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Smooth functional derivatives in Feynman path integrals
by time slicing approximation
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1 Introduction
This note is a survey of our recent papers [23] [10] about the theory of Feynman path
integrals by time slicing approximation.

In 1948, R. P. Feynman (3] expressed the integral kernel of the fundamental solution
for the Schrddinger equation, using the path integral as follows:

[ etoipp). (1.1)

Here 0 < h < 1 is Planck’s constant, v : [0,7] — R? is a path with 4(0) = z, and
v(T) = x, and S[y] is the action along the path 7 defined by

_(T1dy
5[’7]—/0 5]3{

The path integral is a new sum of ex5] over all the paths.

2

— V(t,~(t))dt . (1.2)

(T,z)
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Feynman explained his new integral (1.1) as a limit of the finite dimensional integral,
which is now called the time slicing approximation.

Furthermore, Feynman suggested a new analysis on a path space with the functional
integration

/ Flletspp),
and the functional differentiation (DF)[v][n]. (cf. Feynman-Hibbs[4], L. S. Schulman
[27]) However, in 1960, R. H. Cameron [2] proved that the o-additive measure xS D[y)
does not exist.

Therefore, using the time slicing approximation, we give a fairly general class F*° of
functionals F[y] such that the Feynman path integrals

[e*sP PRI, (1.3)

and the smooth functional derivatives (DF')[y][n] exist. More precisely, for any functional
F[v] belonging to our class F, the time slicing approximation of Feynman path inte-
gral converges uniformly on compact subsets of the configuration space R?? of endpoints
(z,20). Our class of functionals is closed under addition, multiplication, translation, real
linear transformation and functional differentiation. The invariance under translation and
orthogonal transformation, the integration by parts with respect to functional differentia-
tion, the interchange of the order with Riemann-Stieltjes integrals, the interchange of the
order with a limit, the perturbation expansion formula, the semiclassical approximation
and the fundamental theorem of calculus are valid in the Feynman path integrals.

There are some mathematical works which prove the time slicing approximation of
(1.1) converges uniformly on compact subsets of the configuration space R?4, See D.
Fujiwara [5] [7] [8] [9], H. Kitada and H. Kumano-go [18], K. Yajima [30], N. Kumano-go
[21], D. Fujiwara and T. Tsuchida [14], and W. Ichinose [15]. However all these works
treated (1.1), that is the particular case of (1.3) with F[y] = 1.

Many people tried to give a mathematically rigorous meaning to Feynman path inte-
gral. E. Nelson [25] succeeded in connecting Feynman path integral to Wiener measure
by analytic continuation with respect to a parameter. K. It [17] succeeded in defining
Feynman path integrals as an improper oscillatory integral over a Hilbert manifold of
paths. Albeverio and Heegh Krohn [1], A. Truman [29] and J. Rezende [26] applied It6’s
idea and discussed many problems.

2 Main Results

Let Arg be an arbitrary division of the interval [0, T'] into subintervals, i.e.,
AT,0:T=TJ+1>TJ>'°'>T1>T0=0. (21)
Set 541 = z. Let zj, = 1,2,...,.J be arbitrary points of R%. Let

Yarp = 7AT.o(t5 LTI+, LTy - 171,1‘0) ) (22)
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be the broken line path which connects (T}, z;) and (Tj-1, x;j—1) by a line segment for any
j=12....J,J+1 Sett; =T; — Tj_1 and |Aro| = maxicj<s+1t;.

(Ts.zs)

(T3 23) / \ (T,x)
(Ty; z1) /

(TZ> 1’2)

To=0 T T T T T =T

As Feynman [3] had first defined by the time slicing approximation, we define the Feynman
path integrals (1.3) by

i 7o) J+1 1 d/2 i Sy | J
o - i RPl7ar, . v
/37{ F[v]D[] |A1l:'§,1]1_.0j1;‘[1 (Qﬂihtj) /Rdl ¢ e FhATD]jl;Il dx;, (2.3)

whenever the limit exists.

