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1. INTRODUCTION
Khinchin’s conjecture (firstly considered in his paper [2]) for the sequence of

partial quotients of an irrational number is as follows: The sequence of partial
quotients in the continued fraction expansions of an algebraic real number of
degree $\geq 3$ is unbounded and “random”(aperiodic or irregular). Recently, in [1]
B.Adamczewski and Y. Bugeaud gave a class of transcendental numbers, the par-
tial quotients sequences of which have some recurrent properties. For this class
numbers with the recurrent order value $\tau_{0}>0$ we call them $\tau_{0}$-transcendental
numbers $($cf. [11] $)$ . The complement of the set of transcendental numbers, which
have these recurrent properties, in the set of irrational numbers contains alge-
braic numbers of degree $\geq 3$ and 0-recurrent or non-recurrent transcendental
numbers.

In this paper we study “symbolic dynamicaUy” almost periodic sequences,
which have recurrent properties, to investigate some unpredictable behaviors
of these sequences by estimating the topological entropies and the recurrent
dimensions. First we treat symbolic dynamical systems with finite alphabet
spaces and we give inequality relations between recurrent dimensions and entropy
of strongly almost per\’iodic or eventually strongly almost periodic sequences.
Next we extend these relations to the case of infinite alphabet spaces by using a
truncation method.

The recurrent dimensions have been introduced in our previous paper [6] as the
parameters, which indicate recurrent properties, defined by using $\epsilon$-neighborhood
recurrent times. For a sequence $u=\{a_{i}\}_{i\geq 1}$ and a shift map $\sigma$ , defined by
$(\sigma u)_{n}=u_{n+1}=a_{n+1}$ , we consider a discrete orbit $\Sigma=\{u_{1}\sigma u, \sigma^{2}u, \ldots, \sigma^{n}u, \ldots\}$ .
We define the lower recurrent dimension by the following limit infimum value as
$\epsilonarrow 0$ , using the infimum of the first $\epsilon$-neighborhood recurrent times in the orbit
$\Sigma$ , which is denoted by $\underline{M}_{\Sigma}(\epsilon)$ :

$\underline{D}_{r}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

and we also define the upper recurrent dimension by using their supremum values:

$\log\overline{M}_{\Sigma}(\epsilon)$

$\overline{D}_{r}(\Sigma)=\lim_{\epsilonarrow}\sup_{0}$

$-\log\epsilon$
.
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In our previous papers [7], [9], [10] we introduoe the gap value $\mathcal{G}(\Sigma)$ of recurrent
dimensions by

$\mathcal{G}(\Sigma)=\overline{D}_{r}(\Sigma)-\underline{D}_{r}(\Sigma)$

as the parameter which indicates the levels of unpredictability of a sequence $u$

or a discrete orbit $\Sigma$ . In this paper we define these values for almost periodic
sequences and show the inequality relations between the recurrent dimensions
and the topological entropies of these sequences.

As an example we investigate a modified Sturmian sequence, which has an
infinite alphabet space, and we show that its discrete orbit has a positive gap of
recurrent dimensions if the irrational frequency of its original Sturmian sequence
is a Liouville number.

The plan of this paper is as follows: In Section 2, introducing notations in
symbolic dynanical systems with a finite alphabet space, we show the inequal-
ity relations between the recurrent dimensions and the topological entropies of
symbolic dynamical systems given by almost periodic sequences. In Section 3 we
treat the infinite alphabet space by truncating these symbol spaces. In Section 4
we estimate the gaps of recurrent dimensions of discrete orbits, which are given
by modifled Sturmian sequences.

2. SYMBOLIC DYNAMICAL SYSTEMS: FINITE ALPHABETS CASE

In this section, introducing notations in symbolic dynamical systems, we show
some inequality relations between the recurrent dimensions and the topological
entropy of almost periodic sequences.

