<table>
<thead>
<tr>
<th>Title</th>
<th>A survey on Shapovalov determinants of (generalized) quantum groups at roots of 1 (Expansion of Combinatorial Representation Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamane, Hiroyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1647: 153-162</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140695</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A survey on Shapovalov determinants of (generalized) quantum groups at roots of 1

Hiroyuki Yamane

Abstract

This is an informal survey on a joint work [HY08b] with Istvan Heckenberger.

1 A quantum group $U(\chi)$ defined for any bi-character χ

Recently study of Nichols algebras has been achieved very actively for the viewpoint of classification of Hopf algebras, see [AS98], [AS02], [Hec06]. One of their examples is the positive part $U^+(\chi)$ of a generalized quantum group $U(\chi)$ defined below.

Let k be a field and $k^\times = k \setminus \{0\}$. For $n \in \mathbb{Z}_{\geq 0}$ and $x \in k$, let

\begin{equation}
[n]_x = \sum_{m=1}^{n} x^{m-1}, \quad [n]_x! = \prod_{m=1}^{n} [m]_x.
\end{equation}

For two elements X_1 and X_2 of a k-algebra we use the convention:

\begin{equation}
X_1 \leftrightarrow X_2 \quad \text{def} \quad \exists x \in k^\times \ X_1 = xX_2.
\end{equation}

Let I be a finite index set. Let $\Pi = \{i \in I \mathbb{Z} \alpha_i \}$ be a rank $|I|$ free \mathbb{Z}-module with a basis $\Pi = \{\alpha_i | i \in I\}$. We say that a map $\chi : \Pi \times \Pi \to k^\times$ is a bi-character if $\chi(a + b, c) = \chi(a, c)\chi(b, c)$, and $\chi(a, b + c) = \chi(a, b)\chi(a, c)$ for all $a, b, c \in \Pi$.

Let χ be any bi-character. Then, as we explain more precisely in Section 2, Lusztig's definition [L, 3.1.1] of the quantum groups can be applied to define the Hopf k-algebra $U(\chi)$ with the generators

\begin{equation}
K, L \ (\lambda \in \Pi), \ E_i, F_i \ (i \in I),
\end{equation}
for which $K\ L$ $(\lambda, \mu \in \mathbb{Z}\Pi)$ are linearly independent and the following equations hold:

(4) $K_0 = L_0 = 1, \ K_+ = K K, \ L_+ = L L, \ K L = L K,$

(5) $K L E_j(K L)^{-1} = \frac{\chi(\lambda, \alpha_j)}{\chi(\alpha_j, \mu)} E_j, \ K L F_j(K L)^{-1} = \frac{\chi(\alpha_j, \mu)}{\chi(\lambda, \alpha_j)} F_j,$

(6) $E_i F_j - F_j E_i = \delta_{ij}(K\ L\).$

(7) $\Delta(K L) = K L, \ \Delta(K L)^{-1} = 1, \ S(K L) = (K L)^{-1},$

(8) $\Delta(E_i) = E_i + K, \ \Delta(F_i) = F_i + L, \ \varepsilon(E_i) = 1, \ \varepsilon(F_i) = 0,$

(9) $\varepsilon(E_i) = \varepsilon(F_i) = 0, \ S(E_i) = K^{-1} E_i, \ S(F_i) = F_i L^{-1}.$

Let $U^0(\chi) := k \cdot U \ L.$ Let $U^+(\chi)$ and $U^-(\chi)$ be the subalgebra of $U(\chi)$ generated by E_i and F_i with all $i \in I$ respectively. Then $U(\chi) = U^+(\chi) U^0(\chi) U^-(\chi),$ as a k-linear space. We have the $Z_{\geq 0}\Pi$-grading $U^\pm(\chi) = \varepsilon_{Z_{\geq 0}\Pi} U^\pm(\chi) \pm$ defined by $U^+(\chi) = \k E_i, \ U^-(\chi) = \k F_i,$ and $U^\pm(\chi) \subset U^\pm(\chi) \pm.$ We also have $\dim U^+(\chi) = \dim U^+(\chi)$ for all $\lambda \in Z_{\geq 0}\Pi.$

