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1. INTRODUCTION

Khinchin’s conjecture ( firstly considered in his paper [2]) for the sequence of
- partial quotients of an irrational number is as follows: The sequence of partial
 quotients in the continued fraction expansions of an algebraic real number of
degree > 3 is unbounded and “random” (aperiodic or irregular). Recently, in [1]
B.Adamczewski and Y. Bugeaud gave a class of transcendental numbers, the par-
tial quotients sequences of which have some recurrent properties. For this class
numbers with the recurrent order value 1y > 0 we call them 7y-transcendental
numbers (cf. [11]). The complement of the set of transcendental numbers, which
have these recurrent properties, in the set of irrational numbers contains alge-
braic numbers of degree > 3 and O-recurrent or non-recurrent transcendental
numbers. | . ‘ :

In this paper we study “symbolic dynamically” almost periodic sequences,
which have recurrent properties, to investigate some unpredictable behaviors
of these sequences by estimating the topological entropies and the recurrent
dimensions. First we treat symbolic dynamical systems with finite alphabet
spaces and we give inequality relations between recurrent dimensions and entropy
of strongly almost periodic or eventually strongly almost periodic sequences.
Next we extend these relations to the case of 1nﬁmte alphabet spaces by using a
truncation method.

The recurrent dimensions have been introduced in our previous paper [6] as the
parameters, which indicate recurrent properties, defined by using e-neighborhood
recurrent times. For a sequence u = {a;};>1 and a shift map o, defined by
(0U)n = Up+1 = Gn+1, We consider a discrete orbit & = {u,o0u,0%y,...,0™y,...}.
We define the lower recurrent dimension by the following limit infimum value as

€ — 0, using the infimum of the first s-nelghborhood recurrent times in the orbit
5, whxch is denoted by My(¢):

log M5 ()

D, (%) = liminf — Tog €

and we also define the upper recurrent dimension by using their supremum values:

- . logMx(e)
D.(X) = lll‘ilj(l).lp ~Toge
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In our previous papers [7], [9], [10] we introduce the gap value G(X) of recurrent
dimensions by

G(X) = Dr(Z) - D.(%)

as the parameter which indicates the levels of unpredictability of a sequence u
or a discrete orbit . In this paper we define these values for almost periodic
sequences and show the inequality relations between the recurrent dimensions
and the topological entropies of these sequences.

As an example we investigate a modified Sturmian sequence, which has an
infinite alphabet space, and we show that its discrete orbit has a positive gap of
recurrent dimensions if the irrational frequency of its original Sturmian sequence
is a Liouville number.

The plan of this paper is as follows: In Section 2, introducing notations in
symbolic dynamical systems with a finite alphabet space, we show the inequal-
ity relations between the recurrent dimensions and the topological entropies of
symbolic dynamical systems given by almost periodic sequences. In Section 3 we
treat the infinite alphabet space by truncating these symbol spaces. In Section 4
we estimate the gaps of recurrent dimensions of discrete orbits, which are given
by modified Sturmian sequences.

2. SYMBOLIC DYNAMICAL SYSTEMS: FINITE ALPHABETS CASE

In this section, introducing notations in symbolic dynamical systems, we show
some inequality relations between the recurrent dimensions and the topological
entropy of almost periodic sequences.

Let A = {a, az, ...,a,} be a finite set of symbols and a word V = vyv;..v, be
a finite string of elements of A with its length r, denoted by |V| = r. The set of
nonnegative integers is denoted by No = NU{0} = {0, 1,2, ...} and we consider a
(one-sided) sequence of elements of A, U = (Up)reN, = UoU1Us2... € ANO. A word
W = wyw,...w, is called a factor of u if u,, = w1, Um+1 = Wa, .oy Ungr—1 = Wy
for some m € Ny. L(u) denotes the set of all factors of u, which is called the
language of the sequence u and L, (u) denotes the set of all factors with its length
n.

If i < j are nonnegative integers, denote by [z, j] the segment of Ny with ends
i and j. For a sequence w € AN° we also denote by wli, j] a substring wwi1...w;
of w. The string of the form w|0,] for some i is called a prefix of w, and the
sequence of the form w;w;y1w;42... for some 7 is called a suffix of w and is denoted
by w(i, 00).

Following the notations introduced in [4] or [12], we give some defintions on
almost periodic sequences. A sequence w is called almost periodic if for any
factor x of w occurring in it infinitely many times there exists a number ! such
that any factor of w with its length ! contains at least one occurrence of z. We
denote the class of all almost periodic sequences by AP.

A sequence w is called strongly almost periodic if for any factor z of w there
exists a number ! such that any factor of w with its length [ contains at least one
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occurrence of z. We denote the class of all strongly almost periodic sequences
by SAP.

A sequence w is called eventually strongly almost periodic if some its suffix is
strongly almost periodic. We denote the class of all eventually strongly almost
periodic sequences by £AP.