Let $\mathcal{A}=\{a_{1}, a_{2}, \ldots, a_{\mu}\}$ be a finite set of symbols and a word $V=v_{1}v_{2}..v_{r}$ be
a finite string of elements of $\mathcal{A}$ with its length $r$ , denoted by $|V|=r$ . The set of
nonnegative integers is denoted by $N_{0}=$ Nu $\{0\}=\{0,1,2, \ldots\}$ and we consider a
(one-sided) sequence of elements of $\mathcal{A},$ $u=(u_{n})_{n\in N_{0}}=u_{0}u_{1}u_{2}\ldots\in A^{N_{0}}$ . A word
$W=w_{1}w_{2}\ldots w_{r}$ is called a factor of $u$ if $u_{m}=w_{1},$ $u_{m+1}=w_{2},$ $\ldots,$ $u_{m+r-1}=w_{r}$

for some $m\in N_{0}$ . $\mathcal{L}(u)$ denotes the set of all factors of $u$ , which is called the
language of the sequence $u$ and $\mathcal{L}_{n}(u)$ denotes the set of all factors with its length
$n$ .

If $i\leq j$ are nonnegative integers, denote by $[i,j]$ the segment of $N_{0}$ with ends
$i$ and $j$ . For a sequence $\omega\in A^{N_{0}}$ we also denote by $\omega[i,j]$ a substring $\omega_{i}\omega_{i+1}\ldots\omega_{j}$

of $\omega$ . The string of the form $\omega[0, i]$ for some $i$ is called a prefix of $\omega$ , and the
sequence of the form $\omega_{i}\omega_{i+1}\omega_{i+2}\ldots$ for some $i$ is called a suffix of $\omega$ and is denoted
by $\omega[i, \infty)$ .

Following the notations introduced in [4] or [12], we give some defintions on
almost periodic sequences. A sequence $\omega$ is called almost periodic if for any
factor $x$ of $\omega$ occurring in it infinitely many times there exists a number $l$ such
that any factor of $\omega$ with its length $l$ contains at least one occurrence of $x$ . We
denote the class of all almost periodic sequences by $\mathcal{A}\mathcal{P}$ .

A sequence $\omega$ is called strongly almost periodic if for any factor $x$ of $\omega$ there
exists a number $l$ such that any factor of $\omega$ with its length $l$ contains at least one
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occurrence of $x$ . We denote the class of all strongly almost periodic sequences
by $S\mathcal{A}\mathcal{P}$ .

A sequence $\omega$ is called eventually strongly almost periodic if some its suffix is
strongly almost periodic. We denote the class of all eventually strongly almost
periodic sequences by $\mathcal{E}\mathcal{A}\mathcal{P}$ .

First we consider the case where a sequence $u\in S\mathcal{A}\mathcal{P}$ .
We denote the complexity function of $u$ by $P_{u}(n)=\#\mathcal{L}_{n}(u)$ , which is the

number of different words of length $n$ occurring in $u$ . We consider the following
metric on $\mathcal{A}^{N_{0}}$ ;

$d(u, v)=2^{-\min\{n\in N_{0}:u_{n}\neq v_{n}\}}$

for $u,$
$v\in \mathcal{A}^{N_{0}}$ : $u\neq v$ . The one-sided shift $\sigma$ : $\mathcal{A}^{N_{0}}arrow \mathcal{A}^{N_{0}}$ is defined by

$(\sigma u)_{n}=u_{n+1},$ $n\in N_{0}$

and its discrete orbit is denoted by
$\Sigma;=\Sigma_{u}=\{u, \sigma u, \sigma^{2}u, \ldots, \sigma^{n}u, \ldots\}$.

Denote the recurrency function of $u$ by $R_{w}(n)$ , which is the least integer $m(:=$
$R_{w}(n))$ such that each m-factor of $u$ contains every n-factor of $u$ .

We define the first $\epsilon$-recurrent times by

$\underline{M}_{\Sigma}(\epsilon)=\inf_{l\in N_{0}}\min\{m\in N:d(\sigma^{m+l}u, \sigma^{l}u)<\epsilon\}$,

$\overline{M}_{\Sigma}(\epsilon)=\sup_{l\in N_{0}}\min\{m\in N:d(\sigma^{m+l}u, \sigma^{l}u)<\epsilon\}$ .