2 Drinfeld pairing of $U(\chi)$

Here we will explain how to define $U(\chi)$ more precisely. By abuse of notation, we use the same symbols as above for the generators of the algebras introduced in this paragraph. Let $\tilde{U}^+(\chi)$ and $\tilde{U}^-(\chi)$ be the free k-algebras (with 1) with the generators $\{E_i|i \in I\}$ and $\{F_i|i \in I\}$ respectively. Let $\tilde{U}^0(\chi)$ be the k-linear space with the basis $\{K L | \lambda, \mu \in \mathbb{Z}\Pi\}.$ Let $\tilde{U}(\chi) = \tilde{U}^+(\chi) \k \tilde{U}^0(\chi) \k \tilde{U}^-(\chi).$ Identify $X \in \tilde{U}^+(\chi), \ Z \in \tilde{U}^0(\chi) \text{ and } Y \in \tilde{U}^-(\chi)$ with $X = 1, \ Y = 1.$ $\lambda \in \mathbb{Z}_{\geq 0}\Pi.$ and $\ell \ 1$ 1 Y respectively, and regard $\tilde{U}^+(\chi), \ \tilde{U}^0(\chi)$ and $\tilde{U}^-(\chi)$ as subspaces of $\tilde{U}(\chi)$ in this way. Then $\tilde{U}(\chi)$ can be regarded as the k-algebra (with 1) presented by the same generators as the ones for $U(\chi)$ and the relations (4), (5) and (6) (cf. [L, Prop. 3.2.4]). Further $\tilde{U}(\chi)$ can be regarded as the Hopf k-algebra with the same equalities as (7), (8) and (9). Let $\tilde{U}^{+,K}(\chi)$ be the subalgebra of $\tilde{U}(\chi)$ generated by E_i's and K's. Let $\tilde{U}^{L,-}(\chi)$ be the subalgebra of $\tilde{U}(\chi)$ generated by F_i's and L's. Then there exists a unique k-bilinear form

$$\langle , \rangle : \tilde{U}^{+,K}(\chi) \times \tilde{U}^{L,-}(\chi) \to k$$
with

\[(1) \quad \langle 1, Y \rangle = \epsilon(Y), \quad \langle X, 1 \rangle = \epsilon(X), \quad \langle S(X), Y \rangle = \langle X, S^{-1}(Y) \rangle,\]

\[(2) \quad \langle X_1 X_2, Y \rangle = \sum_g \langle X_2, Y^{(1)}_g \rangle \langle X_1, Y^{(2)}_g \rangle,\]

\[(3) \quad \langle X, Y_1 Y_2 \rangle = \sum_h \langle X_h^{(1)}, Y_1 \rangle \langle X_h^{(2)}, Y_2 \rangle,\]

\[(4) \quad \langle E_i, F_j \rangle = \delta_{ij}, \quad \langle K, L \rangle = \chi(\lambda, \mu), \quad \langle E_i, L \rangle = \langle K, F_j \rangle = 0\]

for \(X, X_1, X_2 \in \tilde{U}^{+,K}(\chi)\) with \(\Delta(X) = \sum_h X_h^{(1)} X_h^{(2)}\), and \(Y, Y_1, Y_2 \in \tilde{U}^{L,-}(\chi)\) with \(\Delta(Y) = \sum_g Y_g^{(1)} Y_g^{(2)}\) and for \(i, j \in I\) and \(\lambda, \mu \in \mathbb{Z}\Pi\). We see

\[(5) \quad \langle \tilde{E}K, \tilde{F}L \rangle = \langle \tilde{E}, \tilde{F} \rangle \langle K, L \rangle\]

