<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>BOREL DEFINABLE SUBGROUPS AND ALMOST INTERNALITY IN ROSY DEPENDENT GROUPS (A study of real algebraic geometry in weakly o-minimal structures)</td>
</tr>
<tr>
<td>作者</td>
<td>YONEDA, IKUO</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1646: 1-3</td>
</tr>
<tr>
<td>発行日</td>
<td>2009-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140692</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
BOREL DEFINABLE SUBGROUPS AND ALMOST INTERNALITY IN ROSY DEPENDENT GROUPS

東海大学理学部数学科 水田郁生 (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

ABSTRACT. Let G be a rosy dependent group with a countable language, weak canonical bases and elimination of hyperimaginaries. Let p be a global p-generic type and Σ be an \emptyset-invariant family of partial types. Under a certain assumption on independence relations of global types we show that if $p\frown \emptyset$ is not foreign to Σ, then there exists a Borel definable subgroup H such that G/H is almost Σ-internal.

1. Preliminaries

We review some definitions and facts. We only consider theories having elimination of hyperimaginaries and we will work in the eq-structures.

ROSY THEORIES (See [A]): Let T be rosy and \mathcal{M} be a big model. We work in \mathcal{M}^{eq}. We say that T has weak canonical bases if for any type p there exists the smallest algebraically closed subset $\text{wcb}_p(p)$ such that p does not p-forks over $\text{wcb}(p)$. In [A] Adler showed that if T has weak canonical bases then $\text{wcb}_p(\bar{a}/B) = \text{aker}((a_i)_{i<\omega}) := \{ d \in \text{acl}^{eq}((a_i)_{i<\omega}) : (a_i)_{i<\omega} \text{ is } d\text{-indiscernible} \}$, where $B = \text{acl}^{eq}(B)$ and $(a_i)_{i<\omega}$ is a Morley sequence of $\text{tp}(\bar{a}/B)$.

DEPENDENT THEORIES (See [HP]): Let T be dependent. In [HP], it is shown that a global type $p \in S(\mathcal{M})$ does not fork over an algebraically closed set $A \subseteq \mathcal{M}$ if and only if p is $\text{acl}^{eq}(A)$-invariant if and only if p is strongly Borel definable over $\text{acl}^{eq}(A)$. (We say that p is strongly Borel definable over A if for any formula $\varphi(x, y)$, there exists a finite Boolean combination of partial types over A, say $D_{p,\varphi}(y)$, such that $\varphi(x, b) \in p$ if and only if $p \models D_{p,\varphi}(b)$ for any b. It is also mentioned that a global type p is $A(\subseteq \mathcal{M})$-invariant, then any Morley sequence of p over A has the same type over A.

ROSY GROUPS (See [EKP]): Let $(G(x), \cdot)$ be a rosy group over \emptyset and let \downarrow^p be thorn-non-forking relation. There exists p-generic type $p \in S(A)$ for G over A: $p(x) \vdash G(x)$ and if $a, b \in G$ with $a \models p$ and $a \downarrow^p A$, then $b \cdot a \downarrow^p A, b$ holds. And then $\text{tp}(b \cdot a/A)$ is also p-generic.

FOREIGNNESS and ALMOST INTERNALITY in ROSY THEORIES: Let

Date: August 29, 2008.
1991 Mathematics Subject Classification. 03C45.
Key words and phrases. Rosy dependent groups, internality.
Theorem 2.1. Let G be a rosy group and let H be a Borel definable subgroup over B. We say that G/H is almost Σ-internal if for each $gH \in G/H$ there exist C and $D \models \Sigma|B$ such that $g \downarrow B^p C$ and gH is acl$^{eq}(B, C, D)$-invariant.

Here, gH is an ultrimaginary element, we do not consider thorn-independence relation on ultraimaginaries, so we do not define $gH \downarrow B^p C$.

Proposition 2.2. Let G be a rosy dependent group having weak canonical bases and a countable langage. Suppose that G is sufficiently saturated and any global type (i.e. over G) does not p-fork over A if and only if it does not fork over A. Let p be a global p-generic type of G. If $p|\emptyset$ is not foreign to \emptyset-invariant family of partial types Σ, then there exists a Borel definable subgroup H such that $|G/H| \geq \omega$ and G/H is almost Σ-internal.

Proof. Note that p is acl$^{eq}(\emptyset)$-invariance: By the definition of p-generics, p does not p-fork over \emptyset. By our assumption p does not fork over \emptyset, so we see acl$^{eq}(\emptyset)$-invariance of p by dependence of G.

As $p|\emptyset$ is not foreign to Σ, there exist $A \subset G, a \models p|A$ and $b \models \Sigma$ such that $a \downarrow_A p b$. We may assume $a, \bar{b} \downarrow_A G$. By our assumption we have $a, \bar{b} \downarrow_A G$, where $\downarrow_A f$ denotes non-forking relation. Let $B := wc_{p}(a, \bar{b}/G)(= wc_{f}(a, \bar{b}/G))$.