Remark 1 S[ya;,] and Flya,,] are functions of a finite number of variables x;41, z,,
... Ty, To, t-€.,

SMrare) = Sare(Tss1:Ts,. .., %1, To) ,
F[?’Ar,o] = FAT.()(xJ"'l’ ZJy..., Ly, 1:0) . (24)

Therefore Feynman omitted the first step S|yar,) of the form of functionals and wrote
Saro(Trs1,Zg, ..., 21, 20) of the form of functions. Furthermore, many books about Feyn-

man path integrals abandon the first step S|yar,] in order to use the Trotter formula,
i.e.,

I (75 — 9:3 )2 I — T T, — ¢t
= 1% =t . J .
Slvar,l Z ;/T (t,T =T, T + T, —T % 1)dt
J+1 (x; —x;-1)% L2
a ; ‘J_Zt;_" Z V(Tj-1,25-1) -

However, we keep the first step S{varo), Flvaro] in the multi oscillatory integral (2.3).
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Remark 2 Even when Fly] = 1, the integrals of the right hand side of (2.3) does not
converge absolutely. We treat multi integrals of this type directly as oscillatory integrals.
(cf. H. Kumano-go [19], H. Kumano-go and K. Taniguchi [20], D. Fujiwara, N. Kumano-
go and K. Tanigucht [18], N. Kumano-go [22][23])

Remark 3 If |Agpo| — 0. the number J of the integrals of the right hand side of (2.3)
tends to co. Therefore, we use the properties of Fyar,)-

Remark 4 If we need the endpoints (z, zo), we will use the following expression:

i—S["f’]F D = [ kS FIAMDIA .
[7(0)=-’130,‘7(T)=.r6 MDH] / e (D]

Our assumption of the potential V (¢, z) of (1.2) is the following:

Assumption 1 (Potential) V (t,z) is a real-valued function of (t,x) € R x RY, and,
for any multi-index o, 83V (¢, ) is continuous in R x R%. For any integer k > 2, there
exists a positive constant Ay such that for any multi-index o with |la| = k,

|7V (¢, 2)| < Ay .

In order to state the definition of the class F*° of functionals F[y], we explain the
functional derivatives in this paper.

Definition 1 (Functional derivatives) For any division Aro of (2.1), assume that
Faro(Tis1, 2, .., T1, To) € CP(RIVFD)

Let v : [0,T] - R and m : [0,T] — R4, | = 1,2,..., L be any broken line paths. We
define the functional derivative (DX F)[) [Tk, [m] by

=1

L L L 6 L
(D*F)) TTin] = (H -%-) P+ 3 amd

8y =0p=..-=6 =0

When L = 0, we also write (DLF)[Y] T, [m] = Flv).

Remark 5 Let Arg of (2.1) contain all times when the broken line path y or the broken
line path n breaks. Set v(T3) = z; and 7n(T;) =y;, 7 =0,1,...,J,J + L.
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Then, for any 0 € R, v + 07 is the broken line path which connects (Tj,x; + 0y;) and
(Tj-1,2j-1 + Oy;—1) by a line segment for j =1,2,...,J,J+ 1. Hence we have

Flv+6n = Faro(Xs41 + Oyssr, x5 + Oys, ..., @1 + Oy, 7o + Oyo) - (2.5)

Therefore, we can write (DF)[¥][n] as a finite sum as follows:

J+1

d
EF[’)’ -+ 67]] = Z(aijAT_O)($J+],$J, .oy 2y, .’L‘o) *Y;- (26)
6=0 j=0

(DF)[y)[n] =
Note that we ‘restrict’ the direction of functional derivatives to broken line paths. (cf.
Malliavin’s derivatives [24].)

Definition 2 (The class F°° of functionals F[y]) Let F[y] be a functional on the path
space C([0, T] — R®) such that the domain of F[y] contains all of broken line paths at
least. We say that F[v] belongs to the class F* if Fly] satisfies Assumption 2. For
simplicity, we write F[y] € F*.

Assumption 2 Let m be a non-negative integer and p(t) be a function of bounded varia-
tion on [0,T]. For any non-negative integer M, there exists a positive constant Cas such
that

J+1 g J+1 Lj J+1 Lj
(pEse P o TT T ]| < (©aa)”** @+ 100" T TL il @27)
=01{;=1 j=01;=1
J+1 Lj
(D50 F ) () TT T (s
j=01;=1
J+1 Ly
< @™ A+ 1™ [ In@lalol®) TT T limss (2.8)

3=0 ;=1
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for any division Az of (2.1), any L; = 0,1,..., M, any broken line path « : [0, T] — R?,
any broken line path 1 : [0,T] — R, and any broken line paths n;u;, : [0,T] — R4, [; =
1,2,...,L; whose supports exist in [Tj_1,Tj+1). Here 0 =Ty =T, Ty = Ty =T,

I17]] = maxo<i<r [¥(8)] and |p|(2) is the total variation of p(t).