for \(\tilde{E} \in \tilde{U}^{+}(\chi)\) and \(\tilde{F} \in \tilde{U}^{-}(\chi)\). Further, letting \(\tilde{U}^{\pm}(\chi) = \mathbb{Z}_{\geq 0}\Pi^{\pm} \tilde{U}^{\pm}(\chi)_{\pm}\) be the \(\mathbb{Z}_{\geq 0}\Pi\)-grading on \(\tilde{U}^{\pm}(\chi)\) defined in a way similar to the one on \(U^{\pm}(\chi)\), we have \(\langle \tilde{U}^{+}(\chi), \tilde{U}^{-}(\chi) \rangle = \{0\}\) if \(\lambda \neq \mu\). Let

\[(6) \quad \tilde{J}^{+}(\chi) = \{\tilde{E} \in \tilde{U}^{+}(\chi) | \langle \tilde{E}, \tilde{U}^{-}(\chi) \rangle = \{0\}\},\]

\[(7) \quad \tilde{J}^{-}(\chi) = \{\tilde{F} \in \tilde{U}^{-}(\chi) | \langle \tilde{U}^{+}(\chi), \tilde{F} \rangle = \{0\}\},\]

\[(8) \quad \tilde{J}(\chi) = \text{Span}_k(\tilde{J}^{+}(\chi) \tilde{U}^{0}(\chi) \tilde{U}^{-}(\chi) + \tilde{U}^{+}(\chi) \tilde{U}^{0}(\chi) \tilde{J}^{-}(\chi))\]

Then \(\tilde{J}(\chi)\) is the kernel of the Hopf algebra epimorphism from \(\tilde{U}(\chi)\) to \(U(\chi)\) sending the generators to the ones denoted by the same symbols.

Theorem 1. (Kharchenko [Kha99]) There exist \(M \in \mathbb{N} \cup \{\infty\}\) and elements \(\hat{E}_i \in U^{+}(\chi)_{i}\), \((1 \quad i \quad M)\) for some \(\beta_i \in \mathbb{Z}_{\geq 0}\Pi \setminus \{0\}\) such that we have the \(k\)-basis of \(U^{+}(\chi)\) formed by the elements

\[(9) \quad \left\{ \begin{array}{ll} \hat{E}_1^{m_1} \hat{E}_2^{m_2} & \text{if } M \text{ is finite, that is } M \in \mathbb{N}, \\ \hat{E}_1^{m_1} \hat{E}_2^{m_2} \hat{E}_M^{m_M} & \text{for some } M' \in \mathbb{N} \text{ if } M = \infty \end{array} \right.\]

with \(0 \quad m_i \quad h_i\), and \(h_i := \text{Max}\{n|\text{[|]}_n(\text{., .})! \neq 0\}\) \(\in \mathbb{N} \cup \{+\infty\}\).

Let

\[(10) \quad R_+ := \{\beta_i | 1 \quad i \quad M\}.\]

We say that \(\chi\) is finite-type if \(|R_+| < +\infty\). See [H09] for the classification. Note that if \(\dim U(\chi) < \infty\), then \(\chi\) is finite-type.
Theorem 2. (see [HY08b, Theorems 4.8, 4.9]) Assume that χ is finite-type. Then $|R_+|=M$ as for (20). We write $E_{i}=\hat{E}_{i}$ if $\hat{E}_{i}\in U(\chi)$. Then after re-choosing E_{i} (as in (51)), we may assume that $E_{j}^{h+1}\equiv 0$ if $h<+\infty$ and that $E_{i}E_{j}\chi(\beta_{i},\beta_{j})E_{j}E_{i}\in (E|,i<r<j)$ for any $i<j$, so

\begin{equation}
\{E_{f(1)}^{m_{f(1)}}E_{f(2)}^{m_{f(2)}}E_{f(M)}^{m_{f(M)}}|0 \leq m_{i}\}
\end{equation}

is a k-basis of $U(\chi)$ for any bijective map $f:\{1,2,\ldots,M\}\rightarrow \{1,2,\ldots,M\}$.

