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1 Preliminaries

1.1 Generic structures

We review basic definitions and facts in the study of generic structures. Let
L = {R; :i € I} be a relational language. Fix any o; € R for each 7. For
a finite L-structure A, put §(4) = |A| — 3_; a;|RA|. Let K = {A : finite
L-structures |§(A4’) > 0,VA’ C A} and K be the set of L-structures whose
any finite substructure belongs to K. For A,B C M € K, we say that A
and B are free over AN B if RAB = R U RP for each i.

Lemma 1.1 For finite A and B,
1. (monotonicity) §(AB) + 6(AN B) < §(A) + 4(B),

2. (modularity equation) §(AB) + §(A N B) = §(A) + 6(B) if and only if
A and B are free over AN B.

We define 6(A/B) the relative predimension of A over B. For finite
A,B, §(A/B) = §(AB) — §(B). For finite A and arbitrary B, 6(A/B) =
inf{6(A — B/Bo) : Bo Csn B}. By monotonicity, it is easy to check that
these two definitions have the same value in the case A and B are both
finite.



Definition 1.2 Let A and B be any members of K with A C B. We say
that A is closed in B (or A is a strong substructure of B) if §(A4) < §(B’) for
any A C B’ C B,. If Ais closed in B, we write A < B. For any members A
and B of K Wlth A C B, we say that A < B if AN B’ < B’ for any finite
B’ C B.

By monotonicity, it is easy to check that these two definitions are the
same in the case A and B are both finite.

Fact 1.3 Let M be any member of K and A be any subset of M. Then there
exists the smallest closed superset A of A in M. We call A the closure of A
mn M.

Note that in the case o, is irrational, A is not necessarily finite even if
A is finite.

Fact 1.4 For any subset A of M, A is contained in the algebraic closure
acl(A) of A.

Definition 1.5 Let M be an L-structure. We say that M is a K-generic
structure if the following conditions are satisfied:

1. M is countable;
2. M is a member of K;

3. For any members A and B of K, if A < B and A < M, then there is
a copy B’ of B over A with B’ < M.

Example 1.6 A countable graph G is called a random graph if it satisfies
the following property: for each m,n € w and all ay,...,am,by,...,b, € G,
if {a1,...,am} and {by,...,b,} are disjoint, then there ezists ¢ € G such
that G = A <icm B(e, a,)/\/\1<J<n —R(c,b;). It is well known that a random
graph is uniquely ezist. Let K be the set of all finite graphs and 8(A) = |A]
for any finite graph A. Then the random graph is the K-generic structure.

Let M be a member of K. Put d(A4) = inf{§(A’)]A C A’ Cgn M} for any
finite subset A of M. We call d a dimension function for M. Note that if
A is finite, then d(A) = §(A4). We define d(A/B), the relative dimension of
A over B as follows. For finite subsets A and B of M, we define d(A/B) =
d(AB)~—d(B). For finite A and arbitrary B, put d(A/B) = inf{d(A—B/B) :
Bo Cgn B}. Monotonicity of d is proved in Section 3. Then we have that
these two definitions have the same value in the case A and B are both
finite.



1.2 Stability

Now, we study stability theory very shortly. A more detail explanation is
recorded in many books of stability theory, for example [7].

Definition 1.7 Let T be a theory and & be an infinite cardinal. Let M be
a big saturated model of T'.

1. We say that T is k-stable if for any A C M with |A] = &, the cardi-
nality of the set of complete types over A is equal to k.

2. We say that T is stable if T is k-stable for some .

3. Let M be a L-structure. We say that M is (k-)stable if Th(M) is
(k-)stable.

Definition 1.8 Let k be an infinite cardinal and (@;)i<« be a sequence of
n-tuples in M. We say that (@;)i<x is an indiscernible sequence over A if
for any k < w, 4; < --- < i, and j; < --- < jk, we have tp(@iyy ..., 8i [A) =
tp(&jl, ey (—ljk/A).