Remark 6 Note that the support of the broken line path n;,, exists in [T;_1, Tj11] for any
J=0,1,...,J,J + 1. Roughly speaking, the broken line paths n;;,, j =0,1,...,J,J+1
slice the time interval [0, 7).

Y /\ \_/\/\
NakVid
Moo mfi%m /7 s

Io=0 17 1o T3 111 L4 =Trn

Remark 7 About the process how we were making up Assumption 2, see D. Fujiwara [6],
N. Kumano-go [23] and D. Pujiwara-N. Kumano-go [10] in this order.

Theorem 1 (Existence of Feynman path integral) Let T be sufficiently small. Then,
for any Flvy] € F*°, the right hand side of (2.3) converges uniformly on any compact set
of the configuration space (z,xo) € R, together with all its derivatives in x and xo.

Remark 8 Through this note, the size of sufficiently small T' depends only on d and A,
of Assumption 1.

Theorem 2 (Smooth algebra) For any Fly], G[v] € F*, any broken line path (¢ :
[0,T) - R? and any real d x d matriz P, we have the following.

(1) FlvI+Ghl e 7=, F[Gh] e F~.

(2) Fly+ ()€ F>~, F|[Py]e F>.

(3) (DF)MI[C) € F.

Remark 9 In other words, F>° is closed under addition, multiplication, translation, real
linear transformation and functional differentiation. Applying Theorem 2 to the ezamples

of Theorem & (1)(2), Theorem 4 (1), Theorem 6 and Theorem 8, the reader can produce
many functionals F[y] € F>.
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Assumption 3 Let m be a non-negative integer. B(t,x) is a function of (t.z) € R x R%.
For any multi-index o, 8¢ B(t,x) is continuous on R x R4, and there exists a positive
constant C, such that

02B(t,2)| < Ca(l + J))™.

Theorem 3 (Interchange of the order with Riemann-Stieltjes integrals) Let0 <
T"<T'"<Tand 0 <t <T. Let p(t) be a function of bounded variation on [T',T"].
Suppose B(t,x) satisfy Assumption 8. Then we have the following.

(1) The value at a fized time t

Fly] = B(t.~(t)) € 7.

(2) The Riemann-Stieltjes integral

4

Fhl= [ Bt 2(®)dp(t) € F>.

(3) Let T be sufficiently small. Then we have

fi ([ Bt re)P0) dnte) = feroe! ([

Furthermore, for any F|y] € F>, we have

1

B(t, v(t))dp(t)) Diyl.

1

L ([ #501B( () FiD)) dote) = [ exst ( L B(m(t))dpm) FDh).

Remark 10 We explain the key of the proof of Theorem 3 (3) roughly. In order to use
the Trotter formula, many books about Feynman path integrals approrimate the position
of the particle at time t by the endpoint 2;; or x;_;.

N

lo=0 Lj-£1; I'="T1rn
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On the other hand, using the number j so that T;—y < t < T}, we keep the position of the
particle at time t, i.e.,

t—"T; T, -t
____J_,:j_*_ J - Tj-1,

AV'JAT,( (t) =3 [2a ™
' Ty =15 Ty — T5

inside the finite dimensional oscillatory integral of (2.3). Therefore, we can use the con-
tinuity of the broken line path yar,(t) with respect to t.

N

i
IR ZEAN

Ip=10 T, £ T; =T

Proof of Theorem 3 (3).

(1) Note that B(t,var,(t)) is a continuous function of £ on [T, 7"}, together with all its
derivatives in z;, j = 0,1,...,J,J+ 1.

(2) By Lebesgue’s dominated convergence theorem after integrating by parts by z;,
Jj=12,...,J (Oscillatory integrals), for any division Ap,

J+1 1 /2 . ;
a0l B(¢ T
11 (2m‘ht,-) /Rdj € (t,7a70@)) [ dz;

j=1 =1

is also a continuous function of ¢ on {77, 7"].
(3) By Theorem 1, the convergence of

‘e J+1 1 a/2 I e J
/ en“DIB(t,7(t))Dly] = lim H( ) /R ,, en ol Bt ya, o (0)) [T das

