y,X))$ for $1\leq p\leq \infty$ means that $F(t)\in B(Y,X)$ is defined for a.a. $t\in (0,T)$, is strongly measurable, and there exists $\gamma_F\in L^p(0,T)$ such that $\|F(t)\|_{Y\to X}\leq \gamma_F(t)$ for a.a. $t\in (0,T)$ (for this notation see Kato [8] and Tanaka [16]).

The first purpose of this paper is to prove

Theorem 1.1. Let $\{A(t)\}$ be a family of closed linear operators in a separable Hilbert space X, S a selfadjoint operator in X, satisfying (1.1). Assume that A(t) satisfies following four conditions.

(I) There exists $\alpha \in L^1(0,T)$, $\alpha \geq 0$, such that

(1.2)
$$|\operatorname{Re}(A(t)v,v)| \le \alpha(t) ||v||^2, \quad v \in D(A(t)), \text{ a.a. } t \in (0,T).$$

(II)
$$Y = D(S^{1/2}) \subset D(A(t))$$
, a.a. $t \in (0, T)$.

(III) There exists $\beta \in L^1(0,T)$, $\beta \geq \alpha$, such that

(1.3)
$$|\operatorname{Re}(A(t)u, Su)| \le \beta(t) ||S^{1/2}u||^2, \quad u \in D(S), \text{ a.a. } t \in (0, T).$$

(IV)
$$A(\cdot) \in L^1(0,T;B(Y,X))$$
, i.e., there exists $\gamma \in L^1(0,T)$ such that

(1.4)
$$||A(t)||_{Y \to X} \le \gamma(t)$$
, a.a. $t \in (0, T)$.

Then there exists a unique evolution operator $\{U(t,s); (t,s) \in \Delta\}$, where $\Delta := \{(t,s); 0 \le s \le t \le T\}$, having the following properties.

(i) $U(\cdot,\cdot)$ is strongly continuous on Δ to B(X), with

(1.5)
$$||U(t,s)||_{B(X)} \le \exp\left(\int_s^t \alpha(r) \, dr\right), \quad (t,s) \in \Delta.$$

(ii) U(t,r)U(r,s) = U(t,s) on Δ and U(s,s) = 1 (the identity).

(iii) $U(t,s)Y \subset Y$ and $U(\cdot,\cdot)$ is strongly continuous on Δ to B(Y), with

(1.6)
$$||U(t,s)||_{B(Y)} \le \exp\left(\int_s^t \beta(r) \, dr\right), \quad (t,s) \in \Delta.$$

Furthermore, let $v \in Y$, Then $U(\cdot, \cdot)v \in W^{1,1}(\Delta; X)$, with

$$\text{(iv) } (\partial/\partial t)U(t,s)v = -A(t)U(t,s)v, \quad (t,s) \in \Delta, \text{ a.a. } t \in (s,T), \text{ and }$$

$$(\mathbf{v})\ (\partial/\partial s)U(t,s)v=U(t,s)A(s)v,\quad (t,s)\in\Delta, \text{ a.a. } s\in(0,t).$$

In particular, if $A(\cdot) \in C([0,T]; B(Y,X))$, then Theorem 1.1 has already been proved in Mori [9] (unpublished). For lack of the continuity to the contrary we cannot approximate the family $\{A(\cdot)\}$ by a sequence $\{A_n(\cdot)\}$ of piecewise constant families. Therefore, we should consider some other approximation (see Definition 2.2 below).

Here we note that (III) is a consequence of conditions (I), (II) and the commutator type condition

(K) There exists $B(\cdot) \in L^1_*(0,T;B(X))$ such that

$$S^{1/2}A(t)S^{-1/2} = A(t) + B(t)$$
, a.a. $t \in (0, T)$,

in which the domain relation is exact. Under condition (K) and the so-called stability condition, a similar theorem as in Theorem 1.1 was first established by Kato [4] and [5].

Under conditions (I)-(III) with $t = t_0$ fixed both $\alpha(t_0) \pm A(t_0)$ become *m*-accretive in X (see Lemma 2.1). Thus $A(t_0)$ together with $-A(t_0)$ is not in general the negative generator of an analytic C_0 -semigroup on X. That is, (E) is definitely an equation of hyperbolic type. In other words, "hyperbolic" may be replaced with "non-parabolic".

In order to state the main theorem we need the notion of a strong solution. We say that $u(\cdot)$ is a *strong* solution of (E) if

- (i) $u(\cdot) \in W^{1,1}(0,T;X)$,
- (ii) $u(t) \in Y \ (0 \le t \le T)$, and
- (iii) $u(\cdot)$ satisfies (E) almost everywhere.

Note that A(t)u(t) is meaningful. Under this definition we have

Theorem 1.2. Let $u_0 \in Y$ and $f(\cdot) \in L^1(0,T;Y)$. If $u(\cdot)$ is defined by

$$u(t) := U(t,0)u_0 + \int_0^t U(t,s)f(s) ds,$$

then $u(\cdot) \in W^{1,1}(0,T;X) \cap C([0,T];Y)$ and $u(\cdot)$ is a unique strong solution of (E) with $u(0) = u_0$.

In Section 2 we prepare some lemmas. Then we shall prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. In Section 5 we show the selfadjointness of some operators for applications. Last, in Section 6 we apply Theorem 1.1 to the Dirac equation.

2. Preliminaries

Let X be a separable Hilbert space.

Lemma 2.1. Let A be a closed linear operator in X, satisfying

$$\operatorname{Re}(Av, v) \ge -\alpha \|v\|^2, \quad v \in D(A),$$

where $\alpha \geq 0$ is a constant. Let S be a selfadjoint operator in X, with $D(S) \subset D(A)$, satisfying (1.1). Assume that there exist nonnegative constants β and γ such that for all $u \in D(S)$,

$$Re(Au, Su) \ge -\gamma \|u\|^2 - \beta \|u\| \cdot \|Su\|.$$

Then

- (a) $A + \alpha$ is m-accretive in X.
- (b) D(S) is a core for A.

This lemma was obtained by Kato [6]. For a complete proof see Okazawa [11].

Definition 2.2 (Ishii [3]). Let $\{A(t)\}$ be a family as above, satisfying (1.2)–(1.4). Put

$$\begin{split} A_n(t) := A(t) \Big(1 + \frac{1}{\nu_n(t)} A(t) \Big)^{-1} &= \nu_n(t) \Big[1 - \Big(1 + \frac{1}{\nu_n(t)} A(t) \Big)^{-1} \Big], \\ \nu_n(t) := n \Big(1 + \gamma(t) \Big) + 2\beta(t), \quad n \in \mathbb{N}, \quad \text{a.a. } t \in (0,T). \end{split}$$

Then $\{A_n(t)\}_{n\in\mathbb{N}}$ is called a modified Yosida approximation of $\{A(t)\}$.

If $t_0 \in (0,T)$ is fixed, then $\alpha(t_0)$, $\beta(t_0)$, $\gamma(t_0)$ and $A_n(t_0)$ are considered as nonnegative constants α , β , γ and the usual Yosida approximation of $A(t_0)$ (provided $\nu_n(t_0) > 2\beta$), respectively. Therefore the following lemmas are proved in the same way as in [12].

