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Abstract

For the set of cellular automata CA=(Z4, Q, f, v) with local function f : Q™ — @ and neighbor-
hood v of size n, we define an automorphism which naturally induces a classification of CA: Two
CA A and B are called automorphic, if and only if there is a pair of permutations (7, ) of v and Q,
respectively, such that (fg,v5) = (¢~ f5p,v7). The set of the pairs of permutations (r, ¢) is seen
isomorphic to the direct product of two symmetric groups S,, and S,. The set P,, , of local functions
f: Q™ — Qs classified by use of this automorphism group. Particularly, P32 which corresponds
to 256 ECA (1-dimensional 3-neighbors 2-states CA) is classified into 46 automorphism classes,
which is compared with the historical classification into 88 classes. The classification also refers to
surjectivity, injecitivity and reversibility of CA.

1 Introduction

In recent years we have been dealing with Jocal structures of cellular automata (CA for short) [1, 2, 3]. As
a continuation, we study here automorphisms of CA. CA are called antomorphic if and only if their global
behaviors are the same when changing (permuting) the neighborhoods and renaming the cell states.
Formally two CA A = (Z%,Q, fa,v4) and B = (Z¢,Q, fB,vB) are called automorphic, if and only if
there is a pair of permutations (, ) of v4 and Q respectively, such that (fg,vg) = (L fZe, vy).

For fixed n and g, the set of the pairs of permutations (7, ) is seen isomorphic to the direct product of
symmetric groups S, and S, which will be called an automorphism group and denoted Aut(n,q). By
use of the automorphism group, we can classify all CA into automorphism classes. Generally speaking,
a classification is a well-worn but useful method in searching for good CA like reversible CA.

In Appendix, Table 1, we give the complete classification of 256 ECA (n = 3,q = 2) into 46 automor-
phism classes, which is compared with the historical classification of ECA into 88 classes as shown in [4]
and [5]. Typically our classification shows that 6 ECA including rule 110 become computation universal
when the neighborhood and the state set are appropriately permuted. Table 1. also shows a computer test
based on the Sutner-Tarjan algorithm about surjectivity, injecitivity and reversibility of CA; Two classes
(6 functions) are surjective and injective (reversible), 7 classes are surjective but not injective and the
rests are neither surjective nor injective.
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2 Preliminaries

2.1 CA and local structures

A cellular automaton is defined by a 4-tuple (Z%, Q, f, v), where Z¢ is a d-dimensional Euclidean space,
Q is a finite set of cell states, f : Q™ — Q is a local function and v is a neighborhood.

o [neighborhood]: A neighborhood is a mapping v : N, — Z¢, where N, = {1,2,...,n} and
n € N. This can equivalently be seen as a list v with n components (v1, ...,v,), where v; =
v(i),1 < i < n, is called the i-th neighbor.

o [local structure]: 4 pair (f,v) is called a local structure of CA. We call n the arity of the local
structure. A CA is often identified with its local structure.

¢ [global function]:A local structure uniquely induces a global function F : de — de, which is
defined by

F(C)(p) = f(c(p+ l/l),C(p + V2)9 veny C(p + Vn)),
for any ¢ € Q2” a global configuration, where c(p) is the state of cell p € Z¢ in c.

2.2 Permutation equivalence of local structures

Definition 1 [equivalence] Two local structures (f,v) and (f',V') are called equivalent, if and only if
they induce the same global function. In that case we write (f,v) =~ (f',V/).

Definition 2 [reduced local structure] 4 local structure is called reduced, if and only if the following
conditions are fulfilled.

o f depends on all arguments.
® v is injective, i.e. v; # v; for i # j in the list of neighborhood v.
Lemma 1 For each local structure ( f,v) there is an equivalent reduced local structure (f', V).

Remark 1 In this note we assume that every local structure is reduced, though most results hold for
non-reduced local structures, see [3].

Definition 3 [permutation of local structures] Let m denote a permutation of the numbers in N,,. The
set of all permutations of the numbers from N,, constitutes a symmetric group Sy,.

e For a neighborhood v, denote by v™ the neighborhood defined by V;'(i) =y
e For an n-tuple £ € Q™, denote by £™ the permutation of € such that ™ (i) = €(w(i)) for 1 <i < n.

For a local function f : Q™ — Q, denote by f™ the local function f™ : Q™ — Q such that
(&) = f(€") forall L.