1 -
1AT,01—0 55 \ 2miht; =

is uniform with respect to t on [T, T"].
(4) Therefore,

[ ett1B(t,A(©)Dh]

is also a continuous function of ¢ on [7”, 7”] and Riemann-Stieltjes integrable.
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TII
(5) Furthermore, by the uniform convergence, we can interchange the order of coedt
TI
and lim
{Arpl—0

) f” ( / e*”‘MB(m(t))vm) dt

T J+1 1 d/2 %S[,Y } J
= -/’ IAE}W—*O H (Qwiﬁtj) /R.u eh AT B(t"YAT,o(t))jl;.[ld-”l’jdt

7 J+1

4/2 s J
- 'AT 0|—-‘“ ’ H (szﬁt ) ,/R:u eﬁbhAT’D]B(t"YAT,o(t)) H dz;dt.

j=1

By Fubini’s theorem after integrating by parts by z;, j = 1,2,...,J (Oscillatory
integrals), we have

J+1 1 d/2 l‘s[ | T J
~ lin [ erersl [ B(t, yap, @)t I] dz,
|AT.ol—0 ]11 (2m’.ht,~) res © ! (h: 770 (2)) J]';]; a;

= /efsh? (/: B(t,fy(t))dt) Div].O

Assumption 4 f(b) is an analytic function of b € C on a neighborhood of zero, i.e.,
there exist positive constants pu > 0, A > 0 such that

_ sup BL0)
fllua = sup 02 < oo

Theorem 4 (Interchange of the order with a limit) Let 0 < TV < T” < T. Let
p(t) be a function of bounded variation on [T",T"]. Suppose B(t,x) satisfy Assumption 8
with m = 0. Let f(b) and fu(b). k = 1,2,3,... be analytic functions such that klim Wfr —

fllu,a = 0. Then we have the following.

1
(1) .

PRl =1 ([, Bltao)dott)) € 7.
(2) Let T be sufficiently small. Then we have |

ti [ 805 (7 Blere)dot®)) Db = [ eb0if (7 Bier(0)dote)) Db

—00

'

Furthermore, for any F[y] € F*, we have
Jlim [ exblf, ( /T T B(t, 'y(t))dp(t)) F[Dl)
= [ekstis ([ Bt r0doto)) oD
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Corollary 1 (Perturbation expansion formula) Let T be sufficiently small. Let p(t)
and B(t,z) be the same as in Theorem 4. Then we have

!

[= <IN 7 g Th T2
f‘oh 7+% fr, B(7.y(7))dp( T)Dh,] Z (%) /;V dp(ﬂ:)/;y dp('r-n—l) [I’ dp(7'1)

n=1

></ei-Sh}B(Tns7(711))B(T11——17":”(Tﬂ—l)) B(Tl"Y( 1))D[ ]

Theorem 5 (Semiclassical approximation) Let T be sufficiently small. Let F[y] €
F>= and the domain of F[y] be continuously extended to C([0,T) — R?) with respect
to the norm ||v|| = maxo<i<r [Y(t)|. Let v be the classical path with v*(0) = xo and
v(T) = x, and D(T, z,x0) be the Morette-Van Vieck determinant. Define Y (h, T, z, o)
by

i /2 ] o
/ e* U F[y]D[y) = (27r:hfr) xSt (D(T, 2, 20) V2F Y] + K (B, T, 2, %0)) .

Then, for any multi-indices «, 3, there exists a positive constant Co 5 such that
0505, T (B, T, 2, 20)| < Cap(l + |z| + o)™ .
Remark 11 If h — 0, the remainder term KL (A, T, z,20) — O.

Theorem 6 (New curvilinear integrals along path on path space) Let 0 < 7" <
T" < T. Let m be a non-negative integer. Let Z(t,x) be a vector-valued function of
(t,z) € R x R* into R? such that, for any multi-indez o, 85 Z(t,z) and 8%6,Z(t,x) are
continuous on [0,T] x R, and there exists a positive constant C,, such that

|0z 2(t, z)| + |076:Z (¢, x)] < Ca(l + |2])™,

and 0, Z(t,z) is a symmetric matriz, i.e., (0.Z) = 0. Z. Then the curvilinear integrals
along paths of Feynman path integral

7

Fil= [, Z(t,4®) - dy(t) € =
Here Z - dv is the inner product of Z and dv in R°.

Remark 12 In order to explain the difference with known curvilinear integrals on a path
space, please forgive very rough sketch. As examples of curvilinear integrals for paths on a
path space, Ité integral [16] and Stratonovich integral [28] for the Brownian motion B(t)
are successful in stochastic analysis. (cf. P. Malliavin [24]) If we can set B(T;) = z;, Ité
integral is dpprozimated by initial points, i.e.,

’!

