A NEW ASPECT OF THE L^p-EXTENSION THEOREM FOR INHOMOGENEOUS DIFFERENTIAL EQUATIONS

MITSURU SUGIMOTO

Weak extension problem

Let

M: real manifold of dimension n,

Z: point in M,

P: differential operator of order m with C^{∞} coefficient on M .

For a given distribution $f \in \mathcal{D}'(M)$, assume that $u \in \mathcal{D}'(M \setminus Z)$ is a solution of the equation

$$Pu = f$$
 on $M \setminus Z$.

Our problem is when $u \in \mathcal{D}'(M \setminus Z)$ can be extended to $\tilde{u} \in \mathcal{D}'(M)$ as a solution of the same equation

$$P\tilde{u} = f$$
 on M .

L^p -category

Let $1 , and we shall consider this weak extension problem in the <math>L^p$ -category.

We identify

$$M = \mathbf{R}^n$$
 and $Z =$ the origin of \mathbf{R}^n .

Without loss of generality, we may assume that all the derivatives of coefficients of P are bounded and the inhomogeneous term f is a tempered distribution, that is, $f \in \mathcal{S}'$.

For $u \in L^p(M \setminus Z)$, $\tilde{u} \in L^p(M)$ always denotes its trivial L^p -extension:

$$\tilde{u}(x) = \begin{cases} u(x) & x \in M \setminus Z \\ 0 & x = Z \end{cases}$$

Homogeneous case

The following answer to this problem with the homogeneous case f = 0 is given by Bochner [1] (1956).

Theorem A. If $u \in L^p(M \setminus Z)$, $m \le n(1-1/p)$, and Pu = 0 on $M \setminus Z$, then $P\tilde{u} = 0$ on M.

Department of Mathematics, Graduate School of Science, Osaka University .

The inequality $m \leq n(1-1/p)$ in Theorem A cannot be removed if we take account of the fundamental solution of an elliptic differential operator P.

In fact, if P has analytic coefficients, then

$$u(x) = |x|^{m-n} \{ A(x) + B(x) \log |x| \}$$

solves $P\tilde{u} = \delta$ on M and Pu = 0 on $M \setminus Z$ with some A(x), B(x) bounded in a neighborhood of Z by John [3] (1950). We remark that u belongs to L^p (locally) in the neighborhood for m > n(1 - 1/p).

Inhomogeneous case

When is the same true for inhomogeneous equations?

We say that the weak extension in the L^p -category holds for a given $f \in \mathcal{S}'$, if

(*)
$$\begin{cases} u \in L^p(M \setminus Z), & m \le n(1 - 1/p), \\ Pu = f & \text{on } M \setminus Z \\ \implies P\tilde{u} = f & \text{on } M. \end{cases}$$

We have a complete answer:

- $f \notin H_p^{-n(1-1/p)} \& (*) \Rightarrow P\tilde{u} \neq f \text{ on } M.$ $f \in H_p^{-n(1-1/p)} \& (*) \Rightarrow P\tilde{u} = f \text{ on } M. \cdots \text{ S. [6] (2001)}.$

(We do not care about the existence of P and u which satisfy (*).)

But we know more useful criteria which can be easily checked. The weak extension in the L^p -category holds for the following $f \in \mathcal{S}'$:

- $f \in L^1 \cdots$ Bochner [1] (1956). i.e. $f \in L^1 \& (*) \Rightarrow P\tilde{u} = f$ on M.
- $f \in L^1$ (microlocally) · · · S.-Uchida [7] (2000).

We remark

- $f \in L^1 \Rightarrow f \in H_p^{-n(1-1/p)}$. $f \in L^1 \& (*) \Rightarrow f \in H_p^{-n(1-1/p)}$.

Example & Question

Let $h(x) \in L^1(\mathbb{R}^n)$ and $g(x') \in S'(\mathbb{R}^{n-1})$, where $x = (x_1, x'), x' = (x_2, \dots, x_n)$.