Next we extend these definitions to the case of eventually strongly almost
periodic sequences.

We define the eventually restrict function $e_{r}$ : $\mathcal{E}\mathcal{A}\mathcal{P}arrow N_{0}$ by

$e_{f}(u)= \min\{m\in N_{0}:u[m, \infty)\in S\mathcal{A}\mathcal{P}\}$

for $u\in \mathcal{E}\mathcal{A}\mathcal{P}$ .
The eventually complexity function $p_{u}(n)$ is the number of different words of

length $n$ occurring in $u[e_{r}(u), \infty)$ and the eventually recurrency function $r_{u}(n)$ is
is the least integer $m(:=r_{u}(n))$ such that each m-factor of $u[e_{r}(u), \infty)$ contains
every n-factor of $u[e_{r}(u), \infty)$ .

Similarly, we can define the eventually first $\epsilon$-recurrent times by

$\underline{m}_{\Sigma}(\epsilon)=\inf_{t\in[e(u),\infty)}\min\{m\in N:d(\sigma^{m+l}u, \sigma^{l}u)<\epsilon\}$ ,

$\overline{m}_{\Sigma}(\epsilon)=$ $\sup$ $\min\{m\in N:d(\sigma^{m+l}u, \sigma^{l}u)<\epsilon\}$ .
$l\in[e_{f}(u),\infty)$

Then we can obtain the following relations

Lemma 2.1. For $\epsilon_{n}=2^{-n},$ $n=1,2,$ $\ldots$ and $u\in \mathcal{E}\mathcal{A}\mathcal{P}$ , we have

(2.1) $\underline{m}_{\Sigma}(\epsilon_{n})\leq p_{u}(n)$ ,
(2.2) $\overline{m}\Sigma(\epsilon_{n})=r_{u}(n)-n+1$ .
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Proof. First we prove (2.1). Assume that $\underline{m}_{\Sigma}(\epsilon_{n})\geq p_{u}(n)+1$ , then we have
$d(\sigma^{l}u, \sigma^{l+m}u)\geq\epsilon_{n}=2^{-n})$ $1\leq m\leq p_{u}(n)$

for every $l\in[e_{r}(u), \infty)$ . It follows that for each $m,$ $m’$ : $1\leq m,$ $m’\leq p_{u}(n),$ $m\neq$

$m’$ , there exists $k\in\{0,1, \ldots, n\}$ such that
$(\sigma^{l+m}u)_{k}\neq(\sigma^{l+m’}u)_{k}$ , $(\sigma^{t}u)_{k}\neq(\sigma^{l+m}u)_{k}$ .

Thus there exist $p_{u}(n)+1$ different n-factors, which is a contradiction.
Next we show that $\overline{m}_{\Sigma}(\epsilon_{n})\geq r_{u}(n)-n+1$ . Let $L=r_{u}(n)-1$ , then there

exists a L-factor: $u_{r},$ $u_{r+1},$ $\ldots,u_{r+L-1},$ $r\in[e_{r}(u), \infty)$ , which does not contain a
n-factor $W$ : $w_{j},$ $w_{j+1}\ldots,$ $w_{j+1-n},$ $j\in[e_{f}(u), \infty)$ . The following case

$u_{r-1}=w_{j},$ $u_{r}=w_{j+1},$ $\ldots,$ $u_{r+n-2}=w_{j+n-1},$ $\ldots$

$u_{r+L-n+1}=w_{j},$ $u_{r}=w_{j+1},$ $\ldots,$ $u_{r+L}=w_{j+n-1}$

has the least $\epsilon_{n}$-recurrent time:
$d(\sigma^{r-1}u, \sigma^{r+L-n+1}u)<\epsilon_{n}=2^{-n}$ ,

which yields
$\overline{m}\Sigma(\epsilon_{n})\geq L-n+1+1=r_{u}(n)-n+1$ .