First we consider the case where a sequence v € SAP.

We denote the complexity function of u by P,(n) = #L,(u), which is the
number of different words of length n occurring in u. We consider the following
metric on AN:

d(u ’U) 2~ min{n€No:un#vn}

for u,v € ANo : 4 # v. The one-sided shift o : ANo — AN ig defined by
(0u)p = Upy1, 1 € Ny
and its discrete orbit is denoted by
¥ =%, = {u,ou,o%u,..,o"u,...}.

Denote the recurrency function of u by R, (n), which is the least integer m(:=
R,(n)) such that each m-factor of u contains every n-factor of u.
We define the first e-recurrent times by

My (e) = inf min{m € N : d(c™"u,olu) < e},

Ms(e) = sup min{m € N : d(c™"u,o'u) < €}.
leNp ,
Next we extend these definitions to the case of eventually strongly almost
periodic sequences. v .
We define the eventually restrict function e, : £AP — Ng by

er(u) = min{m € Ny : u[m, ) € SAP}

for u € EAP.

The eventually complexity function p,(n) is the number of different words of
length n occurring in ule,(u), 00) and the eventually recurrency function r,(n) is
is the least integer m(:= r,(n)) such that each m-factor of ule,(u), 00) contains
every n-factor of ule,(u), 00).

Similarly, we can define the eventually first e—recurrent times by

my(g) = le[e:&f) - min{m € N : d(c™"u, o'u) < €},
mu(e) = sup min{m € N: d(c™u,o'u) < €}.
l€[er(u),00)

Then we can obtain the following relations
Lemma 2.1. Fore, =2"", n=1,2,... and u € EAP, we have

(2.1) _m_z(an) < pu(n)’
(2.2) Mx(en) = ru(n) —n + 1.
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Proof. First we prove (2.1). Assume that my(e,) = p.(n) + 1, then we have
d(o'u,c™u) > e, =27, 1< m < py(n)

for every | € [er(u), 00). It follows that for each m,m’ : 1 < m,m’ < p,(n), m #
m/, there exists k € {0, 1, ...,n} such that

(" ™u)k # (e u)k,  (o'u)e # (6T U
Thus there exist p,(n) + 1 different n-factors, which is a contradiction.

Next we show that mix(e,) > m4(n) —n + 1. Let L = r,(n) — 1, then there
exists a L-factor: u,,Ups+1,...,Ur+L~1, T € [er(u), 00), which does not contain a
n-factor W : w;, Wj41..., Wjt1-n, J € [ex(u), 00). The following case

Up—-1 = wj, Uy = wj+1, coey Upgn—2 = 'wj+n51,
Ur+L-—n41 = Wiy Up = W41y eeey UptL = Wign-1
has the least £,-recurrent time:
d(o.r—lu’ a.r+L—n+1u) <e,= 2-n,
which yields
My(En) 2 L—n+1+1=ry(n)—n+1.

Next we show that Mg (e,) < ry(n) —n+ 1. For estimating an upper bound of
mx(e,) it is sufficient to consider a r,(n)-factor, which contains exactly one n-
factor W : wj, ..., Wjtn—1, J € [er(u), 00), not one another W. Suitablly shifting
gives the following typical case:

U = Wy, U1 = Wjq1y ooy Ul4n—1 = Wjtn—1, -
Ulry(n)—n+1 = Wyy ooy Ulqry(n)—1 = Wjgn—1-

Note that, if Ui4r (n)-1 = wi : @ < j 4+ n — 1, there exists a ry(n)-factor, which
does not contain the n-factor W. Thus we have

d(otu, g tre®-rtly) < g, =277,
which yields mig(e,) < ry(n) —n + 1. a
In [3] Morse and Hedlund have given the following inequality
(2.3) Pu(n) + 1 < 1u(n).
Now we have the following sequence of estimates:
ms(en) < pu(n), pu(n) +n < 1ry(n), ru(n) —n+1="mx(e,).
It follows that
(2.4) . my(en) < pu(n) < Myp(en).

For u € SAP, the topological entropy Hp(u) is given by the complexity
function:

log, P,
Mp(u) = lim log,, Pu(n)

n—00 n
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Here we also put

HR(’U,) = lim

n—o

and we define the recurrent dimensions by

log,, R.(n)
n

= o log M5(e)
Dr(E) = b = e

D,() = limnf %&%ﬁl_

b

In [7] we have shown that these recurrent dimensions are given by

—_— ) log Hz (8 )
D, (%) =limsu su _—,
(%) n—*oop En+1 S§S€n —loge
M
D () =liminf inf log M (<) .
n—00 ep415€<En — log £

for any sequence {¢,} : &, | 0 as n — oo.

Here we can extend these definitions to the case of eventually strongly almost
periodic functions. .