•
$$f = h(x) + (x_1 \pm i0)^{-1} \otimes g(x')$$

 $\in L^1$ microlocaly.

Does the weak extension in the L^p -category holds for the following $f \notin L^1$ microlocally)?

- $f = h(x) + p. v. \frac{1}{x_1} \otimes g(x').$ $f = h(x) + \delta(x_1) \otimes g(x').$

We remark

p. v.
$$\frac{1}{x_1} = \frac{1}{2} \left(\frac{1}{x_1 + i0} + \frac{1}{x_1 - i0} \right),$$

$$\delta(x_1) = \frac{1}{2\pi i} \left(\frac{1}{x_1 - i0} - \frac{1}{x_1 + i0} \right).$$

The Class \mathcal{B}_Z

We introduce a class of inhomogeneous terms: We use the notation

$$a_{\varepsilon}(x) = a(x/\varepsilon)$$
 for $\varepsilon > 0$.

Definition 1. Let $f \in \mathcal{S}'$. We say that

$$f \in \mathcal{B}_Z$$

if there exist a strictly decreasing sequence $\{\varepsilon_{\nu}\}_{\nu=1}^{\infty}$ of positive numbers and a cutoff function a(x) of Z such that

$$\lim_{\nu\to\infty}a_{\varepsilon_{\nu}}f=0 \text{ in } \mathcal{S}'.$$

Theorem 1. Let $f \in \mathcal{B}_Z$. If $u \in L^p(M \setminus Z)$, $m \le n(1-1/p)$, and Pu = f on $M \setminus Z$, then $P\tilde{u} = f$ on M.

We remark

• $L^1 \subset \mathcal{B}_Z \cdots$ Lebesgue' convergence theorem.

For $h(x) \in L^1(\mathbf{R}^n)$ and $g(x') \in \mathcal{S}'(\mathbf{R}^{n-1})$,

• $f = h(x) + \text{p. v. } \frac{1}{x_1} \otimes g(x') \in \mathcal{B}_Z$.

If fact, the argument can be reduced to show

$$\left\langle a_{\varepsilon}(x_1) \text{ p. v. } \frac{1}{x_1}, \, \varphi(x_1) \right
angle o 0 \quad \text{as } \varepsilon \searrow 0$$

for all test function φ of dimension 1. We take a function $a(x_1)$ such that $a(-x_1) = a(x_1)$. Then we have

$$\left\langle a_{\varepsilon}(x_{1}) \text{ p. v. } \frac{1}{x_{1}}, \varphi(x_{1}) \right\rangle$$

$$= \lim_{\delta \searrow 0} \int_{|x_{1}| \ge \delta} \frac{(a_{\varepsilon}\varphi)(x_{1})}{x_{1}} dx_{1}$$

$$= \lim_{\delta \searrow 0} \int_{|x_{1}| \ge \delta} \frac{a_{\varepsilon}(x_{1})}{x_{1}} dx_{1} \cdot \varphi(0) + \int (a_{\varepsilon}H)(x_{1}) dx_{1}$$

with H bounded. The first term vanishes since a_{ε} is an even function, and the second term tends to 0 as $\varepsilon \searrow 0$.

For $h(x) \in L^1(\mathbf{R}^n)$ and $g(x') \in \mathcal{S}'(\mathbf{R}^{n-1})$ such that $g \notin \mathcal{B}_Z$ (of dimension n-1)

•
$$f = h(x) + \delta(x_1) \otimes g(x') \notin \mathcal{B}_Z$$
.

The proof of Theorem 1 is based on the argument of Bochner:

For test functions φ , we have

$$\langle P\tilde{u} - f, \varphi \rangle = \langle P\tilde{u} - f, a_{\varepsilon}\varphi \rangle$$

$$= \langle \tilde{a}_{\varepsilon}\tilde{u}, {}^{t}P(a_{\varepsilon}\varphi) \rangle - \langle a_{\varepsilon}f, \varphi \rangle$$

$$\to 0,$$

where tP is the transpose of P and $\tilde{a}(x)$ is another cutoff function which is equal to 1 on the support of a(x). Here we have used the following facts:

 $\bullet \lim_{\varepsilon \searrow 0} \|\tilde{a}_{\varepsilon}\tilde{u}\|_{L^{p}} = 0$

•
$$\sup_{\varepsilon>0} \|^t P(a_{\varepsilon}\varphi)\|_{L^{p^*}} < \infty$$

if $1/p + 1/p^* = 1$ and $m \le n(1 - 1/p)$.

