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Abstract

Analytic local description of WP(I) solutions to a radial p-Laplace
equation

r (JUAP720,) + (n = DU P20, + U720 = 0

on I = [a,b] C (0,00) is given near singular points by a Briot-Bouquet
type theorem of two variables, where 1 < p, ¢ < oo.

1 Introduction

An n-dimensional p-elliptic PDE for u(z) is
div(|VulP72Vu(z)) + |u|%u = 0, (1)

where x € R™ and 1 < p,q < o0.
If z € R, the equation reduces to

(lux,p*2um)x + |U|q_2u = 0. (2)

L. Paredes and the present author, making use of a Briot-Bouquet
type theorem of one variable, gave analytic expression of solutions to
the equation (2) near the singularities ([8]). Our analytic expression
readily reproduces differentiability and analyticity obtained by M.
Otani [6], [7] and by M. Otani and T. Idogawa in [4].

If r=|z|,z € R®,
a radial solution U(r) = u(x) satisfies

(r" U P20,), + U =0, (3)

or

r(IUP20,), + (n = DIUP 20 +rUTU =0 (4)

The aim of this report is to extend the results for (2) to the radial
p Laplacian (3) by a Briot-Bouquet type theorem of two variables.
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Remark 0.1. R. Gérard and H. Tahara studied t$% = ®(¢,z,u, &)
and generalized it of many variables and of hlghor order case in
[3]. Since our version of a Briot-Bouquet type theorem of two (or
several) variables is not covered by theirs, a proof is given, inspired
by their work.

2 A Briot-Bouquet type theorem

We recall a classical Briot-Bouquet type theorem of one variable in
complex domain. We assume

e &(t,h) is holomorphic near (0,0) € C?,

i CI)(O, O) =0,
8<I>
Bh ——(0,0) is not any positive integers.
Theorem 1 (Briot-Bouquet).
dh
— = (¢
t— = @(t, h)

has a unique holomorphic solution near t = 0, satisfying h(0) = 0.
If ®(t, h) is real analytic, so is h(t), too.

1 8a+zq)
Proof. Set a,,; = NEETETX ———(0,0). Notice we can rewrite the equa-
tion by
dh ait
t-éz — Qo, 1h = al,ot -+ Z aa,,-t h*.

2<a+i
Moreover, the left hand side satisfies the condition that there exists
é > 0 such that

|a — ao’ll 2 5

foralla € N* = {1,2,3,--- }.

oo
Formal solution: Let h(t) = Z hot® be a formal solution . Then,

a=1
we have

(1— aO,l)hl = a1,0,
(CY - a’O,l)ha = Qa(aa’,i> ha”; o +1 < «, o <a-— 1)



for all o > 2, where (), is a polynomial with nonnegative integer
coeflicients.

Convergence: Then, we prove convergence of ﬁ(t) through the in-
plicit function theorem.
An auxiary equation of H(t) is given by

SH = layolt+ Y |aalt*H".
2<a+1
with H(0) = 0.
There exists a unique convergent series function H(t) = > o ; H,t*
by the implicit function theorem. Since 6 H, = Qu(|aa i|, Hor; & +
i< ao,d <a-1),

|ha| = |a1,0l/|1 — ao,1]
< lai0|/0 = Hi,

|ha| = |Qal@ar, har)/( — ao,1)]
< Qullaw], Har) /5 = Ha
for a > 2 by induction.

O

We will make use of a Briot-Bouquet type theorem of two vari-
ables for our main results. We state it in a slightly more general
form for convenience.

Let N = {0,1,2,---}. B = {8} is a fixed finite subset of N¢,
where 3 = (6y,- -+, Bq) is a d-dimensional multi-index with |G| > 1.
Let (¢, h, pB) = (t1,- - ,ta, h,{ps; B € B}) € C**1+Bl be local vari-
ables near the origin, where |B| is the number of the elements in B.
Let £ = (&1,---,&) € C° be global variables. a = (o, -+ ,aq),8
and ~ denote d-dimensional power indices in IN¢.

Theorem 2. We assume that a holomorphic function ¢(t,h, pB)
and a polynomial

L= > L&

0<|y[<r
satisfy
(i) &(t, pg) has a power series expansion near (0,0) without linear
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parts:

$(t,p) = D Gaupt®p

25|l +is]
%
= Z Qoip 2 H pﬂﬁ )
2<el+liB| peB

where |ig| = D3 pis for a multi-indez i = (ig)sep and
(ii) there exists a positive constant & such that for all d-dimensional
multt indices o with |a| > 1,

[ Z l,a"| > 6 max{1,o”; 3 € B}, (5)

o<|y|<r

where of denotes the coefficient of (t%)ﬁ .
Then, a nonlinear equation

Yoo, (tgz)vh(t) =a-t+

o<y

+ Z aa,iato‘ (6)

2<|al|+[iB]

. ga ((%)ﬁ h(t)) ”

has a unique holomorphic solution h(t) near the origin with h(0) =
0.