Next we show that $\overline{m}_{\Sigma}(\epsilon_{n})\leq r_{u}(n)-n+1$ . For estimating an upper bound of
$\overline{m}_{\Sigma}(\epsilon_{n})$ it is sufficient to consider a $r_{u}(n)$-factor, which contains exactly one n-
factor $W$ : $w_{j},$ $\ldots,$ $w_{j+n-1},$ $j\in[e_{r}(u), \infty)$ , not one another $W$ . Suitablly shifting
gives the following typical case:

$u_{l}=w_{j},u_{t+1}=w_{j+1},$ $\ldots,$ $u_{l+n-1}=w_{j+n-1},$ $\ldots$

$u_{l+r_{u}(n)-n+1}=w_{j},$ $\ldots,u_{l+r_{V}(n)-1}=w_{j+n-1}$ .
Note that, if $u_{l+r_{u}(n)-1}=w_{i}$ : $i<j+n-1$ , there exists a $r_{u}(n)$-factor, which
does not contain the n-factor $W$ . Thus we have

$d(\sigma^{l}u, \sigma^{l+r_{u}(n)-n+1}u)<\epsilon_{n}=2^{-n}$ ,

which yields $\overline{m}_{\Sigma}(\epsilon_{n})\leq r_{u}(n)-n+1$ . a
In [3] Morse and Hedlund have given the following inequality

(2.3) $p_{u}(n)+n\leq r_{u}(n)$ .
Now we have the following sequence of estimates:

$\underline{m}_{\Sigma}(\epsilon_{n})\leq p_{u}(n),$ $p_{u}(n)+n\leq r_{u}(n)$ , $r_{u}(n)-n+1=\overline{m}\Sigma(\epsilon_{n})$ .
It follows that

(2.4) $\underline{m}_{\Sigma}(\epsilon_{n})\leq p_{u}(n)\leq\overline{m}_{\Sigma}(\epsilon_{n})$ .
For $u\in S\mathcal{A}\mathcal{P}$ , the topological entropy $\mathcal{H}_{P}(u)$ is given by the complexity

function:

$\mathcal{H}_{P}(u)=narrow\infty hm\frac{\log_{\mu}P_{u}(n)}{n}$ .
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Here we also put

$\mathcal{H}_{R}(u)=\lim_{narrow\infty}\frac{\log_{\mu}R_{u}(n)}{n}$

and we define the recurrent dimensions by

$\overline{D}_{r}(\Sigma)=\lim_{\epsilonarrow}\sup_{0}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$ ,

$\underline{D}_{r}(\Sigma)=h\min_{\epsilonarrow 0}f\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$ .

In [7] we have shown that these recurrent dimensions are given by

$\overline{D}_{r}(\Sigma)=\lim\sup_{\epsilon_{n}narrow\infty+1}\sup_{\leq\epsilon\leq\epsilon_{n}}$

$-\log\epsilon$
,

$\log\overline{M}_{\Sigma}(\epsilon)$

$\underline{D}_{r}(\Sigma)=\lim_{narrow}\inf_{\infty\epsilon_{n+}1}\inf_{\leq\epsilon<\epsilonarrow n}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$ .
for any sequence $\{\epsilon_{n}\}$ : $\epsilon_{n}\downarrow 0$ as $narrow\infty$ .

Here we can extend these definitions to the case of eventually strongly almost
periodic functions.

For $u\in \mathcal{E}\mathcal{A}\mathcal{P}$, the topological entropy $h_{p}(u)$ is given by the complexity func-
tion:

$h_{p}(u)= \lim_{narrow\infty}\frac{\log_{\mu}p_{u}(n)}{n}$ .
Here we also put

$h_{r}(u)= \lim_{narrow\infty}\frac{\log_{\mu}r_{u}(n)}{n}$

and we define the recurrent dimensions by

$\overline{d}_{r}(\Sigma)=\lim_{\epsilonarrow}\sup_{0}\frac{\log\overline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$ ,

$\underline{d}_{r}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log\underline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$ .

