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ABSTRACT. I present here a brief review of the issue of rates of convergence for monotone
approximations of viscosity solutions and describe a recent result that settles the problem
for uniformly elliptic second-order equations without any convexity assumptions.

1. INTRODUCTION

In this note I describe a recent joint result with L. Caffaxelli ([CSl]) concerning rates
of convergence for monotone, stable and consistent approximations to viscosity solutions

of fully nonlinear uniformly elliptic pde. The general methodology introduced in ([CSl]

is also used in [CS2] to obtain error estimates for (periodic and random strongly mixing)

homogenization.

Obtaining rates of convergence (error estimates) for approximations to viscosity solutions
of fully nonlinear second-order pde has been one of the longstanding problems in the theory

of viscosity solutions. In contrast, in the completely degenerate case with no dependence

on the Hessian, i.e., for Hamilton-Jacobi equations, rates were obtained from the beginning

of the theory (Cradall-Lions [CL] and Souganidis [S]). The convergence of monotone ap-
proximation schemes for second-order pde was proved by Barles and the author in [BS].

Establishing rates of convergence for second-order pde proved to be, however, a far more
difficult problem. The reason is that, contrary to the first-order case, it was not known

how to approximate viscosity solutions of second-order equations so that both the equation

is somehow preserved and the approximations share some uniform regularity with respect

to their second derivatives. Such regularity is implicit for viscosity solutions of, possibly

degenerate, elliptic convex with respect to the Hessian and the gradient equation. This fact

was used in a series of papers by Krylov [Kl, K2, K3] and Barles and Jacobsen [BJl, BJ2]

who obtained in the convex setting some rates. The results of Krylov are based on stochas-
tic control considerations while Barles and Jacobsen are using more pde-type arguments

and, in particular, the approximation of the equations by switching control systems.
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The difficulty for the general nonconvex problem was overcome in [CSl]. The new in-

gredients are (i) a regularity result about viscosity solutions of uniformly elliptic equations,

which roughly speaking, says that, on some ”large” subsets of the domain, solution have

second order expansions with error of prescribed size that controls, in a universal way, the

size of the exceptional sets, and (ii) the introduction of the notion of $\delta$-viscosity solutions,

which are ”regular” approximations to viscosity solutions at some uniform distance (a small

power of $\delta$ ). The regularity result is used to obtain an error for “quadratic” data, while
$\delta$-viscosity solutions allow to (translate” the error for quadratics to an “actual” rate for

general solutions.

This short note is organized as follows: In Section 2 I recall the convergence result of

[BS] as well as some basic facts about viscosity solutions ($\sup-$ and inf-convolutions). In

Section 3 I present a new informal proof for the error estimate for Hamilton-Jacobi. Finally,

in Section 4 I introduce the regularity result and the $\delta$-solutions and state and prove the

result about the rate.

The goal here is to introduce the key ideas. Therefore I will not state all the necessary

assumptions and will not describe all the details.

2. CONVERGENCE OF MONOTONE APPROXIMATIONS

I summarize here the main result of [BS] as it applies to the problem

(2.1) $F(D^{2}, Du,u, x)=0$ $in$ $\mathbb{R}^{N}$ ,

where, if $S^{N}$ denotes the space of $N\cross N$ symmetric matrices,

(2.2) $F\in C(S^{N}\cross \mathbb{R}^{N}\cross \mathbb{R}\cross \mathbb{R}^{N})$ . is degenerate elliptic;

The nonlinearity must, of course, satis$6^{r}$ more assumptions for (2.1) to admit well posed

viscosity solutions (see Crandall, Ishii and Lions [CIL] for such a discussion).