When a local function is expressed by a polynomial f(z1, ..., zn), then f* = f(Zn(1)s s Tr(n))s
see Section 2.3.

Example 1 Below is shown the set of 6 permutations of the elementary neighborhood (ENB) (—1,0, 1),
which is isomorphic to the symmetric group S3 of degree3.

ENB™ = (-1,0,1), ENB™ = (-1,1,0), ENB™ = (0, -1,1),
.EI‘.,V'.BW3 == (O) 1, _l), ENB’“ = (1’ '_170)9 ENBWS = (1’0’ —1)'
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Lemma 2 (f,v) and (f™,v™) are equivalent for any permutation .

Lemma 3 If (f,v) and (f',v') are two reduced local structures which are equivalent, then there is a
permutation 7 such that V™ = /.

Theorem 1 [permutation-equivalence of local structures]
If (f,v) and (f',V') are two reduced local structures which are equivalent, then there is a permutation
7 such that (f™,v™) = (f',V/).

We give here a lemma that equivalence of local structures is conserved when changing the position of
neighborhoods. It means that we only need to consider the permutations of ENB (-1,0,1) as listed in
Example 1, as far as we are concerned with equivalence/automorphism of 3-neighbors CA in Z4, d>1.

Consider an injective map r : Z¢ — Z9 which is used to change the positions of neighbors. To neighbor-
hood v = (v1,...,1,), T is applied componentwise. For the resulting neighborhood we write rv. That
is (Vi)(rv)i = r(v;).

Lemma 4 [equivalence is preserved from changing neighborhoods]
If (f,v) = (f',V") for two, possibly non-reduced, local structures, then (f, rv) = (f,r/).

2.3 Polynomials over finite fields

In the following, Q is considered to be a finite field GF(q), q a prime power p*. Then a function
f: Q" — Q is uniquely expressed by a polynomial over GF'(q) in n indeterminates z, ..., z,, of degree
less than ¢ in each indeterminate. In other words, the set of all such polynomials is a polynomial ring
over GF(q) mod (2} — z1)--- ( — z,), which will be denoted by Png> n 2 1,q > 2. Obviously
#Pn,q = g7 . For this expression by polynomials over finite fields, we refer to [6] and page 386, Notes
to Chapter 7 of [7]. For small n and g, f is written as follows.

o If feP3,,

fx1,z2,23) = ug + uy1 + ugzo + - - + u,m?:ﬁzw’é’ 4+

-1_g-1_g-2 -1
F 7 S X TRY.

where u; € GF(q), 0<i<¢g3—1. (1)

-1, g-1
+ Ugs_ox o

e If f € P35 (Boolean function),

f(z1, 22, 23) = uo + w11 + upz2 + uzz3
+ U122 + UusT1T3 + UsT2T3 + UTT1XL2T3,
whereu; € GF(2) = {0,1},0<i<7. (2

Note that a V b (Boolean) = a + b + ab (polynomial) and a A b(Boolean) = ab(polynomial).

3 Automorphism of CA

Assume that A = (Z%,Q, fa,va) and B = (Z%,Q, f, ) are two CA having the same arity of local
structures. Then we consider a pair of permutations (, ), where 7 and ¢ are permutations of v and Q,
respectively. Note that ¢ naturally extends to ¢ : de — de.
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Definition 4 A and B are called automorphic under (7, ), if and only if there is a pair (1, ), such
that

(fB,ve) = (¢ ' fAp, V). ©)

In this case, (7, ) is called an automorphism of CA. Symbolically A ( = ) B.
e

Examplez (f15,ENB) ¥ (f240,ENB), but (f15,ENB) =] (f240,ENB).
(mo.%0) (moxp1)

3.1 Automorphism group of CA

We see that the sets of all permutations 7 of v and ¢ of Q are isomorphic to symmetric groups S, and
S, respectively. Indeed, we have

Lemma § A
Aut(n,q) = {(7, )| € Sn,p € Sg} = Sn x S,. (C))
Proof: Since m and ¢ permute v and Q independently, we see that if A ( =~ ) B and B ( = ) C for some
T L'
m,m € Spand p, ' € Sy, thenA = C. [

('m0’ e)

Definition 5 Aut(n, q) will be called an automorphism group of CA. Since symmetric groups are gen-
erally nonabelian, Aut(n, q) is nonabelian.

3.2 Automorphism classification of CA

We define a classification of CA utilizing the above defined automorphism, so that all functions con-
tained by a class may have the same global functions (global behaviors), say, surjectivity, injectivity and
reversibility, when the neighborhoods and the states are appropriately permuted.