Hence we get $P\tilde{u} = f$.

The Class \mathcal{M}

Here is another class of inhomogeneous terms:

Definition 2. Let $f \in \mathcal{S}'$. We say that

$$f \in \mathcal{M}$$

if \hat{f} is a function which satisfies

$$|\hat{f}(\xi)| \to 0 \qquad (|\xi| \to \infty)$$

uniformly in a direction, that is, for a point on the sphere S^{n-1} , there exists a conic neighborhood Γ such that

$$\sup_{|\xi|>R,\xi\in\Gamma}|\hat{f}(\xi)|\to 0\quad (R\to\infty).$$

Theorem 2. Let $f \in \mathcal{M}$. If $u \in L^p(M \setminus Z)$, $m \leq n(1-1/p)$, and Pu = f on $M \setminus Z$, then $P\tilde{u} = f$ on M.

We remark

• $L^1 \subset \mathcal{M} \cdots$ Riemann-Lebesgue's theorem.

For $h(x) \in L^1(\mathbf{R}^n)$, $g(x') \in \mathcal{M}$ (of dimension n-1), and $c^{\pm} \in \mathbf{C}$,

- $f = h(x) + p. v. \frac{1}{x_1} \otimes g(x') \in \mathcal{M}.$ $f = h(x) + \delta(x_1) \otimes g(x') \in \mathcal{M}.$ $f = \left(\frac{c^+}{x_1 + i0} + \frac{c^-}{x_1 i0}\right) \otimes g(x') \in \mathcal{M}.$

More generally, for $x = (x_1, x_2, \dots, x_n)$,

•
$$f = g_1(x_1) \otimes g_2(x_2) \cdots \otimes g_n(x_n) \in \mathcal{M}$$

if at least one of g_j $(j=1,2,\ldots,n)$ belongs to $\mathcal M$ of dimension 1 and all other g_l is a linear combination of $(t \pm i0)^{-1}$.

Furthermore, if such $g_j(t)$ admits a nice regularity and up to (k-1)-th derivatives of it are integrable again, then we have a stronger decaying property

$$\sup_{|t|>R} |t^{k-1}\widehat{g}_j(t)| \to 0 \qquad (R \to \infty).$$

In this case, linear combinations of more general homogeneous distributions

$$(t \pm i0)^{-1}, (t \pm i0)^{-2}, \dots, (t \pm i0)^{-k}$$

are allowed for all other $g_l(t)$ since their Fourier transforms are polynomial of order up to k-1 in each direction.

For smooth function $\psi(t)$ of $t \geq 0$, which is equal to 0 for $0 \leq t \leq 1$ and 1 for $t \geq 2$,

•
$$f = F^{-1}\left[e^{i|\xi|^{\gamma}}|\xi|^{-n\gamma/2}\psi(|\xi|)\right] \in \mathcal{M}$$

 $\in H_p^{-n(1-1/p)} \cdots ? ("Yes" \text{ by S.Sjöstrand [5] 1970})$

We can prove $f \notin L^1$ for $0 < \gamma < 1$. In fact, by Ishii [2] (1974), f is of the form

$$f(x) = K(|x|)|x|^{-n} + O(|x|^{\omega})$$

as $|x| \to 0$, where |K(|x|)| is a non-zero constant and $\omega > -n$.