Lemma 2.3. Let A(t) be as in Definition 2.2. Then

(a)
$$\left\| \left(1 + \frac{1}{\nu_n(t)} A(t) \right)^{-1} \right\|_{B(X)} \le \left(1 - \frac{\alpha(t)}{\nu_n(t)} \right)^{-1}, \quad n \in \mathbb{N}, \quad \text{a.a. } t \in (0, T).$$

(b)
$$\operatorname{Re}(A_n(t)w, w) \ge -\alpha(t) \left(1 - \frac{\alpha(t)}{\nu_n(t)}\right)^{-1} ||w||^2, \quad w \in X, \quad \text{a.a. } t \in (0, T).$$

(c)
$$||A_n(t)||_{B(X)} \le \nu_n(t)$$
, $n \in \mathbb{N}$, a.a. $t \in (0, T)$.

Lemma 2.4. Let A(t) be as in Lemma 2.3. Assume that there exist $\beta \in L^1(0,T)$ and $\gamma \in \mathbb{R}$ such that $\beta \geq \alpha \geq 0$ and

(2.1)
$$\operatorname{Re}(A(t)u, Su) \ge -\gamma \|u\|^2 - \beta(t)(u, Su) \quad \forall \ u \in D(S), \quad \text{a.a. } t \in (0, T),$$

where S is a selfadjoint operator in X satisfying (1.1). Then, for $S_{\epsilon} := S(1+\epsilon S)^{-1}$,

$$\operatorname{Re}(A(t)u, S_{\varepsilon}u) \ge -\gamma \|u\|^2 - \beta(t)(u, S_{\varepsilon}u) \quad \forall u \in D(A(t)), \quad \text{a.a. } t \in (0, T).$$

Lemma 2.5. Let $A(\cdot)$ and S be as in Lemma 2.4. Assume that (2.1) with $\gamma=0$ is satisfied. Then

(a)
$$\left(1 + \frac{1}{\nu_n(t)}A(t)\right)^{-1}D(S^{1/2}) \subset D(S^{1/2})$$
, a.a. $t \in (0, T)$, with

$$\left\| S^{1/2} \left(1 + \frac{1}{\nu_n(t)} A(t) \right)^{-1} v \right\| \le \left(1 - \frac{\beta(t)}{\nu_n(t)} \right)^{-1} \left\| S^{1/2} v \right\|, \quad v \in D(S^{1/2}), \quad \text{a.a. } t \in (0, T).$$

(b)
$$\operatorname{Re}(A_n(t)w, S_{\varepsilon}w) \ge -\beta(t)\left(1 - \frac{\beta(t)}{\nu_n(t)}\right)^{-1}(w, S_{\varepsilon}w), \quad w \in X, \quad \text{a.a. } t \in (0, T).$$

Lemma 2.6. Let $\{A_n\}$ be the Yosida approximation of a linear m-accretive operator A in X. Let $\{w_n\}$ be a sequence in X such that $w_n \to u$ $(n \to \infty)$ weakly in X. If $\{A_n w_n\}$ is bounded, then $u \in D(A)$ and $A_n w_n \to Au$ $(n \to \infty)$ weakly in X.

3. Construction of evolution operators

In this section we shall prove Theorem 1.1. Let $\{A(t)\}$ be a family of closed linear operators in a separable Hilbert space X. Let S be a selfadjoint operator in X, satisfying (1.1). Since we need conditions (I) and (III) as a whole only in the last step of the proof (see Lemmas 3.9 and 3.11 below), we may introduce weaker conditions (I)₊ and (III)₊. Namely assume that

(I) There exists $\alpha \in L^1(0,T)$, $\alpha \geq 0$ such that

$$Re(A(t)v, v) \ge -\alpha(t) \|v\|^2$$
, $v \in D(A(t))$, a.a. $t \in (0, T)$.

(II)
$$Y = D(S^{1/2}) \subset D(A(t))$$
, a.a. $t \in (0, T)$.

(III)₊ There exists $\beta \in L^1(0,T)$, $\beta \geq \alpha$ such that

$$\operatorname{Re}(A(t)u, Su) \ge -\beta(t) \|S^{1/2}u\|^2, \quad u \in D(S), \text{ a.a. } t \in (0, T).$$

(IV)
$$A(\cdot) \in L^1_*(0, T; B(Y, X))$$
 with $||A(t)||_{Y \to X} \le \gamma(t)$, a.a. $t \in (0, T)$.

Under these conditions we shall construct a two parameter family $\{U(t,s); (t,s) \in \Delta\}$ in B(X), satisfying among others (i), (ii), (iv) and (v) of Theorem 1.1.

First of all, by virtue of conditions (I)₊, (II) and (III)₊ we see from Lemma 2.1 (a) that $A(t) + \alpha(t)$ is m-accretive in X for almost all $t \in (0, T)$.

Lemma 3.1. Let $\{A_n(t)\}$ and $\{\nu_n(t)\}$ be as in Definition 2.2. Then

(a)
$$A_n(\cdot) \in L^1_*(0,T;B(X))$$
 with $||A_n(t)||_{B(X)} \le \nu_n(t)$, a.a. $t \in (0,T)$.

(b)
$$||A(t)v - A_n(t)v|| \to 0$$
, $\forall v \in D(A(t))$, a.a. $t \in (0, T)$.

Proof. (a) follows from Lemma 2.3 (c).

(b) is well-known as a property of the Yosida approximation.

Proposition 3.2. Let $s \in [0,T)$. Then the approximate problem:

(3.1)
$$\begin{cases} (d/dt)u_n(t) + A_n(t)u_n(t) = 0, & \text{a.a. } t \in (s,T), \\ u_n(s) = w \end{cases}$$

has a unique strong solution $u_n \in W^{1,1}(s,T;X)$.

In particular, if $A_n(\cdot) \in C([0,T]; B(Y,X))$, then the assertion is found in Pazy [15, Section 5.1]. The proof is standard (see e.g. Brézis [1, Theorem VII.3]).

We define the "solution operator" of the approximate problem by

$$U_n(t,s)w := u_n(t)$$
 for $(t,s) \in \Delta$

where u_n is the solution of (3.1). The main properties of $U_n(t, s)$ are given in the next lemma (cf. [15, Section 5.1]).

Lemma 3.3. For every $n \in \mathbb{N}$, let $\{A_n(t)\}$ and $\{U_n(t,s)\}$ be as defined above. Then $\{U_n(t,s)\}$ is a sequence of bounded linear operators on X, with

(a)
$$||U_n(t,s)||_{B(X)} \le \exp\left(\int_s^t \nu_n(r) dr\right)$$
 on Δ .

- (b) $U_n(t,r)U_n(r,s) = U_n(t,s)$ on Δ and $U_n(s,s) = 1$.
- (c) $U_n(\cdot,\cdot)$ is uniformly continuous on Δ .
- $(\mathrm{d}) \ (\partial/\partial t) U_n(t,s) w = -A_n(t) U_n(t,s) w, \ w \in X, \ (t,s) \in \Delta, \ \text{a.a.} \ t \in (s,T).$
- (e) $(\partial/\partial s)U_n(t,s)w = U_n(t,s)A_n(s)w, w \in X, (t,s) \in \Delta, \text{ a.a. } s \in (0,t).$

For the limiting procedure we need the following

Lemma 3.4. Let $\{U_n(t,s)\}$ and $\nu_n(t)$ be as in Lemma 3.3. Then

(a)
$$||U_n(t,s)||_{B(X)} \le \exp\left[\int_s^t \alpha(r)\left(1 - \frac{\alpha(r)}{\nu_n(r)}\right)^{-1} dr\right] \le \exp\left(2\int_s^t \alpha(r) dr\right)$$
 on Δ .