Fact 1.9 Suppose that T is stable. Let (@;)i<x be an indiscernible sequence.
For any k < w, if i1,...,1k are distinct and ji,...,Jjk are distinct, then we
have tp(@i,,...,ai,/A) = tp(@;,,- .- , @5, [A).

Definition 1.10 Suppose that T is stable. Let M be a big saturated model
of T.

1. Let @ be a finite tuple in M and ¢(z,a) be an L(a)-formula. We say
that ¢(z,a) forks over A if there is an indiscernible sequence (@i)icw
over A with @, = @ such that {¢(z,@;)|¢ < w} is inconsistent.

2. Let A C B C M and I'(z) be a set of L(B)-formulas. We say that
I'(z) forks over A if ¢(z) forks over A for some ¢(z) € I'(z).

3. Let A, B, and C be subsets of M. We say that A and B are forking
independent over C' and write A L B if tp(@/BC) does not fork over
C for any a € A.



2 Nonstandard arguments

In this section, we review how to apply a nonstandard argument to the study
of generic structures. Note that arguments in this section is essentially the
same as in [1].

Let M € K. We consider M to be a 3-sorted structure:

(MUPUR;Faeva)S)CL)

where P is the powerset of M, F is a unary relation on P such that for
any subset A of M, F(A) holds if and only if A is a finite set, € is the
membership relation on M x P, and ”---” contains L and (+,-,<) in R.

We define the nonstandard model M™* of M by a sufficiently saturated
elementary extension of this structure:

(MUPUR; F,€,6,<,d,---) < (M*U P*UR*; F*, €*,§*, <*,d*,---).

Notation 2.1 e For any set variables X and Y, we define X C* Y as
an abbreviation for Vz(z €* X —» z €*Y).

e Note that a function from P to P which maps each member of P to its
closure is defined by some formula ¢(X,Y). Let A* be any member
of P*. We write A* for the realization of p(A4*,Y). We say that A* is
closed if A* = A* holds.

e We denote F* (resp., €*, C*, §*, <*, d*) simply by F (resp., €, C, 4,
<, d) if there is no confusion.

e Ler r and s be any elements of R*. We write rxsif —-a<r—s<a
holds in M* for all positive real numbers a.

Definition 2.2 1. Let A* be any member of P*. We say that A* is a
hyperfinite set if F*(A4*) holds in M™*.

2. Let A be any subset of M and A* be any hyperfinite set. We say that
A* is a hyperfinite extension of A and write A* Dps A if

® M* |=a €* A* for each member a of A, and
o M* = A* C* A.

Remark 2.3 For any subset A of M, there erists a hyperfinite extension
of A.



Proof: 1t is enough to prove that the following set of formulas is satisfiable:
I'(X) = {a € X|a is a member of A} U{X C AYU{F(X)}.
But for any finite subset Ag of A, Ap realizes the following set of formulas:
T'o(X) = {a € X|a is a member of Ao} U{X C A}U{F(X)}.
So, by compactness, I'(X) is satisfiable.

Lemma 2.4 For any real number r, finite tuple @ in M, and subset A of
M, the following are equivalent:

1. §(a/A) =r;
2. §*(@/A*) = r for any hyperfinite extension A* of A;
3. §*(a/A*) = r, for some hyperfinite extension A* of A.

Proof: We may assume that an A =0.

(1 = 2) By monotonicity of 4, for each n < w, there is a finite subset
A, of A such that

MEVX(F(X)ANA, CXCA—r<éa/X)<r+1/n).

The above formula holds also in M* for each n < w. So if A* is a hyperfinite
extension of A, then we have

r < 8*(a@/A%) <r+1/n

for each n < w. So we have §*(a/A*) =~ r.

(2 = 3) Trivial.