Jp ZEBW)-dB®) ~ Z(T5-1,25-1) - (@5 = 25-1).
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1o =0 1" 1" =T

and Stratonovich integral is approximated by middle points, i.e.,

13

/T/ Z(t,B(t)) o dB(t) ~ 3" Z (71' +2"3'”1, % +2x""‘) (2 — T51) -
J

And many books about Feynman path integrals use endpoints or middle points.
On the other hand, if v = yar,, our new curvilinear integrals is the classical curvilinear
integrals itself along the broken line path yar,, i.e.,

TII

fT, Z(t,va70(8)) - dyar(t) - (2.9)

2.

Y
I ZEAN

To =( 1 1" =TJ+1

In other words, Ité integral and Stratonovich integral are some limits of the Riemann
sums. On the other hand, our new integral is a limit of curvilinear integrals.
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Theorem 7 (Fundamental theorem of calculus) Letm be a non-negative integer and
0<T <T'<T. g(t,z) is a function of (t,z) € R x R? such that g(t,z) and 8,9(t, x)
satisfy Assumption 8. Let T be sufficiently small. Then we have

/ eFS01 (g (1", 4(T")) — g (T, 1(T")) ) D] (2.10)
) T T
= S - , - dy oy 1 1B
= [0 [ @)t 20) - dv(®) + [ @rg)(tv()dt) Pl
Furthermore, for any F[y] € F*, we have
[ etstl(q (@, 5(x")) - g (T',%(T")) ) FnPD]
. Tfl TII
_ k3 S[ ; Y ~ ) } ¢ ~ ’
= [erti( [ (@uq)(tv®) - dr®) + [ @g)(t7(0)dt) FIDh).
Remark 13 (2.9) is the key of the proof of Theorem 7.
Proof of Theorem 7. By Theorem 3(1) and Theorem 2(1), we have
Gily] = g (T"+(T") — g (T",¥(T")) € 7.
We note that '(82g) = (82g). By Theorem 6, Theorem 3(2) and Theorem 2(1), we have
Tll » TII o
Gall = [ @)t 1®) - dv(®) + [ (Gug)(t,v(D)dt € F.

By the fundamental theorem of calculus, we have Gi[ya,,) = G2[var,) for any broken
line path va,,. By Theorem 1, we get

. J+1 1 da/2 - J
/ e**G1[y]Dly] = lim ( ) A{u e#*arolGy [yar,] [] de;

laro[—=0 55 \ 2mihit; =1

J41 d/2 X J
— ni 1 EShvar ol — £ Skl
= lim H (271"&'7&,-) /Rr“ A Gz[’)’Ar,o]jl;Ildxj = /eE G2[|D[H] .0

AT 0l—0 52,

Theorem 8 For any broken line path ¢ : [0,T] — R%, we have the following:

(1) (DSNM]C]) € F=.
(2) et S¢S0 ¢ Foo
(The constants Ca g, Co g of Theorems 5, 16, 17 depend on h.)

Theorem 9 (Translation) Let T be sufficiently small. For any F[y] € F*™ and any
broken line path n : [0, T] — RH,

eXSoHlFly 4 n)Dp] = [ ex V1P D[]

[:'(0) =z0,¥(T)=x Y(O)=z0+n(0),y(T)=x+n(T)
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Corollary 2 (Invariance under translation) Let T be sufficiently small. For any
F[y] € F= and any broken line path n : [0, T) — R¢ with n(0) = n(T) =0,

e? SO+ Ply 4+ n)Dly] = e*SU1F[y]Dl] .

[7(0)=ro,‘r(T)=x /7'(0)=20.'7(T)=w

Proof of Theorem 9. By Theorem 8(1) and Theorem 2(1)(2), we have
ex (S-St ply 4 5] € F°. By Theorem 1,

§ Str+a] w1\
E S+l g Dyl = 1
-[y(0)=a:o.'y(T)=1f ¢ by + 1P IATlm H (27rih.tj)

.0]—0 j=1

) . J
S~ LS~ + }—‘S ~ -
X /;?.dJ Eﬁ hAT'Ol ) eﬁ( hAT'o " l’AT'ODF[ TAT0 + "7] l l dxj

j=1

exists. Choose Arg which contains all times when the broken line path 7 breaks. Set
n(T_'?) =yj)j =0)17'°':']7J+1'