Convention. Let $\chi_{1},\chi_{2}:\mathbb{Z}\Pi\times \mathbb{Z}\Pi\rightarrow k^{\times}$ be two bi-characters. Let $f_{1},f_{2}:U(\chi_{1})\rightarrow U(\chi_{2})$ be two k-algebra homomorphisms. Then we write

\begin{equation}
(22)\quad f_{1}=f_{2}
\end{equation}

if

\begin{equation}
(23)\quad f_{1}(K L)=f_{2}(K L),\quad f_{1}(E_{i})=f_{2}(E_{i}),\quad f_{1}(F_{i})=f_{2}(F_{i})
\end{equation}

for all $\lambda,\mu\in \mathbb{Z}\Pi$ and $i\in I$.

3 Heckenberger’s Lusztig-type isomorphisms

Here we explain a generalization [H07] of Lusztig-type isomorphisms [L].

Assume χ to be any bi-character. Let

\begin{align*}
(24)\quad [X,Y]^{+} &= X Y \quad \chi(\lambda,\mu)Y X, \\
(25)\quad [X,Y]^{-} &= X Y \quad \chi(\lambda,\mu)^{-1}Y X, \\
(26)\quad [X,Y]^{\vee,+} &= X Y \quad \chi(\mu,\lambda)Y X, \\
(27)\quad [X,Y]^{\vee,-} &= X Y \quad \chi(\mu,\lambda)^{-1}Y X
\end{align*}

for $X\in U(\chi)$ and $Y\in U(\chi)$ with $\lambda,\mu\in \mathbb{Z}\Pi$. Let $i,j\in I$ be such that $i\neq j$. Let

\begin{align*}
E_{i}^{+} &= E_{i}, \quad E_{i}^{-}=E_{i}, \\
E_{j}^{+}+m_{i} &= [E_{i},E_{j}^{+}+(m-1)_{i}]_{+}, \quad E_{j}^{-}+m_{i} = [E_{i},E_{j}^{-}+(m-1)]_{-}, \\
F_{j}^{+}+m_{i} &= [F_{i},F_{j}^{+}+(m-1)]_{+}^{\vee}, \quad F_{j}^{-}+m_{i} = [F_{i},F_{j}^{-}+(m-1)]_{-}^{\vee},
\end{align*}

for $m\in \mathbb{N}$. For $m\in \mathbb{Z}_{\geq 0}$, we have

\begin{equation}
(29)\quad [m](\alpha,\beta)^{\dagger} \prod_{s=1}^{m}(1-\chi(\alpha_{i},\alpha_{i})^{s-1}\chi(\alpha_{i},\alpha_{j})\chi(\alpha_{j},\alpha_{i})) \neq 0
\end{equation}

$\iff E_{j}^{+}+m_{i} \neq 0 \iff E_{j}^{-}+m_{i} \neq 0 \iff F_{j}^{+}+m_{i} \neq 0 \iff F_{j}^{-}+m_{i} \neq 0$

$\iff \alpha_{j}+m\alpha_{i} \in R_{+}$.

We also have
\[[E_{j+m_{ij}}^{+}, F_{j+m_{ij}}^{+}] = (\chi(\alpha_{i}, \alpha_{j})^{m_{ij}-1}\chi(\alpha_{i}, \alpha_{j})\chi(\alpha_{j}, \alpha_{i}))^{m}[E_{j+m_{ij}}^{-}, F_{j+m_{ij}}^{-}] \]
\[= (1)^{m}[m]! \prod_{s=1}^{m}(1 + \chi(\alpha_{i}, \alpha_{i})^{s-1}\chi(\alpha_{i}, \alpha_{j})\chi(\alpha_{j}, \alpha_{i}))^{m_{ij}}[E_{j+m_{ij}}^{-}, F_{j+m_{ij}}^{-}]. \]

Theorem 3. ([H07]) Let \(i \in I \). Assume that for all \(j \in I \setminus \{i\} \), there exist \(m_{ij} \in \mathbb{Z}_{\geq 0} \) such that \(E_{j+m_{ij}}^{+} \neq 0 \) and \(E_{j+(m_{ij}+1)}^{+} = 0 \).