(3 = 1) We assume 3 and choose a witness A*. Then 6*(a/A%) = r.
Suppose 1 is not the case. Let s = §(G/A). Then s # r. By (1 = 2), we
have é*(@/A*) ~ s. A contradiction.

Definition 2.5 Let A* be a hyperfinite set.

1. Let ¢ be any positive real number. We say that A* is e-closed if
§(B*/A*) > —e for any hyperfinite set B*.

2. We say that A* is quasi-closed if §(B*/A*) > 0 (thatis, §(B*/A*) > —e
for all positive real numbers) for any hyperfinite set B*.



Remark 2.6 For any hyperfinite set A*, A* is quasi-closed if and only if
d(A*) ~ 6(A%).

Proof: Immediate.

Remark 2.7 1. Let B be a closed subset of M. Then for any finite
subset A of B and any positive real number ¢, there is a finite e-closed
set B, with A C B, C B.

2. Let A be a finite subset of M. Then for any € > 0 and any A C B Cgy
A, there ezists B C C Cgn A4 such that (C) < d(A) +e.

3. Let A be a finite subset t of M. Suppose that (Bn)n<w is an zncreasmg
sequence of subsets of A such that Un<w Bn = A and B, is ;-clased
for each n < w. Then lim,—,, 0(Br) = d(A).

4. Let A C B Cqy A. Then d(A) = d(B).

Proof: 1. Otherwise, for any finite Ag C B, there is a finite set A CB
such that §(A;/Ag) < —e. Iterating this, we have a sequence of finite sets
(A;)i<w such that §(A,/Ap...An_1) < —e for each n < w. For sufficiently
large » < w, we must have 6(Ao Ap) < 0, a contradiction.

2. We may assume that A is mﬁmte By the definition of d(A), there
exists A C Co Cgn A such that §(Cp) < d(A) + ¢. Because Cp £ A, there
exists Co C Cy Cgn A such that §(C;) < §(Co). Iterating this, we can find
C such that B C C Cgn 4 and §(C) < §(Co) < d(A) + .

3. Fix arbitrary € > 0. For any sufficiently large n, B,, is e-closed. By 2,
there exists B, C C,, Cg, 4 such that §( Cr) < d(A) + € for each n. Then
6(Bn) < d(A) + 2¢. So, we have lim,,,, §(B,,) < d(A). The other direction
is clear.

4. Immediate from 3.

Lemma 2.8 Let A be a finite subset of M and B, C be any subsets of M.
If BCC, thend(A/B) > d(A/C).
Proof: Immediate from 4 of the above remark.

This Lemma is called monotonicity of d. It shows that two definitions

of d(A/B) have the same value in the case A and B are finite.

Lemma 2.9 For any real number r, finite tuple @ in M and subset A of
M, the following are equivalent:

1. d(ﬁ/A) =r,
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2. d(a/A*) = r for any hyperfinite extension A* of A;
3. d(@/A*) = r, for some hyperfinite eztension A of A.

Proof: By monotonicity of d, we can prove this lemma in the same way of
the proof of Lemma 2.4.

Lemma 2.10 For any subset A of M, the following conditions are equiva-
lent:

1. A is closed;
2. there is a quasi-closed hyperfinite extension of A.

Proof: (1 = 2) By Remark 2.7.1.

(2 = 1) Suppose A is not closed. Then there exists finite subset B of M
such that §(B/AN B) < 0. Take any hyperfinite extension A* of A. Because
AN B C* A* C* A, we have §(B/A*) < 6(B/BN A) < 0.

Definition 2.11 [11]

1. Let A and B be any finite subsets of M and C be arbitrary subset of
M. Then we say that A and B are d-independent over C' and write

A\Lé B if the following conditions are satisfied:
e d(A/BC) = d(A/C), and
e ACNBC =C.
2. For arbitrary subsets A, B, and C of M, we say that A and B are

d-independent over C if Ag J/?; By for every finite subset Ag of A and
every finite subset Bg of B.