Proof. We will follow the previous proof.

Construction of A(t): We set

h(t) = Y hat®. (7)

laf>1

Substituting (7) into (6), we have

L(a)hy = aq when |a| =1,
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and
L(o)hg = Qa(aa’,isv horr (O‘ﬁwha@; BeB
the indices at least satisfy
| + lis] < |af,|o| < |o| =1
|ag| < Jaf = 1),

where o/, o, ag are copies of a. Thus, h, are determined succesively.

Convergence of h: An auxiliary analytic equation (cf. Gérard-
Tahara [3])

0H = |a1|t1 + |a2|t2
+ Y laaslt (H@)™'.

2<|al+|iB]
Solving this equation of H by the implicit function theorem, we have
a unique holomorphic solution near the origin ¢ = 0 with H(0) = 0.
We claim
H(t) = Y  Hat* >> h(t).
More strongly we claim, ,
H, > max{|h,|, |0’hs|; B € B}.
We notice
1 s .
H, = gQa(laa/,iBL Hony Hyy; the indices satisfy
at least |o/] + |i5] < |al,|o”| < |a| - 1, (8)
lag| < |a| - 1,8 € B).
We start with |a| = 1:
|hal = |aa/L(a)| < |aa|/6 = H,.

Then, by induction, we have
1
max{1,a%; 8 € B} - [hal < 5Qa(law isl; lherl, (@5 Py

indices satisfy at least
/] + lis| < al,[a”"] < |o| -1,
ag| < |af — 1)
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< 5Qallaw sy H, Hoy
the indices satisfy at least
o] + |ig] < Jal,|a"] < |af -1,
ol < | — 1)
Therefore, we have obtained max{|h.|, |0’h.|} < H,. O

We need this Briot-Bouquet type theorem in case where d = 2,
r =2, max{|8|; 8 € B} = 1.

3 Local uniqueness

To assure that weak solutions in W1P(I) are filled locally by our an-
alytical method, we need local uniqueness of solutions to the Cauchy
problem to (3). We adapt proofs of uniqueness in J. Benedikt [1]

and P. Drabek and M. Otani [2] for forth order p-elliptic equations,
completing them with an energy inequality.
Let I = [a, b] be a compact interval in (0, 00).

Proposition 1 (Local uniqueness). Let ry be an arbitrary positive
constant in I. Local solutions on I are uniquely determined near rg
by initial data U(ry) and U,.(ro).

Proof. Set V(r) = r» YU, (r)[P72U,.(r), p = p/(p — 1) and f,(X) =
| X|P~2X. Notice f, x(X) = (p — 1)|X|P~2. Then, we have from the
equation,

{Vrm = UM = - U)o

1—n

Up(r) =re=t|[V(r)P2V(r) = fp(r* "V (r)).
Suppose

Vi(ro) = Va(ro), Ui(ro) = Ua(ro)
|U0| —+ l‘/o| > 0.

We will show that there exists a positive constant e such that U (r) =
Us(r) on J(€) = [ro —e€,r0+ €], as proved in Benedikt [1] in 4th order
p elliptic ordinary differential equation.



Case (i): 1<p<2and2<yq.

Vi(r) — Va(r) = Tn—l{fp(Ul,r(T)) — fo(Uz,r(r))}
Ui,r(r)
= r"‘l/ fo.x(T)dr
Uz (1)
We set K1 = max{|U,,(r)|;r € I,7 = 1,2}. Noticing f, x(X) is
positive decreasing on (0,00), when 1 < p < 2, we have

= Sy U (7)) = ST (D)}
> (ro — & (p — DET2|U1,(r) — Un,(r)].
We set Ky = max{|U;(r)|;r € I,i=1,2}.
Vi) = Va(r) = = [ T A O) — A Ua(r)

To

On the other hand, we have

Ui (1)
/ fox(o)do

Uz (1)

|fa(Ur(7)) = fo(Ua(T))| =
< (¢ = DK |U(r) = Un(7)|

/T{Ul,r(a) —Us,(0)}do

< (g —1V)K§?€||Usr — Uzl so)

<(¢g-1)K{?

where || U || j)= maxj,—rq<c |U(T)].
Choosing ¢ sufficiently small, we conclude

”Ul,r - UZ,THJ(e) = 0.

Hence, Vi = V5 on J(¢), therefore, V; . = V,,, which gives U;(r) =
Uz(r) on J(e)

Since we can proceed the rest as in [1], we show only classification
of cases.
Case (ii): l1<p<2andl1<g<?2

Subcase (ii-1): We assume also Up # 0.

