<table>
<thead>
<tr>
<th>Title</th>
<th>Listing All Trees with Specified Degree Sequence (Acceleration and Visualization of Computation for Enumeration Problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakano, Shin-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1644: 55-62</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140650</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Listing All Trees with Specified Degree Sequence

Shin-ichi Nakano
Department of Computer Science, Faculty of Engineering,
Gunma University, Kiryu 376-8515, Japan

Abstract

In this paper we designed a simple algorithm to generate all ordered trees with specified degree sequence. The algorithm generates each tree in $O(1)$ time for each on average.

1 Introduction

Generating all graphs having some property without duplicates has many applications, including unbiased statistical analysis [M98]. A lot of algorithms to solve these problems are already known, and can be found in good textbooks [G93, KS98, K06].

Trees are one of basic model frequently used in many areas, including searching for keys, modeling computation, parsing a program, etc.

Given a rooted tree T with n inner (non-leaf) vertices, the degree sequence of T is the list of n integers such that (1) each integer corresponds to the number of children of each inner vertex in T, and (2) the integers appear in nonincreasing order. Note that each rooted tree has a unique degree sequence, while a degree sequence may correspond to many rooted trees.

There are some algorithms to generate all ordered trees having specified degree sequence. The algorithm in [ZR79] generates all such ordered tree in $O(n)$ time for each, and loopless algorithms in [KL99, KL00, KL02] generate all such ordered trees in $O(1)$ time for each.

In this paper first we give a simple algorithm to generate all ordered trees having specified degree sequence in $O(1)$ time for each.

The outline of our algorithm is as follows.

Let O_D be the set of all ordered trees having specified degree sequence. First we define a tree structure FT_D among the trees in O_D so that each vertex in FT_D corresponds to each tree in O_D. Next we design a simple but efficient algorithm to compute all child vertices of a given vertex in FT_D. Applying the algorithm recursively from the root of FT_D, we can list all vertices in FT_D, and also corresponding
trees in O_D. Many listing algorithms have designed based on such tree structures but with some other ideas[LN01, N02, N04, NU04].

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3 defines the tree structure FT_D among O_D. Section 4 gives a simple but efficient algorithm to list all trees in O_D. Our algorithm generates all ordered trees with specified degree sequence in $O(1)$ time for each. Finally Section 5 is a conclusion.

2 Preliminary

A graph is a tree if it is connected and has no cycle. A tree T is rooted if one vertex r is designated as the root of T.

For each vertex v in a rooted tree, let $P(v)$ be the unique path from v to the root r. The depth of v is the number of edges in $P(v)$. The parent of $v \neq r$ is its neighbor on $P(v)$, and the ancestors of v are the vertices on $P(v)$. The parent of r is not defined. We say if v is the parent of u then u is a child of v, and if v is an ancestor of u then u is a descendant of v. Note that each vertex is always a descendant of itself. We denote by $d(v)$ the number of children of v. The height of a vertex v is the number of edges on the longest path from v to a descendant of v,

![Figure 1: The family tree of O_D.](image)
A vertex is a *leaf* if it has no child, otherwise it is an *inner vertex*. The height of a leaf is always 0, and the height of a vertex is always larger than the height of its child by one.

The degree sequence of a rooted tree T having n inner vertices is the list of n integers such that (1) each integer corresponds to the number of children of each inner vertex in T, and (2) the integers appear in nonincreasing order. Note that each rooted tree has a unique degree sequence, while a degree sequence may correspond to many rooted trees.

Assume that $D = (d_1, d_2, \cdots, d_n)$ is the degree sequence of a rooted tree T. Let n_i be the number of occurrences of integer i in D. Then the number of edges in T is $\sum_{i=1}^{n-1} in_i$.

A rooted tree is *an ordered tree* if the children of each vertex are ordered linearly left-to-right, otherwise, it is *an unordered tree*.

3 The Family Tree

Let O_D be the set of all ordered trees having specified degree sequence $D = (d_1, d_2, \cdots, d_n)$. In this section we define a tree structure FT_D among the trees in O_D. Then in the next section we give a simple but efficient algorithm to list all ordered trees in O_D.

Figure 2: A subtree of the family tree FT_D.

and denoted by $h(v)$.
Assume that T is an ordered tree.

The last inner vertex of T in preorder is called the pruning vertex of T. Note that all the child vertices of the pruning vertex are leaves.

