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1 Introduction

In study of duality under generalized convexity, Mond and Weir [5] pro-
posed a number of different duals for nonlinear programming problems with
nonnegative variables and established duality theorems under appropriate
pseudo-convexity /quasi-convexity assumptions. Taking motivation from Bazaraa
and Goode [1] and Kuk and Kim (3], Nanda and Das [6] attempted to ex-
tend the results of Mond and Weir [5] to cone domains with appropriate
pseudo-invexity and quasi-invexity assumptions on objective and constraint
functions. However, certain shortcomings were pointed out in the work of
Nanda and Das [6] and appropriate modifications were suggested for study-
ing duality under pseudo-invexity assumptions in Chandra and Abha [2].
Resently, Yang et al. [7] established various converse duality results for non-
linear programming with cone constraints and its four dual models introduced
by Chandra and Abha [2].

In this paper, we construct nondifferentiable multiobjective dual prob-
lems with cone constraints over arbitrary closed convex cones, which are
Mond-Weir type and Wolfe type. And we establish weak, strong duality the-

orems for a weakly efficient solution by using suitable generalized invexity
conditions.
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2 Preliminaries

Let R"™ be the n-dimensional Euclidean space and let R? be its non-negative
orthant. The following convention for inequalities will be used in this talk.
If z,u € R"®, then

T<u &= u—x € ntRY ;

rsu < u—x€RY;

z<u <> u—zeR?\{0};

z £ u is the negation of z < u .

Definition 2.1 A nonempty set C in R" is said to be a cone with vertex
zero, if x € C implies that Ax € C for all A\ 2 0. If, in addition, C is convexz,
then C is called a convezx cone.

Definition 2.2 The polar cone C* of C is defined by

C*={z€eR* | zT2<0 forall z€C}.

Definition 2.3 Let S C R" be open and f : S — R be a differentiable
function.

(1) The function f is said to be invex at u € S, if there exists a function
n:S xS — R"™ such that

f(x) = fu) 2 n(z,w)"V f(u).

(2) The function f is said to be pseudoinver at u € S, if there erists a
function n: § x § — R" such that ‘

n(e,w)TVF(u) 2 0= f(z) — f(u) 2 0.
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(8) The function f is said to be quasiinvex at u € S, if there exists a function
n:S xS — R" such that

f(@) = f(u) £0=n(z,u)"VF(u) <0.

Definition 2.4 [/] The support function s(z|B), being conver and every-
where finite, has a subdifferential, that is, there exists z such that

s(y|B) > s(z|B) + 2¥(y — z) for all y € B.
FEquivalently,
2Tz = s(z|B).
The subdifferential of s(z|B) is given by
ds(z|B) := {z € B : 27z = s(z|B)}.
For any set S C R", the normal cone to S at a point x € S is defined by
Ns(z):={y € R"* : yT(2 —x) <0 for all z € S}.

It is readily verified that for a compact conver set B, y is in Ng(z) if and

only if s(y|B) = z%y, or equivalently, x is in the subdifferential of s at y.
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3 Mond-Weir Type Duality

We consider the following multiobjective programming problem:

(MP) Minimize  f(z) + s(z|D)
= (fi(x) + 25wy, -+, fulz) + " wy)
subject to —g(z) € C3, z € Cy,

and its Mond Weir type dual programming problem (MWD):
(MWD)

Maximize f(u)+ uTw

subject to AT[V f(u) + w] = VyTg(u), (1)
9(u) € C3, (2)
w, € Dy, i =1,--- ,k,
y€Cy A>0, MNe=1,

where .

(1)f : S CR"® — RF and g : R® — R™ are differentiable functions,

(#)Cy and C; are closed convex cones in R™ and R™ with nonempty
interiors, respectively, |

(#13)Cy and C; are polar cones of C; and Cs, respectively,

(iv)e = (1,---,1)" is vector in R,

(v)wi(i = 1,--- , k) is vector in R® and D;(s = 1,--- , k) is compact
convex set in R™, respectively,

(wi)uTw = (uTwy, -+, uTwy)T.
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Now we establish the duality theorems of (MP) and (MWD).