Note that for closed sets A and B, A and B are d-independent over ANB
if and only if d(A¢/Bo(A N B)) = d(Ao/A N B) for every finite subset Ao of
A and every finite subset Bp of B.

 Definition 2.12 Let A and B be closed subsets of M. Then we say that A
and B are d*-independent over A N B if there exist a hyperfinite extension
A* of A and a hyperfinite extension B* of B such that

e A* and B* are both quasi-closed and

e d(A*/B*) = d(A*/A* 0 B*).
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Proposition 2.13 Let A and B be closed subsets of M. Then the following
are equivalent:

1. A and B are d-independent over AN B;
2. A and B are d*-independent over AN B;

3. There exist a hyperfinite extension A* of A and a hyperfinite extension
B* of B such that

e A* and B* are both quasi-closed,
e d(A*/B*) = d(A*/A* N B*), and
e (A*B*)N AN B = A*n B*.

Proof: (3 = 2) Trivial.

(2 = 1) Let A*, B* be a witness of d*-independence. Take any finite
subset A’ of A and any finite subset B’ of B. Then d(A*/B*) ~ d(A*/A* N
B*). By transposition, d(B*/A*) ~ d(B*/A* N B*). By monotonicity,
d(B*/A'(A* N B*)) ~ d(B*/A* N B*). Again by transposition, d(A’/B*) ~
d(A’/A*NB*). Again by monotonicity, d(A’/B’(A*N B*)) ~ d(A’'/A*N B*).
Finally, by Lemma 2.9, we have d(A’/B'(A N B)) = d(A’/AN B).

(1 = 3) Take A* Dps A and B* Dy B such that A* and B* are both
closed and (A*B*)N AN B = A* N B*. |

By compactness, it is enough to prove that for any finite subset Ag of
A, the following set of formulas are satisfiable:

1. F(X)
.XCA
LA C X

. 7d(X/B*) ~ d(X/X N B*)”

2

3

4. ” X is quasi-closed”

5

6. (XB*)NANB=XnB*

Note that 4 and 5 are both expressed by an infinite set of formulas.
We show that A5 = Ag(A* N B*) N A* is a realization of the above set of

formulas. 1, 2, 3, and 4 are clear.
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5. First,
d(A3/B") = d(A3B*) - d(B")
= d(ApB*) — d(B")
= d(Ao/B")
~ d(Ao/B).
Second,

I

d(A3/A; N BY) d(Ag) — d(A5 N B7)

d(Ao(A* N B*)) — d(A3 N B*)
d(Ao(A* N B*)) — d(A* N B*)
d(Ao/A” N B*)

d(AQ/A N B)

A

Q

Finally, by d-independence of A and B, d(A4o/B) = d(Ao/A N B).

Hence, d(Aj/Ag N B*) < d(Ag/B*). The other direction is clear by
monotonicity.

6. Note that(A3B*)NANB = (A3NANB)U(B*NANB) C (A*NB)U
(A*N B*) C A*NB*C A;N B*.

3 Characterization of independence in generic struc-
tures

In stable generic structures, we can define two notions of independence:
forking independence and d-independence. Wagner [11] showed that for
closed sets A and B, if AN B is algebraically closed, then A and B are
forking independent over A N B if and only if A and B are d-independent
over AN B. He proved the result in the case that K satisfies finite closure
condition. Verbovskiy and Yoneda [10] showed that the same result without
assuming the finite closure condition. In this paper, we also does not assume
the finite closure condition. To show the equivalence of forking independence
and d-independence, we prove the following two statements:

1. for closed sets A and B, A and B are d-independent over AN B if and
only if A and B are free over AN B and AB is closed;

2. for closed sets A and B, if AN B is algebraically closed, then A and

B are forking independent over AN B if and only if A and B are free
over AN B.



13

Wagner proved item 1 by using the epsilon-delta argument. In the first
half of this section, we give a nonstandard proof of item 1 by using Propo-
sition 2.13.

