Some results on quotient Aubry sets

Yasuhiro FUJITA *
Department of Mathematics, University of Toyama,
Toyama 930-8555, Japan.

December 19, 2008

1 Introduction

This note consists of partial results of my recent paper [Fu]. In [Fu], we discuss several topics which are not treated here.

Let Ω be an open and connected subset of \mathbb{R}^n, and $H : \Omega \times \mathbb{R}^n \to \mathbb{R}$ a given function. In this paper, we consider the Hamilton-Jacobi equation

\begin{equation}
H(x, Du(x)) = 0 \quad \text{in} \quad \Omega.
\end{equation}

Let \mathcal{A} and $\bar{\mathcal{A}}$ be, respectively, its (projected) Aubry set and the quotient Aubry set. As for their definitions and properties, see Section 2 below. The quotient Aubry set $\bar{\mathcal{A}}$ plays an essential role to study viscosity solutions of (1.1) (cf. [CI, DS, FU, I, IM]). In particular, several authors provided sufficient conditions in order that $\bar{\mathcal{A}}$ is totally disconnected (i.e., every connected component consists of a single point in the topology of \mathcal{A}) [FFR, M1, M2, S].

In this note, we explain a reason why total disconnectedness of $\bar{\mathcal{A}}$ is important. Let $\pi(x)$ be the equivalent class of $\bar{\mathcal{A}}$ containing $x \in \mathcal{A}$. We study how $\pi(x)$ behaves in \mathcal{A} when $\bar{\mathcal{A}}$ is total disconnected. We show that a necessary condition in order that $\bar{\mathcal{A}}$ is totally disconnected is that $\pi(x) \supset C(x)$ holds for each $x \in \mathcal{A}$. Here, $C(x)$ is the connected component of \mathcal{A} containing $x \in \mathcal{A}$. On the other hand, we show that if \mathcal{A} is a compact set in Ω, then a necessary and sufficient condition in order that $\bar{\mathcal{A}}$ is totally disconnected is that $\pi(x) = C(x)$ holds for each $x \in \mathcal{A}$.

The state such that $\pi(x) = C(x)$ for each $x \in \mathcal{A}$ is preferable, because we can understand and calculate $\pi(x)$ of this case clearly. Our result shows that if \mathcal{A} is a compact set in Ω, this preferable state occurs when and only when $\bar{\mathcal{A}}$ is totally disconnected. This is a reason why we propose that totally disconnectedness of $\bar{\mathcal{A}}$ is important.

The contents of this note are as follows: In Section 2, we provide some preliminaries. In Section 3, we state our results.

*Supported in part by Grant-in-Aid for Scientific Research, No. 18540165, 18204009, JSPS.
2 Preliminaries

Let $B(x, r) = \{y \in \mathbb{R}^n \mid |y - x| \leq r\}$ for $x \in \mathbb{R}^n$ and $r > 0$. We assume:

(A1) \(H \in C(\Omega \times \mathbb{R}^n) \).

(A2) \(H \) is coercive, that is, for any compact subset K of Ω,
\[
\lim_{r \to \infty} \inf \{H(x, p) \mid x \in K, p \in \mathbb{R}^n \setminus B(0, r)\} = \infty.
\]

(A3) For any $x \in \Omega$, the function $p \mapsto H(x, p)$ is convex on \mathbb{R}^n.

(A4) There is a continuous viscosity subsolution of (1.1).

Let S (resp., S^-) denotes the space of continuous viscosity solutions (resp., viscosity subsolutions) of (1.1). If necessary, we write $S(\Omega)$ and $S^- (\Omega)$ for S and S^-, respectively, in order to refer the domain under consideration. Then, (A4) implies that $S^- (\Omega) \neq \emptyset$.

Next, we explain the (projected) Aubry set for the Hamilton-Jacobi equation (1.1). The Aubry set is defined as follows: Define the function $d: \Omega \times \Omega \to (-\infty, \infty]$ by

\[
d(x, y) = \sup \{v(x) - v(y) \mid v \in S^-(\Omega)\}.
\]

Then, by [IM, Theorem 1.4 and Proposition 1.6], we have the following:

(2.1) \(d\) is locally Lipschitz continuous on $\Omega \times \Omega$.

(2.2) \(u(x) - u(y) \leq d(x, y)\) for all $u \in S^- (\Omega)$ and $x, y \in \Omega$.

(2.3) For all $y \in \Omega$, $d(\cdot, y) \in S^- (\Omega)$ and $d(\cdot, y) \in S(\Omega \setminus \{y\})$.

(2.4) For all $x, y, z \in \Omega$, $d(x, z) \leq d(x, y) + d(y, z)$ and $d(x, x) = 0$.