Theorem 3.1 (Weak Duality) Let z and (u,y, A, w) be feasible solutions
of (MP) and (MWD), respectively. Assume that

(@)fi(-) + ()Twi,i = 1,--- ,k, is inver at u and —yTg(-) is inver at u or

(WNT[f () + (-)Tw] is pseudoinvez at u and —yTg(-) is quasiinver at u.
Then

f(@) + s(@|D) £ f(u) +uTw.
Proof. Assume to the contrary that
f(z) + s(z|D) < f(u) + uTw.
Since A > 0, we have
XT[f(2) + s(z|D)] < NF[f () + uTw]. (3)

(a) From the assumption (a), we get

N [f (@) + 2Tw) = AT [ (u) + uTw] 2 n(z, w) N (VF(u) +w)] (4)
and

—yTg(x) + yTg(u) = —n(z,u)"Vy g(u). (5)

Adding (4) and (5), we obtain

AT[f(x) + zTw] — yTg(z) — AT[f(w) + uTw] + y g(u)
= n(z, u) AT (V f(u) + w) — Vy g(u)].

Also, by —yTg(z) £ 0,4 g(u) £ 0 and the dual constraint (1), it follows that

N [f(z) + 2"w] — AT[f(u) + u"w] 2 0.
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Using the fact that s(z|D) 2 zTw, the above inequality becomes
N [f(@) + s(z|D)] = AT[f (w) + wTw] 2 0,
which contradicts (3). Hence,
f(z) + s(z|D) £ f(u) + uTw.
(b) From the assumption (b), (3) implies that
n(@, u)" N (V£(u) +w)] <0.
From the dual constraint (1), it yields
n(z, w)TVyTg(u) < 0.
By the quasiinvexity of —y%g(-), the above inequality becomes
~-yTg(z) > —yTg(u). (6)
Since —yTg(z) £ 0 and yTg(u) < 0, we get —yTg(z) < —yTg(u), which
contradicts (6). Thus,
f(z) + s(z|D) £ f(u) + uvTw.
O

By using the necessary optimality condition due to Bazaraa and Goode
[1], we can obtain the following lemma.

Lemma 3.1 If7 is a weakly efficient solution of (MP) at which constraint
qualification be satisfied. Then there exist W; € Di(i=1,---,k),A>0 and
¥ € Cy with (A, %) # 0 such that

N (VF@)+0) - FVg@|T(@—-7) 20, foral z€C,
7 9(T) =0,

w; € D;, s(ZT\D;) =7 w;, i =1, ,k.
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Theorem 3.2 (Strong Duality) IfT is a weakly efficient solution of (MP)
at which constraint qualification be satisfied. Then there ezist X > 0, 7 € C;
and W; € D;(i = 1,--- k) such that (T,, A, W) is feasible for (MWD) and
the corresponding values of (MP) and (MWD) are equal. If the assumption
of Theorem 8.1 are satisfied, then (T, 7, \, W) is weakly efficient for (MWD).

Proof. Since T is a weakly efficient solution of (MP), then there exist
w; € Dyyi=1,--- ,k, A\>0and 7 € C, with (A,7) # 0 such that

(V@) +w) - F V@) (z—T) 20, forall z€Cy, (7)
7 9(Z) = 0, (8)
w; € Dy, S(TID;) = fTw,-, i1=1,---,k. (9)

Since z € C;, T € C; and C; is a closed convex cone, we have x + T € C}
and thus the inequality (7) implies

[XT(Vf(?E) +w) -7 Vg(E)Tz 20, forall zeCh,

ie.,

N (Vf(Z) +w) — 7T Vg(@) = 0.