For u € £AP, the topological entropy h,(u) is given by the complexity func-
tion:

. log, pu(n)
ho(s) = Jig ER
Here we also put
1 (T
he(u) = lim _gg__,,;_&_)
and we define the recurrent dimensions by

> 1 logmx(e)
() = lim sup —loge

d.(T) = lim inf 28M2(6)
£—0 —loge
We can also show that these recurrent dimensions are given by

- log iz (€)
d-(X) = limsu su —_—
‘ "'( ) n—"oop En+41 S:ESGn - ].Og €

’

b}

d.(Z) = liminf inf 282=(S)

n—oo eny1<e<en —loge
for any sequence {,} : &, | 0 as n — o0.
Then we have the following inequality relations.
Theorem 2.2. For a sequence u € EAP and ¥ = {o™u : n € Ny} we have
log 2
log p

log2

(2.5) oo

- de(2).

*4,(T) < hp(u) < he(u) =
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Proof. The first (left side) inequality can be estimated by the definitions and
(2.1) in Lemma 2.1 for ¢, = 27",

d.(X) = liminf inf log my(e)

Nn—oo &n415elen —lOg&'
_<- hml f log mE(En)

n—oo —loge,

logp . logpu(n) logp
< —=— 1 :
= log2 nsoo nlogp  log2 ip(u)

The second inequality is obvious from the definitions and (2.3). For the right
side equality we have the following estimates by using (2.2).

d.(X) = limsup sup logmz(c)

n—oo eEnt156<en log )

< limsup log Mz (€n+1)
1) —
~ limsup log(ru(n+1) = (n+1) +1)
n—oo n lOg 2
logp .. logry(n+1) n+1 logpu
log 2 oo (n+Dlogp n  log2 e ().

If u is periodic or eventually periodic, then we have d,.(X) = h,(u) = 0. Thus
it is sufficient to consider the case where the sequence u is neither periodic nor
eventually periodic and then we have r,(n) > 2n. Using this 1nequallty and
(2.2), we have the following estimates.

<

= : log mg(€)
d.(¥) = limsu su —_—
r( ) A "—'°°p 5n+1.<.gs€n - lOg €
_>_ lim sup lo_gﬂ(-slz
n—oo - log En
— lim log(ry(n) —n +1)
n—00 n log 2
logp .. logsru(n) logu
> =2 ] 2 .
— log2 i lognp  log2 +he(u)
Thus we obtain the equality in (2.5).

a

3. SYMBOLIC DYNAMICAL SYSTEMS 1I: INFINITE ALPHABETS CASE

In this section we consider the infinite alphabet space A = {a;, az, ..., ap, ...}
and we use the same notations and definitions as in the previous section if these
are well defined. Since the complexity function P,(n), the recurrency function
R,(n) and the upper first e-recurrent time My(¢) become infinite for the infi-
nite alphabet space, we need some truncations of the symbols to define these
functions.
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For a large integer N we define a finite alphabet space Ay by
.AN = {(11, ag, ..., CLN}

and for a sequence u € AN we define u™) € AY°, substituting any symbols
aj, § 2 N + 1 in the sequence u by ay, that is, u®) is obtained by putting

OGN = AN41 = ANy2 = * ¢

in u.

Here we assume that u™) € £AP, then we can define the the complexity
function p,)(n), the recurrency function 7, (n) for the finite alphabet space
Ap as in the previous section. Let

W = (u®) gu®™) g2 M) Gy ™)}

then we can also define the first e-recurrent times g (€), mgm) (€) and Lemma,
2.1 holds for the sequence 4. |

Furthermore, we can give the entropies and recurrent dimensions for ©(¥) e AN
as follows: '

hp(u(N)) = lim logy pum (n)

’

n~—00 n
h,(u(N)) = lim logy T;(M (n)’
n—0o0

d. (™) = limsup log Mg (€)

€0 —loge '’

d.(E™) = liminf 1_°§_7—P:§_‘_’9(i)_
€—0 —loge

Applying Theorem 2.2 we can obtain the following inequality relations.
log 2 log 2
log N log N

If the limits of these functions as N — oo exist, these limit values are denoted
as follows.

(3.1) 4, (E™) < hy(u®) < by (u®) = B2 .G (z),

s & (EV) =d7 (@), lim 4,(20) =T7(Z),

dim R () = hP(w),  lim hy(u™) = h(u).

It follows from (3.1) that, if limsupy_,., d-(Z®™) < oo, then hy(uw) = 0

' (N)
and also, if li]{rn inf d’—'if)}g:—N—Z 2 ¢ holds for some constant ¢ > 0, then we have

lim inf A,(u®™)) > 0. PFurthermore, limsup 4, ()
N—oo P ' " "Nooo logN

hy°(u) exists.