Claim. Put $H = \{g \in G : g \cdot a, \bar{b} \equiv B (a, \bar{b})\}$ is a Borel definable (over B) subgroup of G.

$H \leq G$. Let $g \in K$. As $g^{-1} \in G$, it holds that $a, g^{-1} \cdot g \cdot a, \bar{b} \equiv G \cdot g^{-1} \cdot g \cdot a, \bar{b}$, we have $g^{-1} \in H$. Let $g, g' \in H$. As $g' \in G$, we have $g' \cdot g \cdot a, \bar{b} \equiv G \cdot g' \cdot a, \bar{b} \equiv G \cdot a, \bar{b}, g' \cdot g \in H$ follows.

The Borel definability of H over B: Let $\varphi(u \cdot x, \bar{y}, \bar{z}) \in L$ and put $q = tp(a, \bar{b}/G)$. There exists a $D_{q, \varphi}(u, \bar{z})$ which defines a strongly Borel definable set over B such that $\varphi(d \cdot x, \bar{y}, \bar{c}) \in q$ if and if only $D_{q, \varphi}(d, \bar{c})$ for any $d \in G, \bar{c} \subset G$. As $H = \bigcap_{\varphi \in L} \{g \in G : D_{q, \varphi}(d, \bar{c}) \rightarrow D_{q, \varphi}(d \cdot g^{-1}, \bar{c})\}$ for any $d \in G, \bar{c} \subset G$, the Borel definability of H over B follows.

Claim. $|G/H| \geq \omega$

As p is acl$^{eq}(\emptyset)$-invariant, take $(g_i)_{i<\omega} \subset G$ be the Morley sequence of $p|B$. As $a, \bar{b} \downarrow_B (g_i)_{i<\omega}, g := g_j^{-1} \cdot g_i$ is p-generic over B, a, \bar{b}. So we have $g \cdot a \downarrow_B \bar{b}$.
As a $\bigwedge^p_B \bar{b}$, we see that $g \not\in H$ as desired.

Fix $g \in G$ and take a Morley sequence $(a_i)_{i<\omega} \subseteq G$ of $p|B, g$. Note that $g \bigwedge^p_B (a_i)_{i<\omega}$.

Again take a Morley sequence $(g \cdot a'_i, b_i)_{i<\omega}$ of $tp(a, \bar{b}/G)|B, g, (a_i)_{i<\omega}$. (tp$(a, \bar{b}/G)$ is B-invariant.) As $(a_i)_{i<\omega}$ and $(g \cdot a'_i)_{i<\omega}$ are Morley sequences of $p|B, g$, we have $(a_i)_{i<\omega} \equiv_B g (g \cdot a'_i)_{i<\omega}$. Let $(b'_i)_{i<\omega} \subseteq G$ be such that $(a_i, b'_i)_{i<\omega}$ is a Morley sequence of $tp(a, \bar{b}/G)|B, h$. So $wcb_p(a, \bar{b}/G) = wcb_p(a, \bar{b}/G) \subseteq acl^eq((a_i, b'_i)_{i<\omega})$. Therefore $tp(a, \bar{b}/G)$ is acl$^eq((a_i, b'_i)_{i<\omega})$-invariant and $b'_i \models \Sigma|B$.

Claim. Let $\sigma \in Aut(G/acl^eq((a_i, b'_i)_{i<\omega}, B))$. Then $\sigma(gH) = gH$.

As $tp(a, \bar{b}/G)$ is acl$^eq((a_i, b'_i)_{i<\omega})$-invariant, we have $g \cdot a, \bar{b} \equiv_G \sigma(g) \cdot a', \bar{b}'$. As $\sigma(g) \in G$ and $tp(a, \bar{b}/G)$ is B-invariant, we see $g \cdot a, \bar{b} \equiv_G \sigma(g) \cdot a', \bar{b}' \equiv_G \sigma(g) \cdot a, \bar{b}$, as desired.

We get $g \bigwedge^p_B (a_i)_{i<\omega}, b'_i \models \Sigma|B$ and gH is acl$^eq((a_i, b'_i)_{i<\omega}, B)$-invariant.

Question 2.3.

1. Let \mathcal{M} be a sufficiently saturated rosy model and any global type (i.e. over \mathcal{M}) does not p-fork over A if and only if it does not fork over A. Then is \mathcal{M} simple?

2. Can we find a Borel definable NORMAL subgroup H as in the Proposition?

3. Can we find a Σ-connected component G^Σ in a Borel definable way? (G^Σ want to be foreign to Σ, connected and invariant under any definable automorphism as in [W].)

4. Does any superrosy field has monomial U^p-rank? If so, Nubling’s proof [N] that any supersimple field is n-ample for any $n < \omega$ works for any superrosy field.

References

Department of Mathematics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan

E-mail address: ikuo.yoneda@3.dion.ne.jp