The path $(\ell_1, \ell_2, \ldots, \ell_n)$ in T is called the left-down path of T if (1) ℓ_1 is the root, (2) the leftmost child of ℓ_q is a leaf, and (3) ℓ_{i+1} is the leftmost child of ℓ_i for each $i = 1, 2, \ldots, q - 1$. The leftmost child of ℓ_q is called the leftmost leaf of T.

Given $D = (d_1, d_2, \ldots, d_n)$, let T_r^D be the ordered tree derived from the path $(\ell_1, \ell_2, \ldots, \ell_n)$ by attaching $d_i - 1$ leaves to ℓ_i for $i = 1, 2, \ldots, n - 1$ and d_n leaves to ℓ_n so that $(\ell_1, \ell_2, \ldots, \ell_n)$ is the left-down path of T_r^D. See an example in Fig. 3. Thus $T_r^D \in O_D$ and $O_D \neq \phi$ holds. The ordered tree T_r^D is called the root tree of O_D.

For each ordered tree $T \in O_D - \{T_r^D\}$ with $D = (d_1, d_2, \ldots, d_n)$, we define an ordered tree, called the parent tree $P(T)$ of T, as follows. We have two cases. Note that for each case T and $P(T)$ have the same degree sequence. Thus $P(T) \in O_D$ holds. Let $I(T)$ be the subgraph of T induced by all inner vertices of T.

Case 1: $I(T)$ is the left-down path of T.

Let $LD = (\ell_1, \ell_2, \ldots, \ell_n)$ be the left-down path of T. Since $d(\ell_1) \geq d(\ell_2) \geq \cdots \geq d(\ell_n)$ holds only for T_r^D, and by assumption $T \in O_D - \{T_r^D\}$, there is some i such that $d(\ell_i) < d(\ell_{i+1})$. Let a be the smallest index such that $d(\ell_a) < d(\ell_{a+1})$. $P(T)$ is the ordered tree derived from T by (1) removing $d(\ell_{a+1}) - d(\ell_a)$ child leaves from ℓ_{a+1}, then (2) attaching the removed child leaves to ℓ_a so that the left-down path
remain as it was. See an example in Fig. 4. Intuitively $P(T)$ is derived from T by swapping ℓ_a and ℓ_{a+1}.

Case 2: $I(T)$ is not the left-down path of T.

$P(T)$ is the ordered tree derived from T by swapping (1) the subtree consisting of the pruning vertex p of T and its children, and (2) the leftmost leaf ℓ_q of T. See an example in Fig. 5. Note that all children of p are leaves since p is the last inner vertex in preorder. Also note that p is not in $I(T)$ since Case 1 does not occur.

Let O_D^1 be the subset of O_D consisting of all T such that $I(T)$ is the left-down path of T. If $I(T)$ is the left-down path of T then $P(T)$ is defined by Case 1 and $I(P(T))$ is also the left-down path of T. For any $T \in O_D^1 - \{T_r^D\}$, repeatedly finding the parent tree of the derived tree results in the sequence $T, P(T), P(P(T)), \cdots$, which always end at the root tree T_r^D of O_D. By merging the sequence above for each $T \in O_D^1$ we can define a tree structure among trees in O_D^1. See an example in Fig. 1.

Also note that if $I(T)$ is not the left-down path of T then $P(T)$ is defined by Case 2 and the number of vertices in the left-down path of $P(T)$ is increased by one from that of T. Again repeatedly finding the parent tree of the derived tree results in the sequence $T, P(T), P(P(T)), \cdots$, in which Case 1 eventually occurs somewhere, and after that the sequence always end at the root tree T_r^D of O_D as mentioned above. See an example in Fig. 6.

By merging the sequence above for each $T \in O_D - \{T_r^D\}$ we can define the family tree FT_D, in which each vertex in FT_D corresponds to a tree in O_D, and each edge corresponds to each relation between some T and $P(T)$. See an example in Fig. 2.
4 Listing Ordered Trees

In this section we give a simple but efficient algorithm to list all ordered trees in O_D.

If we have an algorithm to list all child trees of an ordered tree in O_D, then by recursively applying the algorithm starting at the root tree T^D, we can list all ordered trees in O_D. Now we are going to design such an algorithm.

Let T be an ordered tree in O_D. We have two cases. Note that $T \in O^1_D$ means $I(T)$ is the left-down path of T.

Case 1: $T \in O^1_D$.

In this case T may have some child trees both in O^1_D and $O_D - O^1_D$. Let $(\ell_1, \ell_2, \cdots, \ell_n)$ be the left-down path of T. Since $I(T)$ is the left-down path of T all but the leftmost children of ℓ_i are leaves for each $i = 1, 2, \cdots, n - 1$, and all children of ℓ_n are leaves.