N
/
PRV

1o =0 1I'=1Tyn

(0, Lo

Since yar, + 1 is the broken line path which connects (T}, z; + y;) and

(Tj-1,xj-1 + yj-1) by a line segment for 7 =1,2,...,J,J + 1, we can write
J+1 1 aj2 .
= lim H / €%5AT'0(IJ+1+yJ+1,rJ+yJ.---,x1+y1.xo+yo)

j=1
By the change of variables: z; +y; — z;, j =1,2,...,J, we have
J+1 1 d/2 .
— liln H -/ e"‘ﬁSAT’O(m.’+1+y1+1vai"'121130+y0)
1aT,0(—0 ;55 2miht; Rd/
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X Fapo(@ys1 + Yo41, 20, - -+ T1, To + Yo) I] dz;
j=1

= e*0l Py Dl .0
Jy(0)=wg +1(0),¥(T)=2+n(T’)

Theorem 10 (Taylor’s expansion formula) Let T be sufficiently small. For any Fly) €
F> and any broken line path n : [0,T)] — R,

[ FOE +aiph] =3 = [P PR - [Pk

! (1 — e)L S &3] L+1
+ [ [ DR Ry + ] - D8 (2.11)
Proof of Theorem 10. Using Taylor’s expansion formula of (2.5) with respect to
0<8<1, we have
L1 1(1-06)t
Fiy+nl =Y (0Bl bl + || S 20 Py + 0 - nldo,
1=0 '

for any broken line path . By (2.3), we get (2.11). O

Theorem 11 (Integration by parts) Let T be sufficiently small. For any F(y] € F>
and any broken line path n : [0,T] — R withn(0) =n(T) =0

[ASNDR I = —3 [ FPDS)MmFMPH.  (212)

Proof of Theorem 11. Choose Arp which contains all times when the broken line
path 7 breaks. Set var,(1}) = z; and 9(Tj) = y;, 1 =0,1,...,J,J + 1. By Theorem 9
with n(0) = n(7T") = 0, we have

w1\ i Svap o+ §Sbagol
= i . / (17{‘ Yare™T - Yap,o ) d:
0 |AT0I1=0 1;'[1 (szﬁtj) Jras \® Flyar +n) e Fha H T3

1 J+1 df2 :
= Jm ['T] ! [, ¥ Shanaon
laTol—0Jo 2y \ 2mihit; R4’

] J
x (5(DS)varo + 6F aro + 61 + (DF)iary + 61iln]) [T dasdt.

j=1

Note (2.5) and yo = ys+1 = 0. By the change of variables: z; +0y; — x5, j = 1,2,...,J,

we have
1 J+1 1 a/2
= Ii / / I%ShAT,O]
|azol—0.Jo 11 (szht,) Rt ©

J=1
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X (%(DS)['VAT,O]M] ["/A'ro] + (DF)[’YAT o 7]) H d.’LJdG

= = [ *PIDS) R FIDN] + [ e DF)WInD) ©

Theorem 12 (Orthogonal transformation) Let T be sufficiently small. For any F[y] €
* and any d x d orthogonal matriz Q,

et IF[QyDly) = [ et Fy D). (2.13)

-[7(0)‘—‘10 AN T)=x (0)=Qx0,Y(T)=Qx

Corollary 3 (Invariance under orthogonal transformation) Let T be sufficiently
small. For any Fly] € F*, any d x d orthogonal matriz Q and any broken line path
n:{0,7] - R4,

e ST+ FIQy + nDly] = eIl Ply| D).

L’(O):O,’)’(T)=0 /7(0)=n(0) A(T)=n(T)

Proof of Theorem 12. By Theorem 1,

* s [Q')} F D
€
[‘I(O) =20,7(T)=x [Q7] [7]

J+1 1 da/2 i s[Q ] J
= |ain H (27T’iht-) ‘/1;,:11 er>iETAT 0 F[Q7AT_0] H dxj '
4 7 '=

|&T,0]—0 j=1

exists. QYar, is the broken line path which connects (T}, Qz;) and (T}_,, Qz;_,) by a
line begment for y =1,2,...,J,J + 1. By the change of variables: Qz; — ;,
J=12,...,J and Ideth = 1, we have

J+1 1 da/2 P
= lim H / e'ESAT.O(Q-TJ—H-3Jv-~-yw1,QzO)

J
XFAT.O(Q:DJ-f-l)-’UJ’ cee 9171’@-770) H dl'J

= e%SMF Di~1 .0
7(0)=QIO,‘Y(T)=Q3~ [’y] [ /]

3 The details about the convergence of Theorem 1
For simplicity, for any 0 <! < L < .J + 1, we set

Try = (TL,TL-1,...,%).