We can also show that these recurrent dimensions are given by

$\overline{d}_{r}(\Sigma)=\lim\sup_{\epsilon_{n}narrow\infty+1}\sup_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\overline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$ ,

$\underline{d}_{r}(\Sigma)=\lim\inf_{\epsilon_{n+}narrow\infty 1}\inf_{\leq\epsilon\leq e_{n}}\frac{\log\underline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$ .

for any sequence $\{\epsilon_{n}\}$ : $\epsilon_{n}\downarrow 0$ as $narrow\infty$ .
Then we have the following inequality relations.

Theorem 2.2. For a sequence $u\in \mathcal{E}\mathcal{A}\mathcal{P}$ and $\Sigma=\{\sigma^{n}u:n\in N_{0}\}$ we have

(2.5) $\frac{\log 2}{\log\mu}\cdot\underline{d}_{r}(\Sigma)\leq h_{p}(u)\leq h_{r}(u)=\frac{\log 2}{\log\mu}\cdot\overline{d}_{r}(\Sigma)$ .
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Proof. The first (left side) inequality can be estimated by the definitions and
(2.1) in Lemma 2.1 for $\epsilon_{n}=2^{-n}$ .

$\underline{d}_{r}(\Sigma)$ $= \lim_{narrow}\inf_{\infty\epsilon_{n+}1}\inf_{\leq\epsilon\leq e_{\mathfrak{n}}}\frac{\log\underline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\leq\lim\inf\frac{\log\underline{m}_{\Sigma}(\epsilon_{n})}{-\log\epsilon_{n}}narrow\infty$

$\leq$ $\frac{\log\mu}{\log 2}\lim_{narrow\infty}\frac{\log p_{u}(n)}{n\log\mu}=\frac{\log\mu}{\log 2}\cdot h_{p}(u)$ .

The second inequality is obvious from the definitions and (2.3). For the right
side equality we have the following estimates by using (2.2).

$\overline{d}_{r}(\Sigma)$ $= \lim\sup_{\epsilon_{n}narrow\infty+1}\sup_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\overline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\leq\lim_{narrow}\sup_{\infty}\frac{\log\overline{m}_{\Sigma}(\epsilon_{n+1})}{-\log\epsilon_{n}}$

$= \lim_{narrow}\sup_{\infty}\frac{\log(r_{u}(n+1)-(n+1)+1)}{n\log 2}$

$\leq$ $\frac{\log\mu}{\log 2}hm\frac{\log r_{u}(n+1)}{(n+1)\log\mu}\cdot\frac{n+1}{n}narrow\infty=\frac{\log\mu}{\log 2}\cdot h_{r}(u)$ .

If $u$ is periodic or eventually periodic, then we have $\overline{d}_{r}(\Sigma)=h_{r}(u)=0$ . Thus
it is sufficient to consider the case where the sequence $u$ is neither periodic nor
eventually periodic and then we have $r_{u}(n)\geq 2n$ . Using this inequality and
(2.2), we have the following estimates.

$\overline{d}_{r}(\Sigma)$ $= \lim\sup_{\epsilon_{n}narrow\infty+1}\sup_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\overline{m}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\geq\lim_{narrow}\sup_{\infty}\frac{\log\overline{m}_{\Sigma}(\epsilon_{n})}{-\log\epsilon_{n}}$

$= \lim_{narrow\infty}\frac{\log(r_{u}(n)-n+1)}{n\log 2}$

$\geq$ $\frac{\log\mu}{\log 2}\lim_{narrow\infty}\frac{\log\frac{1}{12}r_{u}(n)}{nog\mu}=\frac{\log\mu}{\log 2}\cdot h_{r}(u)$.

Thus we obtain the equality in (2.5).