(b) $U_n(t,s)Y \subset Y$ and

$$\|U_n(t,s)\|_{B(Y)} \le \exp\left[\int_s^t \beta(r) \left(1 - \frac{\beta(r)}{\nu_n(r)}\right)^{-1} dr\right] \le \exp\left(2 \int_s^t \beta(r) dr\right) \text{ on } \Delta.$$

(c) For
$$v \in Y$$
, $||A_n(t)U_n(t,s)v|| \le 2\gamma(t) \exp\left(2\int_s^t \beta(r) \, dr\right) ||v||_Y$, a.a. $(t,s) \in \Delta$.

Proof. First we prove (b). Let $\{S_{\varepsilon}\}$ be the Yosida approximation of S. Since S_{ε} is a bounded linear operator on X, we see from Lemma 3.3 (d) and Lemma 2.5 (b) that for $v \in Y$, a.a. $r \in (s, T)$,

$$(3.2) \qquad (\partial/\partial r) \left\| S_{\varepsilon}^{1/2} U_n(r,s) v \right\|^2 = -2 \operatorname{Re}(A_n(r) U_n(r,s) v, S_{\varepsilon} U_n(r,s) v)$$

$$\leq 2\beta(r) \left(1 - \frac{\beta(r)}{\nu_n(r)} \right)^{-1} \left\| S_{\varepsilon}^{1/2} U_n(r,s) v \right\|^2.$$

Integrating this inequality on [s, t]. By the Gronwall inequality we have

$$||S_{\varepsilon}^{1/2}U_{n}(r,s)v||^{2} \leq \exp\left[2\int_{s}^{t}\beta(r)\left(1-\frac{\beta(r)}{\nu_{n}(r)}\right)^{-1}dr\right]||S_{\varepsilon}^{1/2}v||^{2}$$

$$\leq \exp\left[2\int_{s}^{t}\beta(r)\left(1-\frac{\beta(r)}{\nu_{n}(r)}\right)^{-1}dr\right]||S^{1/2}v||^{2}.$$

Letting $\varepsilon \downarrow 0$, we can obtain the first inequality of (b). The second inequality is trivial because $\nu_n(t) \geq 2\beta(t)$ a.a. $t \in (0, T)$.

(a) is proved similarly by Lemma 2.3 (b), starting with

$$(\partial/\partial r) \|U_n(r,s)w\|^2 = -2\operatorname{Re}(A_n(r)U_n(r,s)w, U_n(r,s)w).$$

(c) follows from (b). In fact, we see from conditions (II), (IV) and Lemma 2.3 (a) that

(3.3)
$$||A_n(t)v|| \le \left(1 - \frac{\alpha(t)}{\nu_n(t)}\right)^{-1} ||A(t)v|| \le 2\gamma(t) ||v||_Y, \quad \text{a.a. } t \in (0,T).$$

The assertion follows from (b).

Lemma 3.5. Let $\{U_n(t,s)\}$ be as in Lemma 3.3. Then there is a family $\{U(t,s); (t,s) \in \Delta\}$ in B(X) such that

(a) $U(t,s) := \text{s-}\lim_{n\to\infty} U_n(t,s)$, where the convergence is uniform on Δ , and hence $U(\cdot,\cdot)$ is strongly continuous on Δ to B(X), with

$$||U(t,s)v - U_n(t,s)v||^2 \le \frac{2}{n} ||\gamma||_{L^1(s,t)} \exp\left(4 \int_s^t \beta(r) \, dr\right) ||v||_Y^2, \quad v \in Y$$
and $||U(t,s)||_{B(X)} \le \exp\left(\int_s^t \alpha(r) \, dr\right)$ on Δ .

(b)
$$U(t,r)U(r,s) = U(t,s)$$
 on Δ and $U(s,s) = 1$.

(c)
$$U(t,s)Y \subset Y$$
 and $S^{1/2}U(t,s)v = \text{w-lim}_{n\to\infty} S^{1/2}U_n(t,s)v$, with

Proof. (a) Let $v \in Y$. Then we shall show that

$$(3.6) ||U_n(t,s)v - U_m(t,s)v||^2 \le 2 \left| \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{m}} \right|^2 ||\gamma||_{L^1(s,t)} \exp\left(4 \int_s^t \beta(r) \, dr\right) ||v||_Y^2.$$

The computation is similar as in [12]. Put

$$u_{nm}(r,s) := U_n(r,s)v - U_m(r,s)v,$$

$$w_{nm}(r,s) := J_n(r)U_n(r,s)v - J_m(r)U_m(r,s)v,$$

where
$$J_n(r) := (1 + \nu_n(r)^{-1}A(r))^{-1} = 1 - \nu_n(r)^{-1}A_n(r)$$
. Then by Lemma 3.3 (d) we have
$$\frac{1}{2}\frac{\partial}{\partial r} \|u_{nm}(r,s)\|^2$$
$$= -\operatorname{Re}(A_n(r)U_n(r,s)v - A_m(r)U_m(r,s)v, u_{nm}(r,s) - w_{nm}(r,s))$$
$$-\operatorname{Re}(A(r)w_{nm}(r,s), w_{nm}(r,s)).$$

Noting that

(3.7)
$$u_{nm}(r,s) - w_{nm}(r,s) = \nu_n(r)^{-1} A_n(r) U_n(r,s) v - \nu_m(r)^{-1} A_m(r) U_m(r,s) v,$$

we see that

$$-\operatorname{Re}(A_{n}(r)U_{n}(r,s)v - A_{m}(r)U_{m}(r,s)v, u_{nm}(r,s) - w_{nm}(r,s))$$

$$= (\nu_{n}(r)^{-1} + \nu_{m}(r)^{-1}) \operatorname{Re}(A_{n}(r)U_{n}(r,s)v, A_{m}(r)U_{m}(r,s)v)$$

$$-\nu_{n}(r)^{-1} ||A_{n}(r)U_{n}(r,s)v||^{2} - \nu_{m}(r)^{-1} ||A_{m}(r)U_{m}(r,s)v||^{2}.$$

On the other hand, it follows from condition $(I)_+$ that

$$-\operatorname{Re}(A(r)w_{nm}(r,s), w_{nm}(r,s)) \leq \alpha(r) \|w_{nm}(r,s)\|^{2} \leq \beta(r) \|w_{nm}(r,s)\|^{2}.$$

We see from (3.7) that $||w_{nm}(r,s)||^2$ is estimated as follows:

$$\frac{1}{2} \|w_{nm}(r,s)\|^{2} - \|u_{nm}(r,s)\|^{2}
\leq \|\nu_{n}(r)^{-1}A_{n}(r)U_{n}(r,s)v - \nu_{m}(r)^{-1}A_{m}(r)U_{m}(r,s)v\|^{2}
= \nu_{n}(r)^{-2} \|A_{n}(r)U_{n}(r,s)v\|^{2} + \nu_{m}(r)^{-2} \|A_{m}(r)U_{m}(r,s)v\|^{2}
- 2\nu_{n}(r)^{-1}\nu_{m}(r)^{-1} \operatorname{Re} (A_{n}(r)U_{n}(r,s)v, A_{m}(r)U_{m}(r,s)v).$$