Subcase (ii-2): Uy = 0, V4 # 0.

23
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Case (iii): 2 < p, and 2 < q.

Subcase (iii-1): Vi(rg) = Va(ry) # 0.

Subcase (iii-2): Vi(ro) = Va(ro) = 0 and U;(re) = Uz(rg) # 0.
Case (iv): 2<pand 1< ¢g<2.

Subcase (iv-1): Uy = 0, and Vj # 0.

Subcase (iv-2): Uy # 0, and V, = 0.

We need different arguments, when Uy = V, = 0. We assume
Uo=W=0.

To complete the proof, we use an energy inequality.
Proposition 2. (i) Every nonzero W?(I) solution U on I has
CY(I) regularity.

(ii) Then, it satisfies the energy equality

b— 1 P 1 r)|?
P20 + U )
= P + 2@ (10)

(-1 [ Z{Uo)rds

forallr,c e I.
(iii) If U(ro) = U,(ro) = O for some ro € I, then, U(r) =0 on I.

Remark 2.1. (i) is due to M. Otani [6].
When n = 1, (ii) is the energy equality.
When n = 1, (iii) is trivial (for any p,q > 1) in virtue of the energy
equality. When n > 1, this completes the proof of local uniqueness.

Proof of (iii). U(r) = 0 for all r € [rp,b] in virtue of the energy
inequality.

For all r € [a,ry] we have

T0 1

P U ()P + —|U<r>|q— n—l)/ ~|U(o)lPdo,

therefore,

P20l < ( n—1>/r°1|U (o)|Pdo.



By Gronwall’s lemma, we have U,(r) = 0 on I. Since U(rg) = 0, it
implies U(r) =0 on I. O

Remark 2.2. We note a different proof, when ¢ > p as in [2].
We note

) = V) = [ Vandr == [ pe)r,
70 o
We have r7~! || U, II’}zSS el Vi lu< e(ro+€e)™ ! || U |oi<
€l (ro + €)™ || U, “quel) If we assume || U || s> 0, we have r§ ™! <
e? || Ur [|%& for any small positive €. This gives contradiction, hence
1T {ls@= 0.

4 Analytic singularities

We shall now describe local analytic singularities of the solution
U(r) to (4).

When n = 1, a classical Briot-Bouquet type theorem of one vari-
able was sufficient to obtain the unique existence of analytic solution
to the nonlinear ordinary differential equation ([8]).

When U(rg) # 0 and U,.(re) # 0, ro is an analytic point of
solution U(r). Hence, we consider two types of singularities:

e ro = 0 where U(c) =0 and U,(0) = A # 0,

o 7o = 7 where U(7) = A# 0 and U,(7) = 0.

CASE 1. 0 where U(o) =0 and U,(0) = A # 0. We assume A > 0
without loss of generality. We treat the case where o > 0.

Theorem 3. For 1 < p,q < oo, there exists a unique analytic
function F(t,s) in a neigborhood of the origin such that we have
nearr = o

U(r)=(r—o)F(r—o,|r—ol?. (11)
F(t,s) is a holomorphic solution to
(p — 1) (o + t){F (¢, ) + tFy(r, 5) + gsFu(t, 8)}*
{tFi(t,s) + gqsFs(t, s)
+ t(tFy(t, 8))s + 2qtsFy ,(t, s) + ¢°s(sFu(t, s))s}
+ (0 +t)s(F(t,s))* " (continued)

(12)
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+ (n— D)t{F(t,s) + tF(t,s) + qsF,(t,s)}**

13
s (13
with
F(0,0) = A. (14)

Consequently, we can compute the expansion of U(r) atr = o :

n—1

U(r) =(r — o) {A — ———A(r — o)
2 -1
o(p—1) (15)

B A9-pt+l
(p—1g(g+1)

Proof. We reduce equation (13) by change of the unknown function

ropen ).

F(t,s) = A+ h(t,s)

into
o 0 1
L (15035 ) 09 = G5
X {A + h(t,s) + thy(t, s) + qsh,(t,s)}*>7P (16)
X [(o+t)s(A+ h(t,s))T™ !+ (n— 1)t
{A+ h(t,s) + thy(t, s) +qshs(t,s)}* ]

= al,ot + Qo118

+ E  GpgiktPs?
2<ptatititk (17)

x (h(t, s)) (t%;f(t,s))j (s%’;(t, s))k,

where
(n—1)A

p—1
We have L(a, 8) = a + qB + o? + 2qa8 + ¢*32.

Airo0 =

ATPHL

agp1 = —



Since L(1,0) = 2 and L(0,1) = g(¢+ 1), F3(0,0) and F,(0,0) are
determined and so on. Thus, the unique existence of the solution is
obtained by the B-B type theorem of two variables.

