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A NEW ASPECT OF THE L[*-EXTENSION THEOREM
FOR INHOMOGENEOUS DIFFERENTIAL EQUATIONS

MITSURU SUGIMOTO

Weak extension problem
Let

M : real manifold of dimension n,

Z : point in M,

P : differential operator of order m with C* coefficient on M .
For a given distribution f € D'(M), assume that u € D'(M \ Z) is a solution of the
equation

Pu=fon M\ Z.
Our problem is when u € D'(M \ Z) can be extended to & € D'(M) as a solution of
the same equation
Pi=fon M.

LP-category

Let 1 < p < oo, and we shall consider this weak extension problem in the L?f-
category.
We identify

M = R" and Z = the origin of R".

Without loss of generality, we may assume that all the derivatives of coefficients of

P are bounded and the inhomogeneous term f is a tempered distribution, that is,
feds.
For u € LP(M \ 2), 4 € LP(M) always denotes its trivial LP-extension:

= {3 22N

Homogeneous case

The following answer to this problem with the homogeneous case f = 0 is given
by Bochner [1] (1956).

Theorem A. Ifu € L»(M\Z), m <n(l—-1/p),and Pu=00on M\ Z, then Pi =0
on M.

Department of Mathematics, Graduate School of Science, Osaka University .



143

The inequality m < n(1~1/p) in Theorem A cannot be removed if we take account
of the fundamental solution of an elliptic differential operator P.
In fact, if P has analytic coefficients, then
u(z) = |z|"""{A(z) + B(z) log ||}

solves Pi = 6 on M and Pu = 0 on M \ Z with some A(z), B(z) bounded in a
neighborhood of Z by John [3] (1950). We remark that u belongs to L? (locally) in
the neighborhood for m > n(1 — 1/p).

Inhomogeneous case
When is the same true for inhomogeneous equations?

We say that the weak extension in the LP-category holds for a given f € &', if

(%) u€IP(M\Z), m<n(l-1/p),
Pu=f on M\Z

=> Pu=f on M.

We have a complete answer:
o f¢ Hy"VP) & (x) = Pi# f on M.
o fe Hy"'71P) & (x) = Pii= f on M. --- S. [6] (2001).
(We do not care about the existence of P and u which satisfy (x).)

But we know more useful criteria which can be easily checked. The weak extension
in the LP-category holds for the following f € S":

e f € L' .. Bochner [1] (1956).
ie. feL' & (x) = Pii= fon M.
e f € L' (microlocally) - -- S.-Uchida [7] (2000).
We remark
o feL'w fe H"(-VP)
o fel'& (x) = fe H"17/P

Example & Question
Let h(z) € L'(R") and g(z') € S'(R™!), where z = (z,2'), ' = (z2,...,Zn).
o f=h(z)+ (z; £i0)"! ® g(z')
€ L' microlocaly.

Does the weak extension in the LP-category holds for the following f (¢ L' microlo-
cally)?

o f=h(z)+p.v. L ®g(z).
e f=h(z)+6(z;) ® g(z').
We remark

Wi o r 1
PV a\z+i0 zm—i0)

1 1 1
S(=) =355 (a:1 ~0 +z‘0)'
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The Class B3
We introduce a class of inhomogeneous terms: We use the notation
a.(z) = a(z/e) for e > 0.

Definition 1. Let f € &’. We say that
f €Bz

if there exist a strictly decreasing sequence {£,}22, of positive numbers and a cutoff
function a(z) of Z such that

lima., f=0in S
V—00

Theorem 1. Let f € Bz. Ifue LP(M\Z), m<n(1—-1/p), and Pu= f on M\ Z,
then Pu = f on M.
We remark
e L' C Bz --- Lebesgue’ convergence theorem.
For h(z) € L'(R™) and g(z') € S'(R™1),
o f=h(z)+p.v.;-®g(z) € Bz.
If fact, the argument can be reduced to show

<ae(x1) pov. L, 90($1)> 0 aseN0
Z1

for all test function ¢ of dimension 1. We take a function a(z,) such that a(—z;) =
a(z;). Then we have

<ae(x1) p.V. ;}; w(x1)>

= lim (a:0)(z1) ,
AN lz1|>8 I
. a (1131)

=] £ d 0 / d
lim s 31 1 - ¢(0) (acH)(z,) dzy

with H bounded. The first term vanishes since a, is an even function, and the second
term tends to 0 as £ \, 0.
For h(z) € L*(R") and g(z') € S'(R""!) such that g ¢ Bz (of dimension n — 1)

° f = h(x) + 5(231) ®g(x’) ¢ Bz.

The proof of Theorem 1 is based on the argument of Bochner:

T

For test functions ¢, we have
(Pt — f, ) = (Pl — f,acp)

= (@i, *P(asp)) — (acf, )
— 0,

where P is the transpose of P and d(z) is another cutoff function which is equal to
1 on the support of a(z). Here we have used the following facts:



o limeo |13 5, = 0
® Sup.o ”tP(as‘P)“LP* < o0
if1/p+1/p* =1and m < n(1—1/p).

Hence we get Pu = f.
The Class M

Here is another class of inhomogeneous terms:

Definition 2. Let f € S’. We say that
feM

if f is a function which satisfies

| IfE1—=0 (& — o0)
uniformly in a direction, that is, for a point on the sphere S™®~!, there exists a conic
neighborhood I such that

sup |f(€)| =0 (R— o).
l€l>RE€T

Theorem 2. Let f € M. Ifu € LP(M\Z), m <n(1-1/p), and Pu= f on M\ Z,
then Pi= f on M.