Combining these estimates and using Lemma 3.4 (c), we have

$$\frac{1}{2} \frac{\partial}{\partial r} \left\| u_{nm}(r,s) \right\|^2 - 2\beta(r) \left\| u_{nm}(r,s) \right\|^2 \\
\leq \left| \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{m}} \right|^2 \gamma(r) \exp\left(4 \int_{s}^{r} \beta(\tau) d\tau\right) \left\| v \right\|_{Y}^2.$$

Integrating this inequality on [s,t], we obtain (3.6). Since Y is dense in X, we see from Lemma 3.4 (a) that the family $\{U(t,s); (t,s) \in \Delta\}$ in B(X) is defined: for $w \in X$,

$$U_n(\cdot,\cdot)w \to U(\cdot,\cdot)w$$
 in $C(\Delta;X)$ as $n \to \infty$

- (b) follows from Lemma 3.3 (b).
- (c) is a consequence of (a) and Lemma 3.4 (b).

Lemma 3.6. Let $\{U(t,s)\}$ be as in Lemma 3.5. Let $v \in Y$ and $(t,s) \in \Delta$. Then (a) $U(t,s)v \in D(A(t))$, and

$$\|A(t)U(t,s)v\| \leq \gamma(t) \exp \left[\int_s^t eta(r)dr
ight] \|v\|_Y \quad ext{ a.a. } t \in (s,T)$$

with

(3.8)
$$A(t)U(t,s)v = \underset{n\to\infty}{\text{w-lim}} A_n(t)U_n(t,s)v \quad \text{a.a. } t\in (s,T).$$

(b)
$$\int_{s}^{t} U(t,r)A(r)v \, dr = \operatorname{s-lim}_{n \to \infty} \int_{s}^{t} U_{n}(t,r)A_{n}(r)v \, dr \quad \text{in } X.$$

(c)
$$(\partial/\partial s)U(t,s)v = U(t,s)A(s)v$$
 a.a. $s \in (0,t)$.

Proof. (a) $A(\cdot)U(\cdot,s)v \in L^1(s,t;X)$ follows from condition (IV) and (3.5). By virtue of Lemma 2.6, (3.8) follows from Lemmas 3.4 (c) and 3.5 (c).

(b) For a.a. $r \in (s, t)$, it follows from Lemmas 3.1 (b), 3.4 (a) and 3.5 (a) that

$$U(t,r)A(r)v = \underset{n\to\infty}{\text{s-}\lim} U_n(t,r)A_n(r)v \text{ in } X.$$

On the other hand, Lemma 3.4 (a) and (3.3) yield that

$$||U_n(t,r)A_n(r)v|| \le 2\gamma(r) \exp\left(2\int_0^T \alpha(\tau) d\tau\right) ||v||_Y \in L^1(s,t).$$

Therefore we obtain the assertion by the Lebesgue convergence theorem.

(c) By Lemma 3.3 (e) we have

$$v - U_n(t,s)v = \int_s^t U_n(t,r)A_n(r)v\,dr, \quad v \in Y.$$

Letting $n \to \infty$, we see from (3.4) and (b) that

(3.9)
$$v - U(t,s)v = \int_{0}^{t} U(t,r)A(r)v \, dr, \quad v \in Y.$$

Since condition (IV) and Lemma 3.5 (a), $U(t,\cdot)A(\cdot)v \in L^1(0,t;X)$. Therefore (3.9) is strongly differentiable on a.a. $s \in (0,t)$ and we obtain the assertion.

Lemma 3.7. Let $\{U(t,s)\}$ be as in Lemma 3.5. Let $v \in Y$. Then (a) For each $s \in [0,T]$, $A(\cdot)U(\cdot,s)v$ is Bochner integrable on [s,T], with

(3.10)
$$U(t,s)v = v - \int_{s}^{t} A(r)U(r,s)v \, dr, \quad t \in [s,T],$$

and hence $U(\cdot, s)$ is absolutely continuous on [s, T]:

$$(3.11) ||U(t,s)v - U(t',s)v|| \le \left| \int_{t'}^{t} \gamma(r) \, dr \right| \exp \left[\int_{0}^{T} \beta(r) \, dr \right] ||v||_{Y}.$$

(b)
$$(\partial/\partial t)U(t,s)v = -A(t)U(t,s)v$$
, a.a. $t \in (s,T)$.

Proof. (a) It follows from Lemma 3.6 (a) that $A(\cdot)U(\cdot,s)v$ is Bochner integrable on [s,T]. Now Lemma 3.3 (d) implies that for each $w \in X$,

$$(U_n(t,s)v,w) = (v,w) - \int_s^t (A_n(r)U_n(r,s)v,w) dr.$$

Letting $n \to \infty$, we see from (3.4) and (3.8) that

$$(U(t,s)v,w) = (v,w) - \int_s^t (A(r)U(r,s)v,w) dr.$$

Thus we obtain (3.10) and (3.11).

(b) is a direct consequence of (3.10).

It is easy to prove the uniqueness of the evolution operator constructed above.

Lemma 3.8. Let $\{U(t,s)\}$ be as in Lemma 3.5. Suppose that $\{V(t,s)\}$ is another family in B(X) with the properties (i), (ii) and (v). Then $U(t,s) \equiv V(t,s)$ on Δ .

In fact, we see from Lemma 3.7 (b) that for $v \in Y$,

$$(\partial/\partial r)V(t,r)U(r,s)v=0\quad \text{a.a. }r\in(s,t).$$

Hence we obtain U(t,s)v = V(t,s)v. Since Y is dense in X, the assertion follows.

Lemma 3.9. Let $\{A(t)\}$ and S be as in Theorem 1.1. Assume that conditions (I) and (III) are satisfied, with the inclusion $D(S) \subset D(A(t))$. Let $\{S_{\epsilon}\}$ be the Yosida approximation of S. Then

$$|\operatorname{Re}(A(t)v, S_{\varepsilon}v)| \leq \beta(t)(v, S_{\varepsilon}v), \quad v \in D(A(t)), \quad \text{a.a. } t \in (0, T).$$

In particular, if $D(S^{1/2}) \subset D(A(t))$ (this is condition (II)), then

(3.12)
$$|\operatorname{Re}(A(t)v, S_{\varepsilon}v)| \leq \beta(t) ||S^{1/2}v||^2, \quad v \in D(S^{1/2}), \quad \text{a.a. } t \in (0, T).$$

The conclusion follows from Lemma 2.4 (this fact is first noted in [13]).

Lemma 3.10. Let $\{U(t,s)\}$ be as in Lemma 3.5. Let $v \in Y$. Then

- (a) $S^{1/2}U(t,s)v$ is weakly continuous on Δ .
- (a') $S^{1/4}U(t,s)v$ is strongly continuous on Δ .
- (b) $S^{1/2}U(t,s)v \to S^{1/2}v$ as $(t,s) \to (t_0,t_0)$.
- (c) For $t \in (0, T]$, $U(t, \cdot)v \in C([0, T]; Y)$.