Next, (r—o)F(r —o,|r —cl|?) is a C? function near o. It satisfies
(1) with the prescribed Cauchy data. By Proposition 1, it is equal
to the unique solution U(r) with the same Cauchy data. O

Corollary 1 ([4], [7],[8]). (i) When q is an even integer more than
1, the solution U(r) is real analytic near o.

(ii) When q is not an even integer, the solution U(r) is of class C<%
at o, where < x > is the least integer greater than or equal to x.

CASE 2. 7 where U(t) = A and U, (1) = 0.
As in the case 1, we can assume without loss of generality that
A>0.

Theorem 4. For any p and q satisfying 1 < p,q < oo, there exists a
unique analytic function G(t,s) in a neigborhood of the origin such
that we have near r = 7

U(T)=A+1T—T|5£TG (7‘—7,|7‘—T|5£"1), (19)
where G(t, s) is a holomorphic solution to the nonlinear equation:
p
(p—1)(t+ T){*—(;:—lG(t, s)

sG,(t, )32

+ th(t, S) -+ D _Zi

; - (20)
o {( 2 s50ts )+p L{G(t, 5)
p(p+ )s s s
T -2 Go(t,s) +t(tGe)u(t, 5)
2p p?
+ = Tt5Gi,6(2, ) +( 1)25(36' s)s(t; s)}
+ (T +t)(A+ sG(t,5)¢
(21)

—(n—1)t {‘(;Zi‘—lG(t’ s)

p—1
+tGy(t, s) + 5 _Zi 1sGs(t, s))} =0

27
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with

—1 g
G(0,0) = ~ 2~ 2 45,
p
Consequently, we have a convergent erpansion near r = T .

U(r)= A+ Blr — 77T + C(r — 7)|r — 7|71

(22)
+D|r—7'|523—1+---,
where
B = _p; lAzgf:—% and (23)
_ (n=1) a=1
C = 2(210_1)14 (24)
__g-1 (p—1\* iep
_2(217—1)( p ) AT (2)

Proof. We show, at first, unique existence of the solution G(t, s).
We reduce the equation by change of unknown function by

G(t,s) = B + h(t,s),
into

(pf1)2h(t,s) + Zf itht(t, s) + %EE_%%shs(t, s)

+ t(the)elt, 5) + pQ_pltsht,s(t, 5) (26)
p2
o 1)23(sh3)3(t, s)

+

I A - 1
N ISy Py Y ey

pB p
— — t
x{ 7 1h( ,S)

p P
—thy(t,s) — shy(t, s)}

(27)

p—1
x {(t+t)(A+ sB + sh(t,s))?!
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p p
-m~¢n<——~TB—-——ma@

p— p—1
D p—1 (28)
—thi(t, s) — p_:TShs(t’ s)) } :

Developing the right hand side with respect ot (¢, s, h, p, ), where
p = shs and 0 = shg, we, at first, obtain

p—l et
p

by the condition that the constant term vanishes:

D 1 D 2-p 1g—1
—r B - Bl Pge-1 = .
(p—1)2 p—l{ p—1 J

Then, we have the development of the R.H.S. is

B=-—

R.H.S. = a190,0,0t + a0,1,0,0,08

2p — p? 2—-p
¢
+ G iphB ) + STt 9)

2p — p?
+ ————shs(t, s)
12
e B
+ Z aa’ﬁ’z,_’,kt S (30)
2<a+G+i+j+k

< ((t.o)) (51 s>)j (a%—}(@s))k-

o= — P __ _20=0P _ P

o (-1)? (p—-1)2 p-U
p+1 2—p 2p-—1

l10= - = ’

’ p—1 p-—1 p—1

o= P _20-p _ p(2p—1)

T (-1 (p-12 (p-1)27

2

(29)

Set

2p D
loo=1l1; = —— gy = ———.
2,0 1,1 p— 1 0,2 (p_ 1)2
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Thus, we have the reduced equation

1(12.52) e

= a1,0,0,0,0t + @0,1,0,0,08 (31)
+ Z aa,g,i,j,kt"‘sﬂ
2<a+B+it+j+k
,. ,Oh g
x (h(t, s)) (t 8) FAUL) (32)

Since L satisfies the condition (5), the unique existence of the
solution to (21) is obtained by our Briot-Bouquet type theorem.

O

Corollary 2 ([4], [7],{8])- (i) If p/(p — 1) is an even integer, i.e.
p=02m+2)/2m+1) (m=0,1,2,---), u(z) is real analytic at 7.
(ii) If p/(p — 1) is not an even integer, the solution U(r) is of class
C<3E>H+1 g T, where < x > is the least integer greater than or equal

to x. Especially, when 1 < p < 2, U(r) is of class C? at 7. When
2 < p, U(r) is not of class C? at 7.
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