Child trees in O^1_D

Let $T[i]$ be the ordered tree derived from T by transferring some leaf children of either ℓ_i or ℓ_{i+1} to the other so that (1) the degree of ℓ_i and ℓ_{i+1} are exchanged and (2) the left-down path remains as it was.

By the definition of the parent tree in Section 3, each child tree T_c of T in O^1_D is $T[i]$ for some i. However not all $T[i]$ are child trees of T. $T[i]$ is a child tree of T only if $P(T[i]) = T$ holds.

If $T = T^D$, then $d(\ell_1) \geq d(\ell_2) \geq \cdots \geq d(\ell_n)$ holds, and $T[i]$ is a child tree of T for each $i = 1, 2, \cdots, n - 1$ if $d(\ell_i) < d(\ell_{i+1})$.

Otherwise, $d(\ell_1) \geq d(\ell_2) \geq \cdots \geq d(\ell_n)$ does not hold. Let s be the smallest index such that $d(\ell_s) < d(\ell_{s+1})$. Now $T[i]$ is a child tree of T for each $i = 1, 2, \cdots, s - 1$ if $d(\ell_i) < d(\ell_{i+1})$. $T[s]$ is not a child of T. $T[s+1]$ is a child tree of T only if $d(\ell_{s+2}) \leq d(\ell_s)$. $T[i]$ is not a child tree of T for each $i = s + 2, s + 3, \cdots, n - 1$.

Note that if $T[i]$ is a child tree of T then the index s of $T[i]$ is always i.

Child trees in $O_D - O^1_D$

For each i, j such that $i = 1, 2, \cdots, n - 1$ and $j = 2, 3, \cdots, d(\ell_i)$, let $T[i, j]$ be the ordered tree derived from T by swapping (1) the subtree rooted at ℓ_n and (2) the j-th child of ℓ_i. Note that all children of ℓ_n are leaves.

By the definition of the parent tree in Section 3, for each i, j such that $i = 1, 2, \cdots, n - 1$ and $j = 2, 3, \cdots, d(\ell_i)$, $T[i, j]$ is a child tree of T.

Case 2: $T \notin O^1_D$.

In this case T has no child tree in O^1_D, since the parent of each tree in O^1_D is also in O^1_D. However T may have child trees in $O_D - O^1_D$.

Let $(\ell_1, \ell_2, \cdots, \ell_q)$ be the the left-down path of T.

The path (r_1, r_2, \cdots, r_p) is the right-down path of T if (1) r_1 is the root, (2) all child of r_p are leaves, and (3) r_{i+1} is the rightmost non-leaf child of r_i. Let (r_1, r_2, \cdots, r_p) be the right-down path of T for each $i = 1, 2, \cdots, p - 1$. For $i = 1, 2, \cdots, p - 1$ define $c(i)$ so that r_{i+1} is the $c(i)$-th child of r_i from the left.
Child trees in $O_D - O_D^1$

If T is the parent tree of some tree, then all the children of ℓ_q are leaves. Thus if ℓ_q has a non-leaf child, then T has no child tree. Assume otherwise. Now all the children of ℓ_q are leaves, and in this case T has one or more child trees, as follows.

Let $T[i,j]$ be the ordered tree derived from T by swapping (1) the subtree rooted at ℓ_q and (2) the subtree rooted at j-th child of r_i.

By the definition of the parent tree in Section 3, for each i, j such that $i = 1, 2, \ldots, p - 1$ and $j = c(i) + 1, c(i) + 2, \ldots, d(r_i)$, $T[i,j]$ is a child tree of T, and for each i, j such that $i = p$ and $j = 1, 2, \ldots, d(r_p)$, $T[p,j]$ is a child tree of T. Note that for each i and j above the subtree rooted at j-th child of r_i is just a leaf. Intuitively, we swap the subtree rooted at ℓ_q only with a leaf locating to "the right" of "the right-down path".

Based on the case analysis above, given an ordered tree T in O_D, we can find all child trees of T in O_D. We can find each child tree in $O(1)$ time on average. Then recursively applying the algorithm from the root tree T_D^r one can generate all ordered trees in O_D. Thus we have the following theorem.

Theorem 4.1 One can generate all ordered trees in O_D in $O(|O_D|)$ time.

5 Conclusion

In this paper we designed a simple algorithm to generate all ordered trees with specified degree sequence. The algorithm generates each tree in $O(1)$ time for each on average. Can we generate all unordered trees with specified degree sequence in $O(1)$ time for each?

References