(2.5) $d(x, y) = \inf \left\{ \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds \mid t > 0, \gamma \in C(x, t; y, 0) \right\}$,

where $C(x, t; y, 0)$ is the set of all absolutely continuous curves $\gamma: [0, t] \to \Omega$ satisfying $(\gamma(t), \gamma(0)) = (x, y)$, and $L \in C(\Omega \times \mathbb{R}^n)$ is the convex conjugate of H defined by

(2.6) $L(x, \xi) = \sup \{\xi \cdot p - H(x, p) \mid p \in \mathbb{R}^n\}$ for $(x, \xi) \in \Omega \times \mathbb{R}^n$.

The Aubry set A is defined by

(2.7) $A = \{y \in \Omega \mid d(\cdot, y) \in S(\Omega)\}$.

In the following, we assume

(A5) $A \neq \emptyset$.

We note that A is a closed set in Ω, which is due to the stability of the viscosity property under uniform convergence. The assumptions (A1)-(A5) are considered to be natural to discuss the Aubry set for the Hamilton-Jacobi equation (1.1).
Now, we explain an equivalence relation on \mathcal{A}, which is important to study $\mathcal{S}(\Omega)$ and $\mathcal{S}^{-}(\Omega)$. By (2.5), we see that the function $\lambda : \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ defined by $\lambda(x, y) = d(x, y) + d(y, x)$ is a pseudo-metric on \mathcal{A}, i.e., it is non-negative, symmetric, and satisfies the triangle inequality and $\lambda(x, x) = 0$; but the condition $\lambda(x, y) = 0$ does not necessarily imply $x = y$. Let $x, y \in \mathcal{A}$. If $\lambda(x, y) = 0$, then we write $x \delta y$. This relation δ is an equivalence relation on \mathcal{A}. We set

\begin{align}
\pi(y) &= \{z \in \mathcal{A} \mid z \delta y\}, \quad y \in \mathcal{A}, \\
\overline{\mathcal{A}} &= \{\pi(y) \mid y \in \mathcal{A}\}.
\end{align}

Then, π is considered as the canonical surjection from \mathcal{A} to $\overline{\mathcal{A}}$, and we see that $\overline{\mathcal{A}} = \mathcal{A}/\delta$. Note that we may regard $\xi \in \overline{\mathcal{A}}$ as a subset of \mathcal{A} and $\xi = \pi^{-1}([\xi])$. Note also that if $x \in \pi(y)$, then $\pi(x) = \pi(y)$. We define the function $\overline{\lambda} : \overline{\mathcal{A}} \times \overline{\mathcal{A}} \rightarrow \mathbb{R}$ by

\begin{align}
(2.10) \quad \overline{\lambda}(\pi(x), \pi(y)) &= d(x, y) + d(y, x).
\end{align}

The following proposition is well-known.

Proposition 1. $\overline{\lambda}$ is well defined, and $(\overline{\mathcal{A}}, \overline{\lambda})$ is a metric space.

3 Results

In this section, we state our results of this note. For their proofs, see [Fu]. Let $C(x)$ be the connected component of \mathcal{A} containing x. In the following, as the topology of $\overline{\mathcal{A}}$, we always consider the one induced by the metric $\overline{\lambda}$. Note that, by (2.2) and (2.10), π is a continuous mapping from \mathcal{A} to $\overline{\mathcal{A}}$.

Proposition 2. Assume (A1)-(A5). If $\overline{\mathcal{A}}$ is totally disconnected, then $\pi(x) \supset C(x)$ for each $x \in \mathcal{A}$.

By Proposition 2, the condition that $\pi(x) \supset C(x)$ for each $x \in \mathcal{A}$ is a necessary condition in order that $\overline{\mathcal{A}}$ is totally disconnected. Next, we consider a sufficient condition in order that $\overline{\mathcal{A}}$ is totally disconnected. In the following, we assume:

(A6) \mathcal{A} is a compact set of Ω.

We provide a simple consequence of (A6).

Lemma 1. Assume (A1)-(A6). Then, $\pi(x)$ is a connected set of \mathcal{A} for each $x \in \mathcal{A}$.

Now, we are in the position to state our sufficient condition in order that $\overline{\mathcal{A}}$ is totally disconnected.

Proposition 3. Assume that (A1)-(A6). Then, $\overline{\mathcal{A}}$ is totally disconnected if and only if $\pi(x) = C(x)$ for each $x \in \mathcal{A}$.
Acknowledgments. I would like to thank Professor Antonio Siconolfi for giving a nice lecture on their paper [FS2] at the Fukuoka University in October 2006, and Professor Naoki Yamada for inviting me to this lecture. This lecture is very helpful to write the manuscript.

References

[Fu] Y. Fujita, A relation between uniqueness sets and total disconnectedness of quotient Aubry sets, in progress.