3. SYMBOLIC DYNAMICAL SYSTEMS II: INFINITE ALPHABETS CASE

In this section we consider the infinite alphabet space $\mathcal{A}=\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\}$

and we use the same notations and definitions as in the previous section if these
are well defined. Since the complexity function $P_{u}(n)$ , the recurrency function
$R_{w}(n)$ and the upper first $\epsilon$-recurrent time $\overline{M}_{\Sigma}(\epsilon)$ become infinite for the infi-
nite alphabet space, we need some truncations of the symbols to define these
functions.
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For a large integer $N$ we define a finite alphabet space $\mathcal{A}_{N}$ by

$\mathcal{A}_{N}=\{a_{1}, a_{2}, \ldots, a_{N}\}$

and for a sequence $u\in \mathcal{A}^{N_{0}}$ we define $u^{(N)}\in \mathcal{A}_{N^{0}}^{N}$ , substituting any symbols
$a_{j},$ $j\geq N+1$ in the sequence $u$ by $a_{N}$ , that is, $u^{(N)}$ is obtained by putting

$a_{N}=a_{N+1}=a_{N+2}=\cdots$

in $u$ .
Here we assume that $u^{(N)}\in \mathcal{E}\mathcal{A}\mathcal{P}$ , then we can define the the complexity

function $p_{u^{(N)}}(n)$ , the recurrency function $r_{u^{(N)}}(n)$ for the finite alphabet space
$\mathcal{A}_{N}$ as in the previous section. Let

$\Sigma^{(N)}=\{u^{(N)}, \sigma u^{(N)}, \sigma^{2}u^{(N)}, \ldots, \sigma^{n}u^{(N)}, \ldots\}$ ,
then we can also define the first $\epsilon$-recurrent times $\overline{m}_{\Sigma^{(N)}}(\epsilon),\underline{m}_{\Sigma(N)}(\epsilon)$ and Lemma
2.1 holds for the sequence $u^{(N)}$ .

Furthermore, we can give the entropies and recurrent dimensions for $u^{(N)}\in \mathcal{A}_{N}$

as follows:

$h_{p}(u^{(N)})= \lim_{narrow\infty}\frac{\log_{N}p_{u^{(N)}}(n)}{n}$ ,

$h_{r}(u^{(N)})= \lim_{narrow\infty}\frac{\log_{N}r_{u^{(N)}}(n)}{n}$ ,

$\overline{d}_{r}(\Sigma^{(N)})=\lim_{\epsilonarrow}\sup_{0}\frac{\log\overline{m}_{\Sigma(N)}(\epsilon)}{-\log\epsilon}$ ,

$\underline{d}_{r}(\Sigma^{(N)})=\lim_{\epsilonarrow}\inf_{0}\frac{\log\underline{m}_{\Sigma}(N)(\epsilon)}{-\log\epsilon}$ .

Applying Theorem 2.2 we can obtain the following inequality relations.

(3.1) $\frac{\log 2}{\log N}\cdot\underline{d}_{r}(\Sigma^{(N)})\leq h_{p}(u^{(N)})\leq h_{r}(u^{(N)})=\frac{\log 2}{\log N}\cdot\overline{d}_{r}(\Sigma^{(N)})$ .

If the limits of these functions as $Narrow\infty$ exist, these limit values are denoted
as follows.

$\lim_{Narrow\infty}\overline{d}_{r}(\Sigma^{(N)})=T_{r}(\Sigma)$ ,

$\lim_{Narrow\infty}h_{r}(u^{(N)})=h_{r}^{\infty}(u)$ ,

$\lim_{Narrow\infty}\underline{d}_{r}(\Sigma^{(N)})=\overline{d}_{r}^{\infty}(\Sigma)$ ,

$\lim_{Narrow\infty}h_{p}(u^{(N)})=h_{p}^{\infty}(u)$ .

It follows from (3.1) that, if $hm\sup_{Narrow\infty}\overline{d}_{r}(\Sigma^{(N)})<\infty$ , then $h_{p}^{\infty}(u)=0$

and also, if $\lim_{Narrow}\inf_{\infty}\frac{\underline{d}_{r}(\Sigma^{(N)})}{\log N}\geq c$ holds for some constant $c>0$ , then we have

$hm\inf_{Narrow\infty}h_{p}(u^{(N)})>0$ . Furthermore, $\lim_{Narrow}\sup_{\infty}\frac{\underline{d}_{r}(\Sigma^{(N)})}{\log N}\geq c>0$ yields $h_{p}^{\infty}(u)>0$ if
$h_{p}^{\infty}(v_{L})$ exists.
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4. EXAMPLE OF STURMIAN SEQUENCES