Definition 6 Aut(n, q) naturally induces an automorphism classification NW of P, 4

NW = {[f1], [f2], -, [fm(n,q)]}, Where f; is a representative of class [fi], 1 < i < m(n,q). That is,
f' € [f), ifand only if there is a (p, ) € Aut(n,q) such that (f',v') = (=1 fTp,v™). m(n,q) is the
number of the classes.

Remark 2 In the terminology of the theory of finite groups, the automorphism classification NW is
considered to be the conjugacy classification of P, 4 by Aut(n, q), where elements of Aut(n, q) act on
the polynomial ring Py, q. The automorphism class is the conjugacy class : [f] = {¢ 1 f"p|r € Sp,p €
Sq} and the size is the number of conjugacy classes: m(n, q) = #(Pn,q/Aut(n, q)).

Remark 3 Generally, if G’ is a subgroup of G, then the number of automorphism classes induced by G’
is greater than or equal to that of G. For instance the historical classification of ECA into 88 classes is
induced by subgroup {(mo, ¢0), (7o, ¥1), (75, ¥0), (75, 1)} of Aut(3,2).

3.3 Automorphism classification of ECA

The complete automorphism classification of 256 ECA ( Py 3) into 46 classes is given in Appendix, Table
1. The computer test of surjectivity/injectivity is shown. Table 2. is its taxonomy. We show here some
examples which will serve to explain the method.

We first note that in the theory of ECA, where the neighborhood is ENB without permutation, f and f’
are usually called conjugate, if f' = 7' fp1, where ¢;(0) = 1 and ¢1(1) = 0. In the polynomial
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expression f’'(z1,...,zp) = 1+ f(1 + z1,...,1 + Zn)- When f = f, then f is called self-conjugate.

NW 9 f10 Wolfram number
p\m | m ™ (D) T3 T4 s
wo | Jio | fi2 | faa | fes | fas | feo
w1 | Jirs | foor | fier | feo1 | feas | Faass
NW 9 fi0 = z3 + 123 polynomial, neither surjective nor injective
p\m 0 m T 3 T4 s
©0 3+ T1x3 o+ T129 T3 + To2x3 I3 + Tox3 1+ x1T9 T1 + T173
o1 |1+zi+aizs | 14214+ 2122 | L+ 790 + 203 | 1+ 23 + 7223 | 1 + 22 + 2122 1+z3+ 2123

NW 32 f110 = z1z223 + 223 + T2 + x3 universal, neither surjective nor injective
Conjugate f{w = fi137 = r17973 + T122 + 123 + 1 + 22 + T3 + 1.

<‘0\7r o, M1 | W2, M4 | 3,75
2 f110 fiz2 | fi2a
P1 fisz | fier | fies

NW 19 f30 = z1 + w2 + x3 + z2x3 surjective and not injective
Conjugate fi5 = fizs = 1 + 1 + zox3.

o\ m | mo,m | w2, mq | w3, 75
©o fao0 fse f54
1 fi3s | fiae | fiar

‘p\ﬂ- 0, W1, M2, W3, W4, 75
%0 f105
p1 f105

NW 30* fio5 = &1 + x2 + x3 + 1 surjective and not injective

4 Concluding remarks and Acknowledgements

We defined the automorphism of CA and discussed the classification of CA induced by automorphism
groups/subgroups, and particularly gave the automorphism classification of 256 ECA into 45 classes.

The automorphism classification turns out to be no less than the group action (X/G), where X = P,
and G = 8, x S;. By definition S,, acts on (permutes) v and Sy does Q, respectively. Particularly the
Orbit-Counting Lemma applies to calculating the number of conjugacy classes | X/G|. For the group
action, see for example [8]. For actually classifying CA, we will investigate the algebraic (symmetric)
structure of polynomials and/or make use of computer programs. We also wish an algebraic study of
polynomials may lead to a general theory of injectivity/surjectivity and reversibility of CA.

For the classification and the injectivity/surjectivity test of ECA, we made use of Java programs cat-
est106d and ca-simulator respectively coded by C. Lode and Ch. Scheben from University of Karlsruhe,
to whom our thanks are due.
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In Table 1-1, -2, f;, 0 < ¢ < 255, is ELF having Wolfram number i and the automorphism classes
are indexed by NW i, i =1,2,..., 46, where conjugate functions are bracketed. Singletons are self-
conjugate functions. The 7 classes indexed by * consist of surjective but not injecitve functions when
the neighborhoods are appropriately permuted. The classes NW12** and NW44** are injective and
surjective (i.e. reversible). The other classes are neither surjective nor injective classes. Table 2. is a
taxonomy of Table 1.