Proof. (a) Let $\{S_{\varepsilon}\}$ be the Yosida approximation of S. Then for $v \in Y$, $S_{\varepsilon}^{1/2}U(t,s)v$ is continuous on Δ . Noting that $(1+\varepsilon S)^{-1/2}w \to w$ $(\varepsilon \downarrow 0)$, we see by (3.5) that

$$S^{1/2}U(t,s)v = \underset{\varepsilon\downarrow 0}{\operatorname{w-lim}}\, S_{\varepsilon}^{1/2}U(t,s)v,$$

where the convergence is uniform on Δ and hence the limit function is also weakly continuous on Δ .

- (a') is a direct consequence of Lemma 3.5 (a) and (3.5).
- (b) Let $t_0 \in [0, T]$. Then it suffices by (a) to show that

$$||S^{1/2}U(t,s)v|| \to ||S^{1/2}v||$$
 as $(t,s) \to (t_0,t_0)$.

We see again by (a) that

$$||S^{1/2}v|| \le \liminf_{(t,s)\to(t_0,t_0)} ||S^{1/2}U(t,s)v||.$$

On the other hand, it follows from (3.5) that

$$\limsup_{(t,s)\to(t_0,t_0)} \|S^{1/2}U(t,s)v\| \le \|S^{1/2}v\|.$$

(c) follows from (b) and (3.5).

Now we are in a position to prove (iii) and $U(\cdot,\cdot)\in W^{1,1}(\Delta;B(Y,X))$ of Theorem 1.1.

Lemma 3.11. Let $\{A(t)\}$ and S be as in Theorem 1.1. Assume that conditions (I)-(IV) are satisfied. Let $\{U(\cdot,\cdot)\}$ be as in Lemma 3.5. Then

- (a) For $v \in Y$ and $s \in [0, T]$, $U(\cdot, s)v \in C([s, T]; Y)$.
- (b) $U(\cdot, \cdot)$ is strongly continuous on Δ to B(Y).
- (c) For $v \in Y$, $U(\cdot, \cdot)v \in W^{1,1}(\Delta; X)$.

Proof. (a) Lemmas 3.5 (a) and 3.7 (b) yield that $U(\cdot, s)v \in W^{1,1}(s, T; X) \subset C([s, T]; X)$. Thus it suffices to show that

(3.13)
$$S^{1/2}U(\cdot,s)v \in C([s,T];X).$$

Let $t_0 \in [s, T]$. Then we have

$$||S^{1/2}U(t,s)v - S^{1/2}U(t_0,s)v||^2 = ||S^{1/2}U(t,s)v||^2 - ||S^{1/2}U(t_0,s)v||^2 - 2\operatorname{Re}(S^{1/2}U(t,s)v - S^{1/2}U(t_0,s)v, S^{1/2}U(t_0,s)v).$$

Since $S^{1/2}U(t,s)v$ is weakly continuous on Δ (see Lemma 3.10 (a)), we obtain (3.13) if we show that

(3.14)
$$||S^{1/2}U(t,s)v||^2 \to ||S^{1/2}U(t_0,s)v||^2$$
 as $t \to t_0$.

To this end we can use (3.2). Integrating (3.2) on $[t_0, t]$, we have

$$\left\| S_{\varepsilon}^{1/2} U_n(t,s) v \right\|^2 - \left\| S_{\varepsilon}^{1/2} U_n(t_0,s) v \right\|^2 = -2 \int_{t_0}^t \text{Re} \left(A_n(r) U_n(r,s) v, S_{\varepsilon} U_n(r,s) v \right) dr.$$

Letting $n \to \infty$, we see from (3.4), (3.8) and Lemma 3.4 (c) that

$$\left\|S_{\varepsilon}^{1/2}U(t,s)v\right\|^{2}-\left\|S_{\varepsilon}^{1/2}U(t_{0},s)v\right\|^{2}=-2\int_{t_{0}}^{t}\operatorname{Re}(A(r)U(r,s)v,S_{\varepsilon}U(r,s)v)\,dr.$$

It follows from (3.12) and (3.5) that

$$\begin{split} \left| \left\| S_{\varepsilon}^{1/2} U(t,s) v \right\|^{2} - \left\| S_{\varepsilon}^{1/2} U(t_{0},s) v \right\|^{2} \right| &\leq 2 \left| \int_{t_{0}}^{t} \beta(r) \exp \left[2 \int_{s}^{r} \beta(r) dr \right] dr \right| \|v\|_{Y}^{2} \\ &= \left| \exp \left[2 \int_{s}^{t} \beta(r) dr \right] - \exp \left[2 \int_{s}^{t_{0}} \beta(r) dr \right] \right| \|v\|_{Y}^{2} \,. \end{split}$$

Noting that $(1 + \varepsilon S)^{-1}w \to w \ (\varepsilon \downarrow 0)$ for every $w \in X$, we have

$$\left| \left\| S^{1/2} U(t,s) v \right\|^2 - \left\| S^{1/2} U(t_0,s) v \right\|^2 \right| \le \left| \exp \left[2 \int_s^t \beta(r) \, dr \right] - \exp \left[2 \int_s^{t_0} \beta(r) \, dr \right] \right| \|v\|_Y^2.$$

Thus we obtain (3.14).

(b) We follow the idea in Kato [4, Remark 5.4]. First let $t_0 = s_0$. Then the assertion follows from Lemma 3.10 (b). Next let $s_0 < t_0$. Set $a := 2^{-1}(s_0 + t_0)$. Then s < a < t for $(t,s) \in B((t_0,s_0), 2^{-1}(t_0-s_0)) \cap \Delta$. Thus we have

$$||U(t,s)v - U(t_0,s_0)v||_Y \le ||U(t,a)||_{B(Y)} ||U(a,s)v - U(a,s_0)v||_Y + ||(U(t,a) - U(t_0,a))U(a,s_0)v||_Y.$$

Therefore the assertion follows from (a), (3.5) and Lemma 3.10 (c).

(c) $U(\cdot,\cdot)v \in C(\Delta;X)$ is a direct consequence of (b). It follows from Lemma 3.5 (c) and 3.7 (b) that

$$\begin{split} \iint_{\Delta} \|(\partial/\partial t)U(t,s)v\| \ dtds &= \iint_{\Delta} \|A(t)U(t,s)v\| \ dtds \\ &\leq \iint_{\Delta} \gamma(t) \exp\Bigl[\int_{s}^{t} \beta(r) \, dr\Bigr] \|v\|_{Y} \ dtds \\ &\leq T \, \|\gamma\|_{L^{1}(0,T)} \exp\Bigl[\int_{0}^{T} \beta(r) \, dr\Bigr] \|v\|_{Y} \, . \end{split}$$

Similarly by Lemma 3.5 (a) and 3.6 (c) we have

$$\iint_{\Delta} \|(\partial/\partial s)U(t,s)v\| \ dtds \leq T \|\gamma\|_{L^{1}(0,T)} \exp\left[\int_{0}^{T} \alpha(r) \ dr\right] \|v\|_{Y}.$$

Therefore the assertion follows.