> ¢ > 0 yields hg°(u) > 0 if
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4. EXAMPLE OF STURMIAN SEQUENCES

Let A = {1,2} and w = wow;ws... be a 1-type sturmian sequence, which
does not contain a word 22. Then it is well known that the complexity function
satisfies P,(n) = n + 1 and the frequency value of the letter 1 is given by

= lim Iwowl...w,,_lll
n—oo n
where |W|, is the number of occurrences of the letter 1 in a word W.

Next we consider an infinite alphabet space B = {1, a,,az, ..., ay, ...} where
{a,} is an increasing sequence of integers and a; > 2. Here we define a sequence
u € BNo_ gubstituting the letters 2 in w sequencially by the integer numbers of
B in order, that is, the first appeared letter 2 in w is substituted by a; and the
next appeared letter 2 by az, ... and so on.

We define the truncated alphabet space for a large number N

BN = {1, a1, Az, ... aN},

the sequence u(™, the discrete orbit £V and the other notations as the same
manner in the previous section.

Let ugy = ay in the sequence u, then ug.?,oo) becomes a l-type Sturmian

sequence of the alphabet space {1, ay}. We can show that d.(X®)) = 0 by using
the definition of the topological entropy h,(u(™) and the inequality relation in
Theorem 2.2, since the complexity function satisfies p,v)(n) =n + 1.

Here we estimate its upper recurrent dimensions d, ()_'J(N )) according to the
algebraic properties, parametrized Diophantine conditions, of the frequency value
7. In our previous papers [7],[8] we introduce do-(D) condition, which specifies
the (good or bad) levels of approximation by rational numbers.

If an irrational number 7 satisfies do-(D) condition for 0 < dy < 0o, then 7 is a
Roth number with its order dgy + € for every € > 0 and also 7 is a weak Liouville
number with its order dy — € for every € > 0. If an irrational number 7 does not
satisfy the Diophantine condition for a finite value dy, we say that 7 is a Liouville
number or dy = 0.

Theorem 4.1. For a large number N, let the sequences u € BN° and ulV) ¢ B,§°
be defined by using a Sturmian sequence w as above. Assume that the frequency
T of w satisfies do-(D) condition for 0 < dy < co. Then we have

(4.1) dEM =0
and consequently, we have

(4.2) G(EM) =0
and furthermore, as N — oo, we obtain

(4.3) he(u) = 0.

Proof. Let ¢ = 1—:_’;, that is, (! = 77! + 1. Since ¢ and 7 have the same c.f.s.

from the second partial quotient, ¢ also satisfies the same order do-(D) condition
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as 7. Denote the convergents of ¢ by {r;/s;}, then in [3] Morse and Hedlund
have shown that

Tu(V) (Sj) = Sj+1 + 28_7' — 1.
It follows from Lemma 2.1 that

My (Esn) = Ty (Sn) — 8n +1 = 8p41 + Sp.
Thus we have ‘

a,(Z™) = limsup sup log Mzav (€)

n—00 &5, <e<e,, - log 2
< lim sup log My Ny (€8n+1)
n—oo .’ - IOg €sn
— lim log(sni2 + Sny1)
n—00 sp log2

(14+do+6)?
< lim logcsy,

n—oco  S,log2
where we use the properties of (dy + ¢)-Roth numbers for all § > 0:

2
Smyz < csktdotd < pg(+do+d)

=0

and the notation c as an appropriate constant in each estimate. :
a

As in the proof of Theorem 4.1, let {r,/s,} be the convergents of ¢ = 7/(T+1).
Since ¢ and 7 have the same c.f.s. from the second partial quotient, they have the
same increasing rates of denominators of the convergents. For simple descriptions

and argument we use the convergents of ¢ instead of 7 to describe the assumption
on Liouville numbers.

Theorem 4.2. Under the same setting as in Theorem 4.1, assume that the

frequency T is a Liouville number such that there exists a subsequence {sn; },
which satisfies

(4.4) Smg41 > L%

for a constant L > 1. Then we have

—= log L
(N)y >
(4.5) d. (V) > og 2

and consequently, we obtain
log L
log 2

(4.6) G(z™M) > > 0.
Remark 4.3. 1t follows from(4.4) that

Tny 1
- — <
|C snj l - SnJ'Lsnj ,
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which gives the extremely good approximation property (dy = oo) by rational
numbers.

Theorem 4.4. Under the same setting as in Theorem 4.1, assume that the
frequency T is a Liowville number such that there exists a subsequence {si,},
which satisfies

(4.7) i1 < L%
for a constant L > 1. Then we have
- log L
(M) <« 22~

and consequently, we obtain
(4.9) hy’(u) = 0.

Remark 4.5. The condition (4.4) and (4.7) are incompatible. In fact, let s;;, <
Sn; < Sigps then we can obtain the contradiction:

L S Snj-{-l S sl¢+1+1 S Lok,
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