Both in [11] and [10], item 1 is used to prove item 2. Tsuboi [9] proved
item 2 without using item 1. In the second half of this section, we give a
nonstandard proof of item 2 by using the idea in [9].

Let M € K. Next lemma is a nonstandard version of Lemma ??

Lemma 3.1 For any subsets A and B of M, the following conditions are
equivalent:

1. A and B are free over AN B;

2. For any A* Dy A and any B* Dy B with (A*B*)NANB = A*N B*,
6(A*/A* N B*) =~ §(A*/B*);

3. There exist A* Dyt A and B* Dy B such that (A*B*)NANB = A*NB*

and

§(A*/A* N B*) ~ 6(A*/B*).

Proof: (1 = 2) Suppose 2 is not the case. The following finite set of
formulas are satisfiable:

e F(X)AF(Y)

e XCAAYCB

e XY)NANB=XnNY
e 5(X/XNY)>5(X/Y).

Let Ag and By be subsets of M satisfying the above formulas. Then Ay and
Bo witness that A and B are not free over A N B.

(2 = 3) Trivial.

(3 = 1) Suppose 1 is not the case. Then there exist finite A’ C A and
finite B’ C B such that

(A'BYNANB = A'NnB' and §(A'/A' N B') < §(A"/B’).
On the other hands,

M E VX,Y € F[(3X' Cgn X,3Y' Cn Y
XY)YNXNnY=X'NnY'A §(X'/X'NY') > 8(X'/Y))
= 44X/ XNY) > §X/Y)).
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So, for arbitrary A* Dps A and B* Dy B with (A*B*)N AN B = A* N B¥,
we have

§(A*/A* O B*) > §(A*/B").

Proposition 3.2 Let A and B be closed subsets of M. Then the following
are equivalent:

1. AB is closed and A and B are free over AN B;
2. A and B are d*-independent over AN B;
3. A and B are d-independent over AN B.

Proof: (2 < 3) By Proposition 2.13.

(1 = 2) Take D* Dy AB such that D* is quasi-closed and §(D*) =
§(D*NA)+8(D*NB)—6§(D*NANB). Then we have d(D*) = d(D*NA)+
d(D* N B) — d(D* N AN B).

(2 = 1) Let A*, B* be a witness of d*-independence. By Proposition
2.13, we may assume that (A*B*)N AN B = A*N B*. Then,

§(A*B*) §(A*) + 6(B*) — 6(A* N B*)
d(A*) + d(B*) — d(A* N B
d(A”B").

2 @ IN

The other direction is trivial. So, we have §( A*B*) ~ d(A*B*) and §(A*B*) =
§(A*) + §(B*) — 6§(A* N B*). By Lemma 2.10 and Lemma 3.1, AB is closed
and A and B are free over AN B.

Put T = Th(M). We assume that T is stable. Let M be a big model of
T. The following fact is easy.

Fact 3.3 [11] Let A and B be subsets of M. Suppose A and B are free over
AN B. Then for any A’ < A and B' < B with ANB' = ANB, A'B’ is
closed in AB.

Note that for any finite subset A of M and any n < w, the relation
|A| = n is definable. So we may assume that the domain of the function | x|
is the set of all hyperfinite sets and the range of it is R*.

Proposition 3.4 Let A and B be closed subsets of M. Suppose that AN B
is algebraically closed. Suppose also that A and B are forking independent
over AN B. Then
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1. A and B are free over AN B and
2. AB 1s closed.

Proof: By the above fact, we can assume that A and B are both alge-
braically closed.

Claim A There are sequences (A;)i<., and (Bi)i<w satisfying the following
properties:

e tp(A:B;/AN B) =tp(AB/AN B) for any i, € w;
o {A;:i<w}U{B;:i< w} is an independent set.