And (8) implies 37g(Z) £ 0, then g(T) € C3. Taking w; = w; € D;,t =
1,--- ,k, we find that (Z,7, \,w) is feasible for (MWD) and correspond-
ing values of (MP) and (MWD) are equal, by (9). If the assumptions of

Theorem 3.1 are satisfied, then (Z,7, A, W) is a weakly efficient solution of
(MWD). O
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4 Wolfe Type Duality

We propose the following Wolfe Type multiobjective dual problem to the
primal problem (MP):

(WD)
Maximize  f(u)+ wfw— yTg(u)e
subject to  AT[Vf(u) + w] = VyTg(u), (10)
W; ED;‘_, t=1,---,k,
y€Cy A2>0, /\T6=1,
where

(1)f : SCR™ — R* and g : R* — R™ are differentiable functions,

(#2)Cy and C; are closed convex cones in R” and R™ with nonempty
interiors, respectively,

(¢92)CY and C5 are polar cones of C; and Cs,, respectively,

(iv)e = (1,--- , 1) is vector in R¥, |

(v)wi(i =1,--- , k) is vector in R™ and D;(i = 1,--- , k) is compact
convex set in R", respectively,

(vi)uTw = (uTwy, -, uTwe)T.

Now we establish the duality theorems of (MP) and (WD).
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Theorem 4.1 (Weak Duality) Let  and (u,y, A, w) be feasible solutions
of (MP) and (WD), respectively. Assume that

(@)fi() + () Twi,i = 1,--+ ,k, is invez at u and —yTg() is inver at u or
(ONT[F(-) + (-)Tw] — yTg(-) is pseudoinver at u.
Then

f@) + s(z|D) £ f(u) +uTw -y g(u)e.
Proof. Assume to the contrary that
F(@) + s(@|D) < f(u) + wTw — yTg(w)e.
Since A > 0, we have |
N [f(z) + s(z|D)] < AT[f(u) +uvTw — yTg(u)e]. (11)
(a) By the assumption (a), we obtain

N[f(z) + 2Tw] — NT[f (u) + uTw] 2 nz, u) [N (V£ () + w)]
and

—yTg(z) + yTg(u) 2 —n(z, v)TVy g(u).

So, we get

A f(2) + zTw] — yTg(z) — AT[f (u) + vFw] + y" g(u)
2 n(z, w)T N (V f(u) +w) — VyTg(u)].

Also, by —yTg(z) £ 0 and the dual constraint (10), it follows that
M (f(@) + 2"w] = NT[f(u) +u"w] + y"g(w) 2 0.
Using the fact that s(z|D) = 27w, the above inequality becomes

X [f(z) + s(z|D)] = AT[f(u) + vTw] +y"g(u) 20,
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which contradicts (11). Hence,
f(@) + 5(z|D) £ f(u) +u"w - yTg(w)e.
(b) Since —yTg(z) £ 0, (11) implies that
AN f (@) + s(@ID)] — yTg(e) < NT[f(u) + vTw] — yTg(u).
By the‘assumption (b), it yields
n(z, u)" [VF(w) +w — VyTg(u)] <0,
which contradicts (10). Thus, |

f(@) + s(z|D) £ f(u) + u"w — yTg(u)e.

O

Theorem 4.2 (Strong Duality) If T is a weakly efficient solution of (MP)
at which constraint qualification be satisfied. Then there exist A > 0, '?7 € Cy
and Wy € Dy(i = 1,--- ,k) such that (T,Y,\, W) is feasible for (WD) and
the corresponding values of (MP) and (WD) are equal. ff the assumption
of Theorem 4.1 are satisfied, then (Z,7, \, W) is weakly efficient for (WD).

Proof. Since T is a weakly efficient solution of (MP), then there exist
w; € Dij,i=1,--- |k, >0 and 7 € C, with (A, ¥) # 0 such that

[XT(Vf(T) +w) =7 Vg@)]T(x~F) =20, forall zeCy, (12)
w; € Dy, S(ElDz) = fTw,-, t=1,---,k. (14)
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Since z € Cy, T € C and C] is a closed convex cone, we have z + T € C)
and thus the inequality (12) implies

(V@) +w) -7 Vg@)]Tz 20, forall ze€Cy,

ie.,

N (Vf(Z) +w) —FTVg(E) = 0.

Taking W; = w; € D;,i = 1,--- ,k, we find that (Z,7,\, W) is feasible for
(WD) and corresponding values of (MP) and (WD) are equal, by (13) and

(14). If the assumptions of Theorem 4.1 are satisfied, then (Z,7, A, W) is a
weakly efficient solution of (WD). !
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