Let $\mathcal{A}=\{1,2\}$ and $w=w_{0}w_{1}w_{2}\ldots$ be a l-type sturmian sequence, which
does not contain a word 22. Then it is well known that the complexity function
satisfies $P_{w}(n)=n+1$ and the frequency value of the letter 1 is given by

$\tau=\lim_{narrow\infty}\frac{|w_{0}w_{1}\ldots w_{n-1}|_{1}}{n}$

where $|W|_{1}$ is the number of occurrences of the letter 1 in a word $W$ .
Next we consider an infinite alphabet space $\mathcal{B}=\{1, a_{1}, a_{2}, \ldots, a_{n}, \ldots\}$ where

$\{a_{j}\}$ is an increasing sequence of integers and $a_{1}\geq 2$ . Here we define a sequence
$u\in \mathcal{B}^{N_{O}}$ , substituting the letters 2 in $w$ sequencially by the integer numbers of
$\mathcal{B}$ in order, that is, the first appeared letter 2 in $w$ is substituted by $a_{1}$ and the
next appeared letter 2 by $a_{2},$ $\ldots$ and so on.

We define the truncated alphabet space for a large number $N$

$\mathcal{B}_{N}=\{1, a_{1}, a_{2}, \ldots, a_{N}\}$ ,

the sequence $u^{(N)}$ , the discrete orbit $\Sigma^{(N)}$ and the other notations as the same
mamer in the previous section.

Let $u_{\mathcal{E}_{N}}=a_{N}$ in the sequence $u$ , then $u_{[\mathcal{E}_{N},\infty)}^{(N)}$ becomes a l-type Sturmian
sequence of the alphabet space $\{$ 1, $a_{N}\}$ . We can show that $\underline{d}_{r}(\Sigma^{(N)})=0$ by using
the definition of the topological entropy $h_{p}(u^{(N)})$ and the inequality relation in
Theorem 2.2, since the complexity function satisfies $p_{u^{(N)}}(n)=n+1$ .

Here we estimate its upper recurrent dimensions $\overline{d}_{r}(\Sigma^{(N)})$ according to the
algebraic properties, parametrized Diophantine conditions, of the frequency value
$\tau$ . In our previous papers [7],[8] we introduce $d_{0^{-}}(D)$ condition, which specifies
the (good or bad) levels of approximation by rational numbers.

If an irrational number $\tau$ satisfies $d_{0^{-}}(D)$ condition for $0\leq d_{0}<\infty$ , then $\tau$ is a
Roth number with its order $d_{0}+\epsilon$ for every $\epsilon>0$ and also $\tau$ is a weak Liouville
number with its order $d_{0}-\epsilon$ for every $\epsilon>0$ . If an irrational number $\tau$ does not
satisfy the Diophantine condition for a finite value $d_{C}$ , we say that $\tau$ is a Liouville
number or $d_{0}=\infty$ .
Theorem 4.1. For a large number $N$ , let the sequences $u\in \mathcal{B}^{N_{0}}$ and $u^{(N)}\in \mathcal{B}_{N}^{N_{0}}$

be defined by using a Sturmian sequence $w$ as above. Assume that the frequency
$\tau$ of $w$ satisfies $d_{0^{-}}(D)$ condition for $0\leq d_{0}<\infty$ . Then we have

(4.1) $\overline{d}_{r}(\Sigma^{(N)})=0$

and consequently, we have
(4.2) $\mathcal{G}(\Sigma^{(N)})=0$

and furthermore, as $Narrow\infty$ , we obtain
(4.3) $h_{p}^{\infty}(u)=0$ .