1. There exist a bi-character \(r_{i}(\chi) : \mathbb{Z}\Pi \times \mathbb{Z}\Pi \to k^{\times} \) and \(k \)-algebra isomorphisms \(\sigma_{i}^{r_{i}(\chi)} : \mathbb{Z}\Pi \to \mathbb{Z}\Pi \) by
\[
T_{i} = T_{i}^{+} : U(r_{i}(\chi)) \to U(\chi), \quad T_{i}^{-} : U(r_{i}(\chi)) \to U(\chi)
\]
such that
\[
T_{i}^{\pm}(K_{i}) = K_{-i}, \quad T_{i}^{\pm}(L_{i}) = L_{-i},
\]
\[
T_{i}^{\pm}(K_{j}) = K_{j + m_{ij}}^{\pm}, \quad T_{i}^{\pm}(L_{j}) = L_{j + m_{ij}}^{\pm},
\]
\[
T_{i}(E_{i}) = F_{i}^{\pm}L_{-i}, \quad T_{i}^{-}(E_{i}) = K_{-i}E_{i},
\]
\[
T_{i}^{\pm}(E_{j}) = E_{j}^{\pm} + m_{ij}^{\chi}, \quad T_{i}^{\pm}(F_{j}) = F_{j}^{\pm} + m_{ij}^{\chi},
\]
where \(j \in I \setminus \{i\} \).

2. \(r_{i}(r_{i}(\chi)) \) exists in the same way as above with \(r_{i}(\chi) \) in place of \(\chi \). Further \(r_{i}(r_{i}(\chi)) = \chi, \quad m_{ij}^{r_{i}(\chi)} = m_{ij} \) for all \(j \in I \setminus \{i\} \).

3. Let \(T_{i} : U(r_{i}(\chi)) \to U(\chi) \) be as in (31). Let \(T_{i}^{-} : U(\chi) \to U(r_{i}(\chi)) \) be the one as in (31) defined with \(r_{i}(\chi) \) in place of \(\chi \). Then \(T_{i}^{-}T_{i} = id_{U(\chi)} \) and \(T_{i}T_{i}^{-} = id_{U(r_{i}(\chi))} \).

4. Define the \(\mathbb{Z} \)-module isomorphism \(\sigma_{i}^{r_{i}(\chi)} : \mathbb{Z}\Pi \to \mathbb{Z}\Pi \) by \(T_{i}^{\pm}(U(r_{i}(\chi))) = U(\chi), \chi_{i} \) for all \(\lambda \in \mathbb{Z}\Pi \). Then
\[
\sigma_{i}^{r_{i}(\chi)}(\lambda) = \sigma_{i}(\sigma_{i}^{r_{i}(\chi)}(\lambda)) = id_{\mathbb{Z}\Pi}
\]
and
\[
\sigma_{i}^{r_{i}(\chi)}(R_{+}^{r_{i}(\chi)} \setminus \{\alpha_{i}\}) = R_{+} \setminus \{\alpha_{i}\}, \quad \sigma_{i}^{r_{i}(\chi)}(\alpha_{i}) = \alpha_{i}.
\]