Proof:  Let (B;)i<. be a Morley sequence over AN B with By = B. By
AL 4B B, we can assume tp(AB;/AN B) = tp(AB/A N B) for any i < w.
Take Any1 be a realization of a nonforking extension of tp(A4/|J B;) to
Uj<nt1 45 U U<, Bi for each n.

(1)Freeness: Suppose not. For simplicity, we assume that there are a
ternary relation R € L and elements a € A — (AN B), b€ B - (AN B),
and ¢ € AN B such that R(a,b,c) holds. By the above claim, there are
a; € A; and b; € B; such that for any i,j < w, tp(a;bjc) = tp(abc). In
particular, R(a;,bj,c) holds for any 4,5 < w. Then there are hyperfinite
sets A* with |A*| > n (for each n < w) and B* with |B*| = |A*| such that
M?* =Vz € A*Vy € B*R(z,y,c). Then we have

i<w

6"(A*B*) < |A%|+|B*| - a(]4*| x | B*))
|4 +|A%| — a(|A™| x |4*])
0.

I

A

A contradiction.

(2)Closedness: Suppose not. For simplicity, we assume that there are
elements d € acl(AB) — AB, a € A, and b € B such that v := §(d/ab) < 0.
By the claim, for all ¢,j € w, we can find a; € A;, b; € B; and d;; such that
tp(abdAB) = tp(a,,'b,'d,'jA,'Bj).

Claim B (U(z’,j)ew2 di;) N (Uiew AiB;) =10

Proof: Take any e € d;;. By choice of d;;, we have e ¢ A;B;. By
symmetry, it is enough to show that e € A,, for any m # i. Note that
e € acl(A4;B;) and acl(4;B;) N Am = ANB by A;B; L A,,. Bute ¢ AN B,
soed A,,.
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Claim C d;;’s are distinct.

Proof: By way of a contradiction, we assume d;; = dj for some
(3,7) # (¢,5"). Then di; € acl(A;Bj) Nacl(AyBjs). Note that acl(4;B;) N
acl(A;Bj1) = A; and if i # ¢ and j # j', acl(4iB;) N acl(AyBj)) = AN B.
But d; ; ¢ A;. A contradiction.

Note that §(U;<, aibi) = nd(aobo) and 6(U: jyen2 dij)/ Uicn @ibi) <
n2v for each n < w. So, there are hyperfinite sets A* with |A*| > n (for
each n < w), B* with |B*| = |4*|, and D* with |D*| = |A*|? such that
6*(A*B*) = |A*|6(aogho) and 8*(D*/A*B*) < | A*|%.

Then we have

§(D*A*B*) < 6(D*/A*B*)+ 4(A*B%)
< |A*y +|A*|6(aobo)
< 0.

A contradiction.

Definition 3.5 We say that T has amalgamation over closed sets if for any
No,Ni1 =T, A € K, and closed embeddings f; : A — N; (¢ = 0,1), there
are N = T and elementary embeddings g; : N; = N (i = 0,1) such that
goo fo = g1 0 fi on A, equivalently for any N |= T and Ao, A1 C N, if
Ao = A, and Ag and A; are both closed, then tp(Ag) = tp(A1)-

Fact 3.6 [4, 10] If T has amalgamation over closed sets, then T is stable.

Corollary 3.7 If T has amalgamation over closed sets, then for closed sets
A and B with AN B is algebraically closed, the following are equivalent:

1. A and B are forking independent oner AN B;
2. A and B are d-independent over AN B;
3. A and B are free over AN B and AB is closed.

Proof: We have already proved (1 = 3) and (2 & 3).

(3 = 1) Suppose 3. Take A’ such that A’ is independent from B over
AN B and satisfies tp(A/A N B). By (1 = 3), we have that A’ and B are
free over AN B and A’B is closed. By amalgamation over closed sets, we
have tp(AB/A N B) = tp(A’'B/A N B). Hence, A is also independent from
B over AN B.
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