Proof. Let $\zeta=\frac{\tau}{1+\tau}$ , that is, $\zeta^{-1}=\tau^{-1}+1$ . Since $\zeta$ and $\tau$ have the same c.f. $s$ .
from the second partial quotient, $\zeta$ also satisfies the same order $d_{0^{-}}(D)$ condition
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as $\tau$ . Denote the convergents of $\zeta$ by $\{r_{j}/s_{j}\}$ , then in [3] Morse and Hedlund
have shown that

$r_{u^{(N)}}(s_{j})=s_{j+1}+2s_{j}-1$ .
It follows from Lemma 2.1 that

$\overline{m}_{\Sigma(N)}(\epsilon_{s_{n}})=r_{u(N)}(s_{n})-s_{n}+1=s_{n+1}+s_{n}$ .
Thus we have

$\overline{d}_{r}(\Sigma^{(N)})$
$= \lim\sup_{\epsilon_{s_{n+}}narrow\infty 1}\sup_{\leq\epsilon\leq\epsilon_{s_{n}}}\frac{\log\overline{m}_{\Sigma(N)}(\epsilon)}{-\log\epsilon}$

$\leq\lim_{narrow}\sup_{\infty}\frac{\log\overline{m}_{\Sigma}(N)(\epsilon_{s_{n+1}})}{-\log\epsilon_{s_{n}}}$

$= \lim_{narrow\infty}\frac{\log(s_{n+2}+s_{n+1})}{s_{n}\log 2}$

$\leq\lim_{narrow\infty}\frac{\log cs_{n^{1+\phi\}}}^{(+\delta)^{2}}}{s_{n}\log 2}=0$

where we use the properties of $(d_{0}+\delta)$-Roth numbers for all $\delta>0$ :
$s_{n+2}\leq cs_{n+1}^{1+d_{0}+\delta}\leq cs_{n}^{(1+d_{0}+\delta)^{2}}$

and the notation $c$ as an appropriate constant in each estimate.
口

As in the proof of Theorem 4.1, let $\{r_{n}/s_{n}\}$ be the convergents of $\zeta=\tau/(\tau+1)$ .
Since $\zeta$ and $\tau$ have the same c.f. $s$ . from the second partial quotient, they have the
same increasing rates of denominators of the convergents. For simple descriptions
and argument we use the convergents of $\zeta$ instead of $\tau$ to describe the assumption
on Liouville numbers.

Theorem 4.2. Under the same setting as in Theorem 4.1, assume that the
frequency $\tau$ is a Liouville number such that there evists a subsequence $\{s_{n_{j}}\}$ ,
which satisfies
(4.4) $s_{n_{j}+}i\geq L^{\partial n_{j}}$

for a constant $L>1$ . Then we have

(4.5) $\overline{d}_{r}(\Sigma^{(N)})\geq\frac{\log L}{\log 2}$

and consequently, we obtain

(4.6) $\mathcal{G}(\Sigma^{(N)})\geq\frac{\log L}{\log 2}>0$.

Remark 4.3. It follows from(4.4) that

$| \zeta-\frac{r_{n_{j}}}{S_{n}J}|\leq\frac{1}{s_{n}L^{\epsilon_{n_{j}}},j}$ ,
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which gives the extremely good approximation property $(d_{0}=\infty)$ by rational
numbers.

Theorem 4.4. Under the same setting as in Theorem 4.1, assume that the
frequency $\tau$ is a Liouville number such that there enists a subsequence $\{s_{l_{j}}\}_{f}$

which satisfies
$($4.7 $)$ $s_{l_{j+1}+1}\leq L^{s\iota_{j}}$

for a constant $L>1$ . Then we have

$($4.8 $)$ $\overline{d}_{r}(\Sigma^{(N)})\leq\frac{\log L}{\log 2}$

and consequently, we obtain
$($4.9 $)$ $h_{p}^{\infty}(u)=0$ .
Remark 4.5. The condition (4.4) and (4.7) are incompatible. In fact, let $s_{l_{i}}<$

$s_{n_{j}}\leq s_{l_{t+1}}$ , then we can obtain the contradiction:
$L^{\epsilon_{n_{j}}}\leq s_{n+1}j\leq s_{l_{i+1}+1}\leq L^{\partial\downarrow i}$ .
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