The proof of Theorem 2 is based on the argument by S.-Uchida [7]:

If Pu = f on $M \setminus Z$, then we have

$$P\tilde{u} = f + Q(D)\delta \in H_p^{-m}$$

with a polynomial Q by the structure theorem and the mapping property of P. Furthermore, since $f = \hat{f}(D)\delta$, we have

$$\widetilde{Q}(D)\delta \in H_p^{-m}, \qquad \widetilde{Q}(\xi) = Q(\xi) + \widehat{f}(\xi).$$

If the polynomial $Q \neq 0$, then Q(D) is microlocally elliptic in a direction. The same is true for $\widetilde{Q}(D)$ since $\widehat{f}(\xi)$ is just a perturbation. Then we have $\delta \in H_p^{-m}$ (microlocally), which implies m > n(1-1/p). Hence $m \leq n(1-1/p)$ yields Q = 0 and we can conclude $P\widetilde{u} = f$.

The classes \mathcal{U}_Z^p and \mathcal{V}_Z^p

We introduce some other classes of inhomogeneous terms:

For $f \in \mathcal{S}'$ and $\varphi \in \mathcal{S}$, we set

$$T_f \varphi = (F^{-1} f) * \varphi.$$

We symbolically write $T_f = f(D)$, which can be regarded as the operator from S to S'. We set

$$M_p = \{ f \in \mathcal{S}'; f(D) \in \mathcal{L}(L^p) \},$$

$$\hat{M}_p = \{ f \in \mathcal{S}'; \hat{f}(D) \in \mathcal{L}(L^p) \}$$

which are Banach spaces with the norms

$$||f||_{M_p} = ||f(D)||_{\mathcal{L}(L^p)},$$

 $||f||_{\hat{M}_p} = ||\hat{f}(D)||_{\mathcal{L}(L^p)}$

respectively.

We use the notation

$$a_{\varepsilon}(x) = a(x/\varepsilon)$$
 for $\varepsilon > 0$.

Definition 3. Let $f \in \hat{M}_p$. We say that

$$f \in \mathcal{U}_Z^p$$

if there exist a strictly decreasing sequence $\{\varepsilon_{\nu}\}_{\nu=1}^{\infty}$ of positive numbers and a cutoff function a(x) of Z such that $a_{\varepsilon_{\nu}}f\in \hat{M}_{p}$ $(\nu=1,2,\ldots)$ and

$$\lim_{\nu \to \infty} \widehat{a_{\varepsilon_{\nu}} f}(D) = 0 \text{ in } \mathcal{L}(L^p).$$

Definition 4. Let $f \in \hat{M}_p$. We say that

$$f \in \mathcal{V}_Z^p$$

if there exist a strictly decreasing sequence $\{\varepsilon_{\nu}\}_{\nu=1}^{\infty}$ of positive numbers and a cutoff function a(x) of Z such that

$$\lim_{\nu \to \infty} a_{\varepsilon_{\nu}}(X)\hat{f}(D) = 0 \text{ in } \mathcal{L}(L^p).$$

Theorem 3. Let $f \in \mathcal{U}_Z \cup \mathcal{V}_Z$. If $u \in L^p(M \setminus Z)$, $m \leq n(1 - 1/p)$, and Pu = f on $M \setminus Z$, then $P\tilde{u} = f$ on M.

We remark

• $L^1 \subset \mathcal{U}_Z^p$.

In fact, for $f \in L^1$, $\varphi \in \mathcal{S}$, and a cutoff function a of Z, we have

$$\widehat{a_{\varepsilon}f}(D)\varphi = (a_{\varepsilon}f) * \varphi.$$

Hence

$$\left\| \widehat{a_{\varepsilon}f}(D)\varphi \right\|_{L^{p}} \leq \left\| (a_{\varepsilon}f) * \varphi \right\|_{L^{p}}$$

$$\leq \left\| a_{\varepsilon}f \right\|_{L^{1}} \left\| \varphi \right\|_{L^{p}}.$$

Hence we have

$$\left\|\widehat{a_{\varepsilon}f}(D)\right\|_{\mathcal{L}(L^p)} \leq \|a_{\varepsilon}f\|_{L^1} \to 0$$

as $\varepsilon \setminus 0$.