Theorem 4. ([H07]) Assume \(\chi \) to be finite-type. Let \(i, j \in I \) to be such that \(i \neq j \). Let \(M = |R_{+} \cap (\mathbb{Z}_{\geq 0}\alpha_{i} \cup \mathbb{Z}_{\geq 0}\alpha_{j})| \). For \(n \in \{1, 2, \ldots, M\} \), define two bi-characters \(\chi_{n}, \chi'_{n} \), two \(\mathbb{Z} \)-module automorphism \(\sigma_{n}, \sigma_{n}' \) of \(\mathbb{Z}\Pi \) and two \(k \)-algebra
isomorphisms \(\bar{T}_n : U(\chi_n) \rightarrow U(\chi), \bar{T}'_n : U(\chi'_n) \rightarrow U(\chi) \) in the way that \(\chi_1 = \chi'_1 = \chi, \bar{\sigma}_1 = \bar{\sigma}'_1 = \text{id}_{\mathbb{Z}I}, \bar{T}_1 = \bar{T}'_1 = \text{id}_{U(\chi)} \), and

(39) \(\chi_{2n} = r_i(\chi_{2n-1}), \chi_{2n+1} = r_j(\chi_{2n}), \chi'_{2n} = r_j(\chi'_{2n-1}), \chi'_{2n+1} = r_i(\chi'_{2n}) \),

(40) \(\bar{\sigma}_2 = \bar{\sigma}_{2n-1} \sigma_i^{2n}, \bar{\sigma}_{2n+1} = \bar{\sigma}_{2n} \sigma_j^{2n}, \bar{\sigma}'_2 = \bar{\sigma}'_{2n-1} \sigma_j^{2n}, \bar{\sigma}'_{2n+1} = \bar{\sigma}'_{2n} \sigma_i^{2n} \),

(41) \(\bar{T}_2 = \bar{T}_{2n-1} T_i, \bar{T}_{2n+1} = \bar{T}_{2n} T_j, \bar{T}'_2 = \bar{T}'_{2n-1} T_j, \bar{T}'_{2n+1} = \bar{T}'_{2n} T_i \).

Then we have

(42) \(\chi_M = \chi'_M \),

(43) \(\bar{\sigma}_M = \bar{\sigma}'_M \)

and

(44) \(\bar{T}_M = \bar{T}'_M \).

4 Longest elements of Weyl groupoids

In this section we always assume \(\chi \) to be finite-type, and refer to [CH08] for categorical definitions of Weyl groupoids.

Convention. For a category \(C \), we denote the product of the morphisms by \(\cdot \). That is, for two morphism \(f_1 \in \text{Mor}(a_1, b_1) \) and \(f_2 \in \text{Mor}(a_2, b_2) \) with \(a_1, b_1, a_2 \) and \(b_2 \in \text{Ob}(C) \), we denote their product by

(45) \(f_1 f_2 \) if \(b_2 = a_1 \).

Set

(46) \(C(\chi) = \{\chi\} \cup \bigcup_{n=1}^{\infty} \{ r_{i_1} \ldots r_{i_n}(\chi) | i_1, \ldots, i_n \in I \} \).

Let \(W = W(\chi) \) be the category with \(\text{Ob}(W) = C(\chi) \) and generated by the maps \(\sigma_i \in \text{Mor}_W(\chi', r_i(\chi')) \) with \(\chi' \in \text{Ob}(W) \) and \(i \in I \). Let \(\mathcal{W} = \mathcal{W}(\chi) \) be the (abstract) category with \(\text{Ob}(\mathcal{W}) = C(\chi) \) defined by generators \(s_i' \in \text{Mor}_W(\chi', r_i(\chi')) \) with \(\chi' \in \text{Ob}(W) \) and \(i \in I \) and relations

(47) \(s_i' s_i'^{-1} = 1_{r_i(\chi')} \),
We call \mathcal{W} the Weyl groupoid. Define the morphism $\phi : \mathcal{W} \rightarrow W$ by $\phi(s_i^\ell) = s_i$. Then ϕ is bijective, see [HY08a, Theorem 1]. Let $\ell(1^0) = 0$ for $\chi' \in C(\chi)$. Let $\ell(s_i^\ell) = 1$. For $w \in \text{Mor}_\mathcal{W}(\chi_1, \chi_2)$, let $\ell(w)$ be the least number $\ell(w') + \ell(w'')$ with $w = w' w''$ for some $\chi_3 \in C(\chi)$, and some $w' \in \text{Mor}_\mathcal{W}(\chi_3, \chi_2)$, some $w'' \in \text{Mor}_\mathcal{W}(\chi_1, \chi_3)$. By [HY08a, Lemma 8(iii)], we have