Table 1-1. Automorphism classification of ELF

NW | Automorphism classes

1 {fo, fas5}

2 {f1, fizr}

3 {f2, fior} U {f16, foar} U {f4, fozs}

4 {f3, fe3} U {f17, fi10} U {fs, fos}

5 {f6; fi59} U {f0, fa15} U { f1s, f1s3}

6 {fr, fa1} U {fa1, far} U { 19, f55}

7 {f8, fa30} U {fe4, f2s3} U {f32, fos1}

8 {fo, fi11} U {fes, f125} U {f33, fi23}

9 {10, firs} U { fao, faas} U {f12, fa0r} U {fes, fa21} U {faa, fis7} U { fus, foa3}
10 {f11, far} U {fo1, fuaz} U {f1s, fro} U {foo, fo3} U { fas, fso} U { fao, fi15}

11 {f14, fraa} U {fas, f13} U {fs0, f179}

12%% 1 {fis} U{fs1} U {fss} (Reversible class)

13 {f22, f151}

14 {f23}

15 {fa4, fa31} U { fe6, frso} U {36, fo19}

16 {f25, fio3} U {fe1, fer} U { f37, for}

17 {f26, f167} U { fa2, fis1} U {f2s, free} U {fr0, fis7, } U { fas, fiss} U { fs2, fo11}
18 {fe7, fao} U {fs3, faz} U { fae, fr}

19* 1 {f30, f135} U {fse, frao} U {fs4, f1a7}

20 {fs0, f235} U { fos, foao} U { fr2, foar}

21 {fa1, fror} U { for, f121} U {fr3, fro9}

22 {fa2, fini} U {fu12, foa1} U {fz6, fa0s}

23 {fa3} U {frr} U {fu13}

24 {fa4, 203} U { f100, fa17} U {f56, f22r} U { fos, fiss} U {fra, fira} U { fss, fazo}
25* | {fa5, fr5} U {f101, fao} U {f57, foo}

26 { /6, f13e} U {f116, fa00} U { fss, fres} U {f114,, firr} U {78, frar} U { foz, fror}
27* | {fe0, f195} U { fi02, fis3, } U {fo0, fie5}

28 {fe2, f131} U {f118, f1a5} U { foa, f133}

29 {f104, fa33}

30* | {fios}

(continued)



Table 1-2. Automorphism classification of ELF

NW | Automorphism classes

31* | {fi06, fieo} U {fi20, fo25} U { f108, fo01}

32 {f110, f137} U { fi24, fre3} U { f122, f161} (Universal class)
33 {f126, f120}

34 | {fizs, f254}

35 {f130, fi90} U { f144, faa6} U { f132, f2202}

36 {f134, f158} U { f1a8, f214} U { f146, f182}

37 {f136, f2as} U { f1o2, f2s2} U { f160, f250}

39 {f1a2} U {fa12} U { f17s}
40* | {fis0}

38 {f138, f174} U { fo08, faaa} U { f140, f206} U { f196, fa20} U { f162, fise} U {f176, faaz}

41 {fis2, fa30} U { f104, f188, } U { f164, f218}
42* | {f154, f1e6} U { f180, f210} U { f156, f198}
43 {f168, f234} U { f224, f248} U { fa00, f236}
44** | {f170} U {f240} U { f204} (Reversible class)
45 {fi72, f202} U { fo16, f228 U { f184, fo26}

46 {f232}

Remark 4
The representative functions of 7 classes, which are surjective and not injective classes.

NW12 f15 =14z f{l’sl = f51,

NWI9 f30 = x1 + T2 + T3 + Tow3. f33 = fao0, f3§ = fs6, 35 = S54, .-
NW2S5 fa5 =14 1 + 3 + T273.

NW27 feo = x1 + 2.

NW30 fios = 1 + 12 + z3.

NW3I fi06 = x3 + T1T2.

NW40 fi50 = 1 + 2 + T3.

NW42 fi54 = 71 + x3 + T122.

Table 2: Taxonomy of automorphism classification of ELF

number of functions in NW class | number of NW classes | number of functions
12 6 72

6 26 156

3 4 12

2 6 12

1 4 4

total 46 256
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