Let T satlsfy 4A,dT? < 1 where A; is a constant in Assumption 1. Then we can define
xTn = TJ1(£J+1,$0) by
(axuSAT,o)(xJ-fh x.tl,la ﬂf'o) =0. (3'1)
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For any given function f = f(xy41,271,%0), let fT be the function obtained by pushing
Ty = xf,}l into f, i.e.,

ff=fHer, xo0) = f(@se1,2hy, 20) .-

Then we have

FYLT.(I = TAre (t’ TJ+1: xTJ,ls mO) s
S[’yfA’J‘,O] = STATQ ($J+13 xo) = SATD(Q:J-}—I; m:‘.] 1 xO) s
Flvhs,) = Fhpo(@it1,20) = Fapo(Tr41, Ty, o) -

We define Da, (2741, Zo) by

2 ¢
DAT,o(l‘JH?fb“o) det(¢ mJ,SAT,(,)T x( :;: )
J+1

Furthermore we define the remainder term Ya, ,(h, zs41, Zo) by

J+1 1 /2 i g1 | J
mRYA |
E (2mhtj) Jros €057 Pl EI

1 d/2 ig t _
=~ (5) €0l (Diagy (@80) Y/ F o] + B ra (1, 2,20)) -

We can prove the convergence of (2.3) in the following order.

Theorem 13 (Convergence of Path) Let 44,dT? < 1/2. Then, for any multi-indices
«, 3, there exist positive constants Cap, C4 s independent of At such that

0308, | < Cas(l + 2] + om0,

2 (Yhge = 7)|| < ChslArolTQ + |2] + |a])

where v = ~°Ut, z, 20) is the classical path with v*(0) = zo and ¥*(T) = z, and ||| =
maxoge<t [Y(t)].

Theorem 14 (Convergence of Phase) Let 4A2dT? < 1/2. Then, for any multi-indices
«, 3, there exist positive constants Co, Cq, 5 independent of Arp such that

Tr—T 2 n 2—~|c
7:0 (SAT()(m7m0) - '(_-5:17()2‘)' S Ca,ﬁT(l + |(U| + !xﬂl) (2~ +£1.0) ’

2 (Shyo(,%0) = S(T,2,70))| < Ch sl Arol?T(1 + || + |zo)Fmex(-lethlO),

where S(T', z,x0) = S[y%] is the action along the classical path v with
+°(0) = 29 and v°HT) = =.
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Theorem 15 (Convergence of Main term 1) Let T be sufficiently small. Then, for
any multi-indices o, 3, there exist positive constants Co g, Cy, 45 independent of At such

that
929%, (Daro(@, @) —1)| < CapT?,

0285, (Daro(x,@0) — D(T, 2, 20))| < Cl gl Aro|T(1 + |z] + o),

where D(T', z,xo) s the Morette- Van Vieck determinant.

Theorem 16 (Convergence of Main term 2) Let T be sufficiently small. Let Fly] €
F>. Then, for any multi-indices o, 3, there erist positive constants Co 5, C,, 5 indepen-
dent of Arg such that

0508, FL,, (2, 20)| < Cap(1 + || + o)™,
0208, (FL, (z,70) — F(T,2,20))| < Cl gl ArolT(1 + |z] + |zol)™ .

with a function F(T, x,xo). Furthermore, if the domain of F[v] is continuously extended to
C([0, T) — R*) with respect to the norm ||Y|| = maxo<i<r |7(t)|, then F (T, z,x0) = F[v%.

Theorem 17 (Convergence of Remainder term) Let T be sufficiently small. Let
Fly] € F*°. Then, for any multi-indices «, 3, there ezist positive constants Cy g, Chps
independent of A1y and h such that

10288, Caro(h T, 20)| < CapT(U + T?)(1 + |z| + |2o])™,
lagafo (TAT,O (h'a .’L’,fl?o) - T(ha 71: z, xO))I S Céx,ﬁlAT,Ol(U + Tz)(l + |.'E’ + leI)WH-l )
with a function YT(h, T, x,xq).