$$\ell(w) = |\{\alpha \in R_+^1| \phi(w)(\alpha) \in R_+^2\}|.$$

Moreover for each $\chi_1 \in C(\chi)$, there exists unique $\chi_2 \in C(\chi)$ and $1w_0 \in \text{Mor}_\mathcal{W}(\chi_2, \chi_1)$ such that $\phi(1w_0)|_{R_+^2} = R_+^2$. We call $1w_0$ the longest element since $\ell(1w_0)$ $\ell(w')$ for any $w' \in \text{Mor}_\mathcal{W}(\chi_3, \chi_4)$ for any $\chi_3, \chi_4 \in C(\chi)$.

Let $\tilde{\mathcal{W}} = \mathcal{W}(\chi)$ be the (abstract) category with $\text{Ob}(\tilde{\mathcal{W}}) = C(\chi)$ defined by generators $\tilde{s}_i \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi', r_i(\chi'))$ with $\chi' \in \text{Ob}(W)$ and $i \in I$ and relations

$$\tilde{s}_i^3 \tilde{s}_i^j \tilde{s}_i^k = \tilde{s}_i^j \tilde{s}_i^k \tilde{s}_i^j \tilde{s}_i^k$$

(both sides are composed of $|R_+ \cap (\mathbb{Z}\alpha_i \mathbb{Z}\alpha_j)|$-factors).

Let $\tilde{\mathcal{W}} = \mathcal{W}(\chi', \chi')$ denote the identity morphism. Define the morphism $\tilde{\phi} : \tilde{\mathcal{W}} \rightarrow \mathcal{W}$ by $\tilde{\phi}(\tilde{s}_i^\ell) = s_i^\ell$.

Let $\ell(1^0) = 0$ for $\chi' \in C(\chi)$. Let $\ell(\tilde{s}_i^\ell) = 1$. For $\tilde{w} \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_1, \chi_2)$, let $\tilde{\ell}(\tilde{w})$ be the least number $\tilde{\ell}(\tilde{w}') + \tilde{\ell}(\tilde{w}'')$ with $\tilde{w} = \tilde{w}' \tilde{w}''$ for some $\chi_3 \in C(\chi)$, and some $\tilde{w}' \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_3, \chi_2)$, some $\tilde{w}'' \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_1, \chi_3)$.

Theorem 5. ([HY08a, Theorem 5, Corollary 6]) Let $\chi_1, \chi_2 \in C(\chi)$. For $w \in \text{Mor}_\mathcal{W}(\chi_1, \chi_2)$ and $\tilde{w}_1, \tilde{w}_2 \in \tilde{w} \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_1, \chi_2)$ with $\tilde{\phi}(\tilde{w}_1) = \tilde{\phi}(\tilde{w}_2) = w$ and $\ell(w) = \ell(\tilde{\phi}(\tilde{w}_1)) = \ell(\tilde{\phi}(\tilde{w}_2))$, we have $\tilde{w}_1 = \tilde{w}_2$. Further, if $\tilde{w} \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_1, \chi_2)$ is such that $\tilde{\ell}(\tilde{w}) > \ell(\tilde{\phi}(\tilde{w}))$, then $\tilde{w} = \tilde{w}' \tilde{s}_i^3 \tilde{s}_i^3 \tilde{w}''$ for some $i \in I$, $\tilde{w}' \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_1, \chi_3)$ and $\tilde{w}'' \in \text{Mor}_{\tilde{\mathcal{W}}}(\chi_3, \chi_2)$ with $\ell(\tilde{w}') + \ell(\tilde{w}'') = \ell(\tilde{w})$.