For a smooth function $\psi(t)$ of $t \geq 0$, which is equal to 0 for $0 \leq t \leq 1$ and 1 for $t \geq 2$, and for $0 < \gamma < 1$, we have

•
$$f = F^{-1} \left[e^{i|\xi|^{\gamma}} |\xi|^{-n\gamma/2} \psi(|\xi|) \right] \in \mathcal{V}_Z^p$$

In fact, for $\varphi \in \mathcal{S}$ and a cutoff function a of Z, we have

$$\begin{aligned} \|a_{\varepsilon_{\nu}}(X)\hat{f}(D)\varphi\|_{L^{p}} &\leq \|a_{\varepsilon_{\nu}}\|_{L^{r}}\|\hat{f}(D)\varphi\|_{L^{q}} \\ &\leq C\|a_{\varepsilon_{\nu}}\|_{L^{r}}\||D|^{\alpha}\hat{f}(D)\varphi\|_{L^{p}} \\ &\leq C\|a_{\varepsilon_{\nu}}\|_{L^{r}}\|\varphi\|_{L^{p}}, \end{aligned}$$

hence

$$||a_{\varepsilon_{\nu}}(X)\hat{f}(D)||_{\mathcal{L}(L^{p})} \leq C||a_{\varepsilon_{\nu}}||_{L^{r}} \to 0$$

as $\varepsilon \searrow 0$. Here we have used:

* Hölder's inequality with

$$1/p = 1/r + 1/q, \quad 1 < q < \infty,$$

* Hardy-Littlewood-Sobolev inequality with

$$1/q = 1/p - \alpha/n, \quad 0 < \alpha < n,$$

* The L^p -boundedness of $|D|^{\alpha} \hat{f}(D)$ with

$$n\gamma/2-\alpha=n\gamma|1/p-1/2|$$

by Miyachi [4] (1980).

The proof of Theorem 3 is just a repetition of the argument in that of Theorem 2:

If Pu = f on $M \setminus Z$, then we have

$$P\tilde{u} = f + Q(D)\delta \in H_p^{-m}$$

with a polynomial Q. Multiplying $a_{\varepsilon}(x)$, we have

$$Q(D)\delta + a_{\varepsilon}f \in H_{\mathfrak{p}}^{-m}.$$

Noticing

$$a_{\varepsilon}f = \widehat{a_{\varepsilon}f}(D)\delta = a_{\varepsilon}(X)\widehat{f}(D)\delta,$$

we can rewrite it as

$$(Q(D) + R_{\varepsilon})\delta \in H_{\mathfrak{p}}^{-m},$$

where $R_{\epsilon} = \widehat{a_{\epsilon}f}(D)$ or $R_{\epsilon} = a_{\epsilon}(X)\widehat{f}(D)$.

If $Q \neq 0$, we can construct a (microlocal) inverses $(Q(D) + R_{\varepsilon})^{-1}$ in the space $\mathcal{L}(H_p^{-m})$ since R_{ε} is small as $\mathcal{L}(H_p^{-m})$. Then we have

$$\delta \in H_p^{-m}$$

(microlocally) again which contradicts to $m \leq n(1-1/p)$, and we can conclude Q = 0, hence $P\tilde{u} = f$.

REFERENCES

- [1] Bochner, S., Weak solutions of linear partial differential equations, J. Math. Pures Appl. 35 (1956), 193-202.
- [2] Ishii, H., On some Fourier multipliers and partial differential equations, Math. Japon. 19 (1974), 139–163.
- [3] John, F., The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure. Appl. Math. 3 (1950), 273-304.
- [4] Miyachi, A., On some Fourier multipliers for $H^p(\mathbb{R}^n)$, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 27 (1980), 157–179.
- [5] Sjöstrand, S., On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa 24 (1970), 331-348.
- [6] Sugimoto, M, A weak extension theorem for inhomogeneous differential equations, Forum Math. 13 (2001), 323-334.
- [7] Sugimoto, M. and Uchida, M., A generalization of Bochner's extension theorem and its application, Ark. Mat. 38 (2000), 399-409.