We explain the key of these proofs on the convergence:
Let (Ar1y,,s A1,_,,0) be the coarser division defined by

T=T>T;> - >Tyyy>Th1>--->T1 >Tp=0. (3.2)

In order to prove that the sequences of the functions of Theorems 13, 14, 15, 16, 17 are the
Cauchy sequences with respect to the division Arg, we need to compare the function for
the division Arg and the function for the division (Arr, +1 Ar1,_,0). The two functions
are different in the number of variables. However we can connect the two functions with
a broken line path as follows.

Lemma 3.1 For any 1 <n < N < J, define 23y, = o3 ,(Tn41, Tum1) by

T; - Thy Tny1 —T;
a;q. = ——-—.-‘7 x + — 7
N Ty — Ty

= Tn-1, J= 1,...,N.
7 TN+1 — Tn—l Tn-1: J nn + ) ’
Then, for any functional F[y] whose domain contains all of broken line paths, we have

< — .
Faro(Trrine1, TN n Tno10) = Flaray, a1, 0)(TI+1,N+1, Ta-10) -
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Proof of Lemma 3.1. Set 2y, = T4, Then the broken line path Yarry,, .7, ;.0
becomes the broken line path va,,. Therefore we have

FA’!‘,O (xJ-{»l.N-f-l? m?\’.n: xn-—l.O) = F{'YAT.O]

= F[’Y(AT,TN+1»AT"_1,O)] = F(AT,TN+1 ,AT7L_1‘0)(:EJ+1,N+1;mn-—l,O) .0 (3‘3)

N e
(0, 2o /\

1o=0 Ln_1 LN I'=Tj54

4 Assumption 2’ by ‘piecewise classical paths’

As a remark on Assumption 2, we state Assumption 2’ under the time slicing approx-
imation by ‘piecewise classical paths’. -

Let v be the classical path with v%(0) = zo and ¥v*(T) = z, i.e., v satisfies the
Euler equation

d2 C Ci
preld 1(t) ~ (8:V)(t, (1)) = 0.
For any division Arg of (2.1), let
Yare = ')’Aft',o(tv Ty41,ZJs -1 T1,T0) 5

be the ‘piecewise classical path’ which connects (T}, z;) and (Tj-1,;-1) by a classical
path for any 7 =1,2,...,J + 1. Set

S[’YAT.()] = SAT‘(,(xJ-!—ly Ty, axlamO) y
F[7AT.0] = FAT.O (xJ+1= Ly L1, 1?0) .

Assumption 2’ Let m and U be non-negative integers and uj, j =1,2,...,J,J+1 be
non-negative parameters depending on Arg such that Z;’.__*_'ll uj < U < oo. For any
non-negative integer M, there exists a positive constant Cyps such that for any division
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Argp, any |a;| <M, 3=0,1,...,J,J+1,and any 1 <k < J,

J+1 J+1
(H 333) Faro@ys1,25, -, 21, 20)| < (Car)? T+ D |2 )™,
j=0 Jj=0
J+1 J+1
(H 0;’,‘;’) Or Fary(@se1, Ty - @1, 20)| < (Ca) T (ukgs + wn) (1 + Y |2 )™
j=0 j=0

The class F' of functionals F[y] defined by Assumption 2’ also satisfies Theorem 1, The-
orem 2(1), Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7. Furthermore,
the convergence of the time slicing approximation by ‘piecewise classical paths’ is much
sharper than the convergence of the time slicing approximation by broken line paths.

Sketch of Proof. Let l’jv,n = w}v,n(itN+1,:Br._1) be the critical point defined by

(B.T.,,l SAT.O)(-TJ+1.N+17 l‘fv,m Tn-10) =0.

Note that if we push the critical points into a piecewise classical path, the piecewise
classical path changes to a single classical path. Then we can hide all critical points
inside single classical paths, i.e.,

Faro(@s01,841: T Tao10) = Flaray, . an,_y o (BI41N+1, Tom10) .0
(9

q G
(0 >

n-—1 TN+1 n—1 N+1

For the details of the proofs, see D. Fujiwara and N. Kumano-go {11] [12]. Furthermore,
in [12], Fujiwara wrote down the second term of the semi-classical asymptotic expansion
of Feynman path integrals (1.3) with the integrand F[vy]. If F[y] = 1, the second terms
coincides with the one given by G. D. Birkhoff.
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