Assume w_0 to be $s_{j_1}^1 s_{j_2}^2 s_{j_M}^M$, where $M = |R_+|$, $r_1(\chi_1) = \chi$, and $r_j(\chi_j) = \chi_{j-1}$. Let $\overline{T}_1 = \text{id}_U$. For $2 \leq n \leq M$, define the k-algebra isomorphism $T_n : U(\chi_{n-1}) \rightarrow U(\chi)$ by $T_n = \overline{T}_{n-1} T_{j_{n-1}}$. Then as for E_i of Theorem 2, we may put

$$E_i = \overline{T}_i(E_i)$$

for $1 \leq j \leq M$.

\[E_i = \overline{T}_i(E_i)\]

159
5 Shapovalov determinants

Let χ be a bi-character. We define the Shapovalov matrix Sh in the natural way for each $\alpha \in \mathbb{Z}_{\geq 0}\Pi$. More precisely, Sh is a $\dim U^{+}(\chi) \times \dim U^{+}(\chi)$-matrix whose components are elements of $U^{0}(\chi)$. Let $\rho : \mathbb{Z}\Pi \rightarrow k^{\times}$ be the (abelian) group homomorphism defined by $\rho(\alpha_{i}) = \chi(\alpha_{i}, \alpha_{i})$. We use the Kostant partition function $P(\alpha, \beta, t) := \dim E^{t}U^{+}(\chi) - t$, where we define $P(\alpha, \beta, t) = 0$ in case $\alpha \neq \beta \notin \mathbb{Z}_{\geq 0}\Pi$.

Theorem 6. ([HY08b, Theorem 7.3]) Let χ be finite-type. Assume that $\chi(\beta, \beta) \neq 1$ for all $\beta \in R_{+}$. Then for $\alpha \in \mathbb{Z}_{\geq 0}\Pi$, we have

$$\text{det} \text{Sh} = c \prod_{\in R^{+}_{\chi}} \prod_{t=1}^{h_{\beta}^{\chi}} (\rho(\beta)K \chi(\beta, \beta)^{t}L)^{P^{\chi}(\alpha, \beta, t)}$$

for some $c \in k^{\times}$.

As stated below, for $U(\chi)$ which is the (ordinary or small) quantum group of a finite dimensional Lie algebra \mathfrak{g}, we have the generalization of (1) the one [dDK90] for $q \in \mathbb{C}^{\times}$ which is not a root of unity, and (2) the one [KL97] for $q \in \mathbb{C}^{\times}$ which is a primitive p-th root of unity for some prime number p.

Corollary 7. Let \mathfrak{g} be a finite dimensional simple Lie algebra of type A-G or a finite dimensional simple Lie superalgebra of type A-G. Then the Shapovalov determinant of the quantum group $U_{q}(\mathfrak{g})$ when q is not root of unity or the small quantum group $u_{q}(\mathfrak{g})$ when q is a primitive r-th root of unity for some positive integer $r \neq 2$ is given by

$$c \prod_{\in R^{+}_{\chi}} \prod_{t=1}^{\infty} (q^{2(t)}K \chi(\beta, \beta)^{t}L)^{P^{\chi}(\alpha, \beta, t)}$$

for some $c \in \mathbb{C}^{\times}$.

We even recover the original ones due to Shapovalov [Sha72], and Kac [Kac77] (super cases):

Corollary 8. Let \mathfrak{g} be as above. Then the Shapovalov determinant of the enveloping algebra $U(\mathfrak{g})$ is given by

$$c \prod_{\in R^{+}_{\chi}} (H + (\rho, \beta) \frac{(\beta, \beta)t}{2})^{P^{\chi}(\alpha, \beta, t)}$$

for some $c \in \mathbb{C}^{\times}$.
Acknowledgment: The author thanks István Heckenberger for improving the manuscript and giving valuable comments.

References

HIROYUKI YAMANE, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA 560-0043, JAPAN

E-mail address: yamane@ist.osaka-u.ac.jp