4. Inhomogeneous equations

In this section we prove Theorem 1.2. Let A(t) and S be as in Theorem 1.1. First assume that condition $(I)_+, (II), (III)_+$ and (IV) are satisfied. Let $\{U(t,s); (t,s) \in \Delta\}$ be the evolution operator with the properties stated in Lemmas 3.5–3.7. Then for $u_0 \in Y$,

$$(4.1) (d/dt)U(t,0)u_0 + A(t)U(t,0)u_0 = 0 a.a. t \in (0,T).$$

Let $f(\cdot) \in L^1(0,T;Y)$ and put

(4.2)
$$v(t) := \int_0^t U(t, s) f(s) \, ds.$$

Then clearly $v(\cdot) \in L^{\infty}(0,T;X)$. We want to show that

(4.3)
$$(d/dt)v(t) + A(t)v(t) = f(t) \text{ a.a. } t \in (0, T).$$

Lemma 4.1. Let $v(\cdot)$ be as above and $t \in [0,T]$. Then

(a)
$$v(\cdot) \in L^{\infty}(0,T;Y)$$
, with $||v(t)||_{Y} \leq \exp\left[\int_{0}^{T} \beta(r)dr\right] ||f(\cdot)||_{L^{1}(0,T;Y)}$.

(b) $S^{1/2}v(\cdot)$ is weakly continuous on [0,T].

$$\text{(c) } v(t) \in D(A(t)) \ \ and \ \|A(\cdot)v(\cdot)\|_{L^1(0,T;X)} \leq \|\gamma\|_{L^1(0,T)} \, \|v(\cdot)\|_{L^\infty(0,T;Y)}.$$

Proof. (a) Let $\{S_{\varepsilon}\}$ be the Yosida approximation of S. Then we have

$$S_{\varepsilon}^{1/2}v(t) = \int_0^t S_{\varepsilon}^{1/2}U(t,s)f(s)\,ds.$$

Since $||S_{\varepsilon}^{1/2}w|| \leq ||S^{1/2}w|| \leq ||w||_{Y}$, it follows from (3.5) that

$$\left\| S_{\epsilon}^{1/2} v(t) \right\| \leq \int_{0}^{t} \left\| U(t,s) \right\|_{B(Y)} \left\| f(s) \right\|_{Y} \, ds \leq \exp \left[\int_{0}^{T} \beta(r) dr \right] \left\| f(\cdot) \right\|_{L^{1}(0,T;Y)}$$

Hence we see that $v(t) \in Y$ and

(4.4)
$$S^{1/2}v(t) = \underset{\epsilon \downarrow 0}{\text{w-}\lim} S_{\epsilon}^{1/2}v(t), \quad t \in [0, T].$$

Thus the assertion follows.

- (b) The convergence in (4.4) is uniform on [0,T] and therefore $S^{1/2}v(\cdot)$ is weakly continuous on [0,T].
- (c) follows from (a) and the condition (II).

Next let $\{U_n(t,s)\}$ be as in Theorem 3.2 and put

$$v_n(t) := \int_0^t U_n(t,s) f(s) \, ds.$$

Then $v_n(\cdot) \in W^{1,1}(0,T;X)$ and

(4.5)
$$(d/dt)v_n(t) = -A_n(t)v_n(t) + f(t) \text{ a.a. } t \in (0, T).$$

Now we can prove (4.3).

Lemma 4.2. Let $v(\cdot)$ be as above. Then

(a)
$$v_n(\cdot) \to v(\cdot)$$
 in $C([0,T];X)$ as $n \to \infty$.

(b)
$$A(t)v(t) = \underset{n\to\infty}{\text{w-lim}} A_n(t)v_n(t)$$
 a.a. $t \in (0,T)$.

(c) $A(\cdot)v(\cdot)$ is Bochner integrable on [0,T] and

(4.6)
$$v(t) = -\int_0^t A(s)v(s) \, ds + \int_0^t f(s) \, ds.$$

(d)
$$(d/dt)v(t) = -A(t)v(t) + f(t)$$
 a.a. $t \in (0, T)$.

Proof. (a) follows from (3.4).

- (b) (a) and Lemma 4.1 (c) implies by Lemma 2.6 that $A(\cdot)v(\cdot)$ is the weak limit of $A_n(\cdot)v_n(\cdot)$ as $n\to\infty$.
- (c) It follows from (b) that $A(\cdot)v(\cdot)$ is strongly measurable. Furthermore, by Lemma 4.1
- (c) we have $A(\cdot)v(\cdot) \in L^1(0,T;X)$. Therefore $A(\cdot)v(\cdot)$ is Bochner integrable on [0,T]. On the other hand, we see from (4.5) that for each $w \in X$,

$$(v_n(t), w) = -\int_0^t (A_n(s)v_n(s), w) ds + \int_0^t (f(s), w) ds.$$

Letting $n \to \infty$, we have

$$(v(t), w) = -\int_0^t (A(s)v(s), w) ds + \int_0^t (f(s), w) ds.$$

Hence we obtain (4.6).

(d) Strong differentiability of v(t) is a consequence of (4.6).

The next lemma guarantees that the strong solution of (E) is expressed by the variation of constant formula.

Lemma 4.3. Let $\{U(t,s)\}$ be the evolution operator with properties (i), (ii) and (v). Let $u(\cdot)$ be a strong solution of (E) with $u(0) = u_0 \in Y$. If $f \in L^1(0,T;X)$ then

(4.7)
$$u(t) = U(t,0)u_0 + \int_0^t U(t,s)f(s) ds.$$

In fact, it suffices to integrate the identity:

$$(\partial/\partial s)U(t,s)u(s) = U(t,s)f(s)$$
 a.a. $s \in (0,t)$.

Consequently, it follows from (4.1) and (4.3) that if $f(\cdot) \in L^1(0,T;Y)$ then $u(\cdot)$ given by (4.7) is a unique solution of (E) with $u(0) = u_0 \in Y$.

Now we are in a position to prove Theorem 1.2.

Lemma 4.4. Let $\{A(t)\}$ and S be as in Theorem 1.1. Assume that conditions (I)–(IV) are satisfied. Let $\{U(t,s)\}$ be the evolution operator on X generated by $\{A(t)\}$. For $f(\cdot) \in L^1(0,T;Y)$ let $v(\cdot)$ be as in (4.2). Then

$$v(\cdot) \in W^{1,1}(0,T;X) \cap C([0,T];Y).$$

Proof. It follows from Lemma 4.2 (d) that $v \in W^{1,1}(0,T;X)$. Hence it suffices to show that

$$(4.8) v(\cdot) \in C([0,T];Y).$$

This is shown by the similar way as in Lemma 3.11 (a). Let $\{S_{\varepsilon}\}$ be the Yosida approximation of S. Then it follows from (4.5) that

$$(d/ds) \left\| S_{\varepsilon}^{1/2} v_n(s) \right\|^2 = 2 \operatorname{Re} \left((d/ds) v_n(s), S_{\varepsilon} v_n(s) \right)$$
$$= 2 \operatorname{Re} \left(-A_n(s) v_n(s) + f(s), S_{\varepsilon} v_n(s) \right) \quad \text{a.a. } s \in (0, T).$$

Integrating this equality from $s = t_0$ to s = t, we have

$$||S_{\epsilon}^{1/2}v_{n}(t)||^{2} - ||S_{\epsilon}^{1/2}v_{n}(t_{0})||^{2}$$

$$= -2 \int_{t_{0}}^{t} \operatorname{Re}(A_{n}(s)v_{n}(s), S_{\epsilon}v_{n}(s)) ds + 2 \int_{t_{0}}^{t} \operatorname{Re}(f(s), S_{\epsilon}v_{n}(s)) ds.$$