We remark
e L' ¢ M -.. Riemann-Lebesgue’s theorem.
For h(z) € L}(R"), g(z') € M (of dimension n — 1), and ¢* € C,
* f=h(z)+p.v. ;- ®g(z') € M.
o f=h(z)+d(z:) ®g(z') € M.
e f= (% +355) @ 9(@') € M.

z1+10 z1—10

More generally, for z = (z;, z2,. .., Z,),

* f=g1(21) ® ga(x2) - - - ® gn(zp) € M
if at least one of g; (j = 1,2,...,n) belongs to M of dimension 1 and all other g, is
~ a linear combination of (¢ & 40)~!.
Furthermore, if such g;(¢) admits a nice regularity and up to (k — 1)-th derivatives
of it are integrable again, then we have a stronger decaying property

sup |[t*71g;(t)| = 0 (R — 00).
t|I>R

In this case, linear combinations of more general homogeneous distributions
(¢ £40)7%, (¢ £40)72%,..., (t £0)*

are allowed for all other g;(t) since their Fourier transforms are polynomial of order
up to k£ — 1 in each direction.

For smooth function (t) of ¢ > 0, which is equal to 0 for 0 < t < 1 and 1 for
t>2, '
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o f = F1[elglmmiy(g))] € M
€ H,"'=/P) ... 9 (“Yes” by S.Sjéstrand [5] 1970)
We can prove f ¢ L' for 0 < v < 1. In fact, by Ishii [2] (1974), f is of the form
f(z) = K(|lz])|=|™" + O(lz|*)

as || — 0, where |K(|z|)| is a non-zero constant and w > —n.

The proof of Theorem 2 is based on the argument by S.-Uchida [7]:

If Pu= fon M\ Z, then we have

Pi=f+Q(D)l e H™

with a polynomial @ by the structure theorem and the mapping property of P.
Furthermore, since f = f(D)J, we have

QD) e H;™ Q) =Q(6) + f(€).
If the polynomial @ # 0, then Q(D) is microlocally elliptic in a direction. The
same is true for Q(D) since f(£) is just a perturbation. Then we have 6 € H,; ™

(microlocally), which implies m > n(1 — 1/p). Hence m < n(1 —1/p) yields @ =0
and we can conclude Pu = f.

The classes U} and V},

We introduce some other classes of inhomogeneous terms:
For f € &' and p € S, we set

Trp = (F7'f) * .
We symbolically write Ty = f(D), which can be regarded as the operator from S to
S'. We set

M, ={f € 8 f(D) € L(L)},
M, ={f € 8 f(D) € L(I")}
which are Banach spaces with the norms
| fllag, = 1F (D)llcces),
11l sz, = 1F(D)llecery

respectively.
We use the notation
a.(z) = a(z/e) for e > 0.

Definition 3. Let f € M,. We say that
feuy

if there exist a strictly decreasing sequence {€,}32, of positive numbers and a cutoff
function a(z) of Z such that a., f € M, (v=1,2,...) and

—

lg{.lo ae, f(D) =0 in L(LP).
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Definition 4. Let f € Mp. We say that
| fevy

if there exist a strictly decreasing sequence {¢,}52, of positive numbers and a cutoff
function a(z) of Z such that

lim a, (X) f(D) =0in L(LP).
Theorem 3. Let f €Uz, UVz. Ifue LP(M\ Z), m <n(l —1/p), and Pu= f on
M\ Z, then Pi= f on M.
We remark
o L' CU.
In fact, for f € L, ¢ € S, and a cutoff function a of Z, we have

a.f(D)p = (ac.f) x o.
Hence

af(D)e|, < llacf) ¢llLs

< laefllzallell Lo
Hence we have

< ”at-:f”[,l —0

)]

£(LP)
as e\, 0.

For a smooth function 9 (t) of t > 0, which is equal to 0 for 0 <t < 1 and 1 for
t > 2, and for 0 < ¥ < 1, we have

o 1 = P jg| g (g))] € V3
In fact, for ¢ € S and a cutoff function a of Z, we have
llae, (X) f(D)pllze <llae, |- 11 f (D)ol e
<Cllac,ll-I1DI*F(D)el|Ls
<Cllae, llz-llell e
hence
lac, (X)f(D)llezry < Cliae, llz- — 0

as € \, 0. Here we have used:
* Holder’s inequality with

I/p=1/r+1/q, 1<qg< o0,
* Hardy-Littlewood-Sobolev inequality with
1/g=1/p—a/n, 0<a<n,
* The LP-boundedness of |D|*f(D) with
ny/2 —a=ny|l/p—1/2|
by Miyachi [4] (1980).
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The proof of Theorem 3 is just a repetition of the argument in that of Theorem 2:

If Pu= fon M\ Z, then we have
Pi=f+Q(D)s € H™
with a polynomial Q. Multiplying a.(z), we have
Q(D)o +a.f € H™.
Noticing
acf = a.f(D)8 = a:(X)f (D)5,

we can rewrite it as
(Q(D) + R.)d € Hp‘"‘,

where R, = a.f(D) or Re = a.(X)f(D).
If Q # 0, we can construct a (microlocal) inverses (Q(D) + R.)~! in the space
L(H,™) since R, is small as L(H,™). Then we have

der‘"‘

(microlocally) again which contradicts to m < n(1—1/p), and we can conclude Q = 0,
hence Pt = f.
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