Letting $n \to \infty$, we see from Lemma 4.2 (a) and (b) that

$$\begin{aligned} & \left\| S_{\epsilon}^{1/2} v(t) \right\|^2 - \left\| S_{\epsilon}^{1/2} v(t_0) \right\|^2 \\ &= -2 \int_{t_0}^t \operatorname{Re} \left(A(s) v(s), S_{\epsilon} v(s) \right) ds + 2 \int_{t_0}^t \operatorname{Re} \left(f(s), S_{\epsilon} v(s) \right) ds. \end{aligned}$$

It follows from (3.12) and Lemma 4.1 (a) that

$$\begin{split} & \left| \left\| S_{\varepsilon}^{1/2} v(t) \right\|^{2} - \left\| S_{\varepsilon}^{1/2} v(t_{0}) \right\|^{2} \right| \\ & \leq 2 \left| \int_{t_{0}}^{t} \beta(t) \left\| S^{1/2} v(s) \right\|^{2} ds \right| + 2 \left| \int_{t_{0}}^{t} \left\| S^{1/2} f(s) \right\| \cdot \left\| S^{1/2} v(s) \right\| ds \right| \\ & \leq 2 \left\| \beta \right\|_{L^{1}(t_{0},t)} \left\| v(\cdot) \right\|_{L^{\infty}(0,T;Y)}^{2} + 2 \left\| f(\cdot) \right\|_{L^{1}(t_{0},t;Y)} \left\| v(\cdot) \right\|_{L^{\infty}(0,T;Y)}. \end{split}$$

Thus we have

(4.9)
$$||S_{\epsilon}^{1/2}v(t)||^2 \to ||S_{\epsilon}^{1/2}v(t_0)||^2 \quad (t \to t_0).$$

By both Lemma 4.1 (b) and (4.9) we obtain (4.8).

In view of Lemma 4.2 (d) and Lemma 3.11 this completes the proof of Theorem 1.2.

5. Preliminaries for applications

Put $\langle x \rangle := (1 + |x|^2)^{1/2}$. In this section we consider the selfadjointness of

$$(5.1) S := (H_D + V)^2 + \langle x \rangle^2 I \text{for} u \in D(S) := \{ u \in L^2(\mathbb{R}^3)^4; Su \in L^2(\mathbb{R}^3)^4 \}.$$

Here H_D is the free Dirac operator

$$H_D:=lpha\cdot p+meta=\sum_{i=1}^3lpha_ji^{-1}rac{\partial}{\partial x_j}+meta,$$

acting in the Hilbert space $L^2(\mathbb{R}^3)^4$; $\alpha=(\alpha_1,\alpha_2,\alpha_3)$ and $\beta=\alpha_4$ are the usual 4×4 Hermitian matrices satisfying the commutation relations

(5.2)
$$\alpha_j \alpha_k + \alpha_k \alpha_j = 2\delta_{ik} I \quad (j, k = 1, 2, 3, 4),$$

and m is a positive constant (cf. Fattorini [2]).

The potential V is an operator of multiplication with a 4×4 Hermitian matrix-valued, measurable function V(x) defined on \mathbb{R}^3 . It is assumed that

$$(5.3) |V(x)| \le a|x|^{-1} + b,$$

where |V(x)| denotes the operator norm of $V(x): \mathbb{C}^4 \to \mathbb{C}^4$ and a, b are nonnegative constants with a < 1/2.

First, we consider the selfadjointness of $H_D + V$.

Theorem 5.1 (Kato-Rellich theorem). Let A be a selfadjoint operator in a Hilbert space H and B a symmetric operator in H, with $D(A) \subset D(B)$. Assume that there exist two constants $a_0, b_0 \geq 0$ such that for all $u \in D(A)$,

$$||Bu|| \le a_0||u|| + b_0||Au||.$$

If $b_0 < 1$ then A + B is also selfadjoint on D(A).

For a proof see [7, Theorem V.4.3].

Lemma 5.2. Let H_D and V be as above. Then $H_D + V$ is selfadjoint on $H^1(\mathbb{R}^3)^4$.

Proof. Let $u \in H^1(\mathbb{R}^3)^4$. H_D is selfadjoint and V is symmetric. It follows from (5.3) and the Hardy inequality that

$$||Vu|| \le a||x|^{-1}u|| + b||u|| \le 2a||\nabla u|| + b||u||.$$

On the other hand, we see from (5.2) that $||H_D u||^2 = ||\nabla u||^2 + m^2 ||u||^2$. Therefore, V is H_D -bounded, with H_D -bound 2a < 1. Now the assertion follows from Theorem 5.1. \square

The selfadjointness of $(H_D + V)^2$ is clear. Let us consider the selfadjointness of S. Clearly, S is symmetric. Thus we have only to consider the m-accretivity of S.

Lemma 5.3 ([10]). Let A and B be linear m-accretive operators in a Hilbert space H. Let D be a linear manifold invariant under $(1 + n^{-1}A)^{-1}$ for $n \in \mathbb{N}$. Assume that D is a core of B and there exist two constants $a, b \geq 0$ such that for all $u \in D_0 := (1 + A)^{-1}D$,

$$0 \le \text{Re}(Au, Bu) + a \|u\|^2 + b \|Au\|^2$$
.

If b < 1 then A + B is also m-accretive in H.

Lemma 5.4. Let H_D and V be as above. Then S is selfadjoint on D(S).

Proof. Let $u \in \mathcal{S}(\mathbb{R}^3)^4$, where $\mathcal{S}(\mathbb{R}^3)$ is the Schwartz space. Then we have

$$\operatorname{Re}((H_D + V)^2 u, \langle x \rangle^2 u) = \operatorname{Re}((H_D + V)u, (H_D + V)(\langle x \rangle^2 u))$$

$$= \|\langle x \rangle (H_D + V)u\|^2 - 2\operatorname{Im}((H_D + V)u, \alpha \cdot xu)$$

$$\geq \|\langle x \rangle (H_D + V)u\|^2 - 2\|\langle x \rangle (H_D + V)u\| \cdot \|u\|$$

$$\geq -\|u\|^2.$$

The assertion follows from Theorem 5.3.

6. Applications to the Dirac equation

Let H_D and V be as in Section 5. In this section we consider, as an application of Theorem 1.1, the Cauchy problem for the Dirac equation:

(DE)
$$\begin{cases} i\frac{d}{dt}u = H(t)u + f(t) & \text{for } t \in (0,T), \\ u(0) = u_0 \end{cases}$$

in the Hilbert Space $X = L^2(\mathbb{R}^3)^4$, where $u_0 \in Y := H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4$.

First we define H(t) precisely. Let

$$\mathcal{H}(t) := H_D + V + q(t)I$$

with domain $D(\mathcal{H}(t)) = C_0^{\infty}(\mathbb{R}^3)^4$. q(t)I is a maximal multiplication operator by q(x,t), where $q(x,t): \mathbb{R}^3 \times [0,\infty) \to \mathbb{R}$ is the time-dependent measurable real-valued potential. Furthermore, we impose q(t) satisfying following conditions:

(q1)
$$q(\cdot) \in L^1(0,T;\langle x \rangle L^{\infty}(\mathbb{R}^3)),$$

$$|\nabla q(\cdot)| \in L^1(0,T;L^{\infty}(\mathbb{R}^3)),$$

where $\langle x \rangle L^{\infty}(\mathbb{R}^3) := \{ \varphi \in L^1_{\text{loc}}(\mathbb{R}^3); \langle x \rangle^{-1} \varphi \in L^{\infty}(\mathbb{R}^3) \}.$

Since $\mathcal{H}(t)$ is symmetric, $\mathcal{H}(t)$ is closable. Then we take as H(t) the closure $\widetilde{\mathcal{H}}(t)$ of $\mathcal{H}(t)$, i.e., $H(t) = \widetilde{\mathcal{H}}(t)$.

Let S be as in (5.1). Then S is selfadjoint on D(S), with $S \ge 1$. Thus $Y = D(S^{1/2})$ is regarded as a Hilbert space, embedded continuously and densely in $L^2(\mathbb{R}^3)^4$, with inner product

$$(u,v)_{D(S^{1/2})} = (S^{1/2}u, S^{1/2}v), \quad u, v \in D(S^{1/2}).$$

Lemma 6.1. Let S be as above. Then $D(S^{1/2}) = H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4$ and there exist positive constants c_1 , c_2 such that

$$(6.1) c_1 ||S^{1/2}u||^2 \le ||u||^2 + ||\nabla u||^2 + ||x|u||^2 \le c_2 ||S^{1/2}u||^2, \quad u \in D(S^{1/2}).$$

Proof. Let $u \in D(S)$. Then we have

$$||S^{1/2}u||^2 = (Su, u)$$

$$= ((H_D + V)^2 u + u + |x|^2 u, u)$$

$$= ||u||^2 + ||(H_D + V)u||^2 + |||x|u||^2.$$

On the other hand, there exist positive constants c_1' , c_2' such that

(6.2)
$$c_1'(\|u\| + \|\nabla u\|) \le \|u\| + \|(H_D + V)u\| \le c_2'(\|u\| + \|\nabla u\|).$$

Since
$$D(S)$$
 is a core for $S^{1/2}$, (6.1) holds for $u \in D(S^{1/2}) = H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4$.

Now we shall verify conditions (I)-(IV) of Theorem 1.1.

Lemma 6.2. Let A(t) = iH(t) and S be as above. Assume that (q1), (q2) are satisfied. Then for each T > 0

- (I) $Re(A(t)v, v) = 0, v \in D(A(t)), \text{ a.a. } t \in (0, T).$
- (II) $Y = H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4 \subset D(A(t))$, a.a. $t \in (0, T)$.
- (III) There exists $\beta \in L^1(0,T)$, $\beta \geq 0$ such that

$$|\operatorname{Re}(A(t)u, Su)| \le \beta(t) ||S^{1/2}u||^2, u \in D(S), \text{ a.a. } t \in (0, T).$$

(IV)
$$A(\cdot) \in L^1_*(0,T;B(H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4,L^2(\mathbb{R}^3)^4)).$$

Proof. Noting that $\operatorname{Re}(A(t)u, u) = -\operatorname{Im}(H(t)u, u)$, the assertion follows from symmetry of H(t). Therefore, it is sufficient to show that there exist $\beta, \gamma \in L^1(0,T)$ such that

(6.3)
$$\|H(t)u\| \le \gamma(t) \|S^{1/2}u\|, \ u \in H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4, \quad \text{ a.a. } t \in (0,T).$$

(6.4)
$$|\operatorname{Im}(H(t)u, Su)| \le \beta(t) ||S^{1/2}u||^2, u \in D(S),$$
 a.a. $t \in (0, T).$

First, we verify (6.3). It follows from condition (q1) that

$$||H(t)u|| \le ||(H_D + V)u|| + ||q(t)u||$$

$$\le ||(H_D + V)u|| + \gamma_q(t)||\langle x \rangle u||,$$

where $\gamma_q \in L^1(0,T)$ depends on q. Thus we obtain (6.3).

Next, we verify (6.4). By integration by parts we have

$$\operatorname{Im}(H(t), Su) = \operatorname{Im}((H_D + V)u, |x|^2 u) + \operatorname{Im}(q(t)u, (H_D + V)^2 u)$$
$$= \operatorname{Re}((\alpha \cdot x)u, u) - \operatorname{Re}((\alpha \cdot \nabla q(t))u, (H_D + V)u).$$

Hence it follows from the Cauchy-Schwarz inequality and condition (q2) that

$$|\operatorname{Im}(H(t), Su)| \leq |||x|u|| \cdot ||u|| + |||\nabla q(t)|u|| \cdot ||(H_D + V)u||$$

$$\leq |||x|u|| \cdot ||u|| + \beta_q(t)||u|| \cdot ||(H_D + V)u||,$$

where $\beta_q \in L^1(0,T)$ depends on q. Therefore we obtain (6.4).

Assume further that

(f1)
$$f \in L^1(0, T; H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4).$$

Then we can apply Theorems 1.1 and 1.2 to conclude that the Dirac equation (DE) admits a unique solution $u \in W^{1,1}(0,T;L^2(\mathbb{R}^3)^4) \cap C(0,T;H^1(\mathbb{R}^3)^4 \cap H_1(\mathbb{R}^3)^4)$.

References

- [1] H. Brézis, "Analyse Fonctionnelle" Théorie et Applications, Masson, Paris, 1983.
- [2] H. O. Fattorini, "The Cauchy problem", Encyclopedia Math. Appl., vol. 18, Addison-Wesley, Reading, MA, 1983; Cambridge Univ. Press, New York, 1984.
- [3] S. Ishii, Linear evolution equations du/dt + A(t)u = 0: a case where A(t) is strongly uniform-measurable, J. Math. Soc. Japan 34 (1982), 413-424.
- [4] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sec. I. 17 (1970), 241–258.
- [5] T. Kato, Linear evolution equations of "hyperbolic" type, II, J. Math. Soc. Japan 25 (1973), 648-666.
- [6] T. Kato, Singular perturbation and semigroup theory, Lecture Notes in Math. **565**, Springer-Verlag, Berlin and New York, 1976, pp.104–112.
- [7] T. Kato, "Perturbation Theory for Linear Operators", 2nd ed., Berlin-Heidelberg-New York, Springer, 1976.
- [8] T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems", Fermian Lectures, Pisa, 1985.
- [9] K. Mori, Linear evolution equations of hyperbolic type, with applications to Schrödinger equations, master's thesis, 1997.
- [10] N. Okazawa, Remarks on linear m-accretive operators in a Hilbert space, J. Math. Soc. Japan 27 (1975), 160-165.
- [11] N. Okazawa, Singular perturbations of m-accretive operators, J. Math. Soc. Japan 32 (1980), 19-44.
- [12] N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 8 (1998), 399-423.
- [13] N. Okazawa and A. Unai, Singular perturbation approach to evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 3 (1993/94), 267-283.
- [14] N. Okazawa and K. Yoshii, in preparation.
- [15] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Applied Math. Sci., vol.44, Springer-Verlag, Berlin and New York, 1983.
- [16] N. Tanaka, Nonautonomous abstract Cauchy problems for strongly measurable families, Math. Nachr. 274/275 (2004), 130-153.