Following the notation of [BS], I consider approximations

(2.3) $S([u^{h}]_{x}, u^{h}(x), x, h)=0$

of (2.1) which are monotone, i.e.,

(2.4) if $u\geqq v$ , then $S([u]_{x}, t, x, h)\leqq S([v]_{x}, t, x, h)$ , for all $(t, x)\in \mathbb{R}\cross U$ ,

stable, i.e., for some uniform $C>0$ and all $h\in(O, 1)$ ,

(2.5) $\Vert u^{h}\Vert\leqq C$ ,
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where $\Vert\cdot\Vert$ stands for the sup-norm, and consistent, i.e., for all smooth functions $\phi$ and
locally uniformly with respect to $x$ ,

(2.6) $S([\phi+\xi]_{x}, \phi(y)+\xi, y, h)arrow F(D^{2}\phi(x), D\phi(x), \phi(x), x)$ .
$yarrow xharrow 0\xiarrow 0$

The result proved in [BS], where I refer for more general statements as well as concrete
examples, is:

Theorem 1. Assume (2.2), (2.4), (2.5) and (2.6), and let $u^{h}$ and $u$ be the solutions of
(2.3) and (2.1) respectively. Then, as $harrow 0,$ $u^{h}arrow u$ uniformly in $\mathbb{R}^{N}$ .

Sketch of the proof of Theorem 1. The stability assumption (2.5) implies that the classical
half-relaxed limits

(2.7) $u^{*}(x)= \lim\sup_{yarrow x,harrow 0}u^{h}(y)$ and $u_{*}= \lim\inf_{yarrow x,harrow 0}u^{h}(y)$

are defined. Owing to the comparison of viscosity solutions of (2.1) –here it is implicitly
assumed that it holds - it suffices to show that $u^{*}$ and $u_{*}$ are respectively sub- and super-

solution of (2.1).

Next I sketch the argument leading to the first claim. To this end, assume that, for a
smooth function $\phi,$ $u^{*}-\phi$ attains a strict global maximum at some $x_{0}\in \mathbb{R}^{N}$ . It follows
that along subsequences, which for simplicity are still denoted by $h,$ $harrow 0,$ $u^{h}-\phi$ attains

a global maximum at $x_{h}arrow x_{0}$ , i.e.,

(2.8) $u^{h}(x)\leq\phi(x)+u^{h}(x_{h})-\phi(x_{h})$ ,

and, in addition,

(2.9) $u^{h}(x_{h})arrow u^{*}(x_{0})$ and $x_{h}arrow x0$ .

The monotonicity of the scheme (2.4) yields

$S([\phi+\xi_{h}]_{x}^{h}, \phi(y)+\xi_{h}, y, h)\leq 0$ ,

where, as $harrow 0$ ,

$\xi_{h}=u^{h}(x_{h})-\phi(x_{h})arrow h^{*}(x_{0})-\phi(x_{0})$ .

The claim is now an immediate consequence of the consistency of the scheme. $\square$
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3. $SUP$-AND INF-CONVOLUTIONS

To present the main steps of the proofs of the rate estimates as well as to show the new
ideas needed for the second-order case it is necessary to recall the by now classical inf-
and sup-convolution regularizations of viscosity solutions and their properties. As in the
previous section I concentrate for simplicity on problems defines on $\mathbb{R}^{N}$ .

For $u$ : $\mathbb{R}^{N}arrow \mathbb{R}$ and $\epsilon>0$ the $\sup-$ and inf-convolutions of $u$ are given respectively by

(3.1) $\overline{u}_{\epsilon}(x)=\sup\{u(y)-(2\epsilon)^{-1}|x-y|^{2}\}$

and

(3.2) $-<u(x)= \inf\{u(y)+(2\epsilon)^{-1}|x-y|^{2}\}$ .

The following proposition summarizes the key properties of $\overline{u}_{\epsilon}$ and $\underline{u}_{\epsilon}$ . For the proof I
refer to Jensen, Lions and Souganidis [JLS].

Proposition 2. Assume that $u:\mathbb{R}^{N}arrow \mathbb{R}$ is continuous and bounded and let $\overline{u}_{\epsilon}$ and $\underline{\epsilon}$ be

defined by (3.1) and (3.2). Then

(i) $\overline{u}_{\epsilon}$ and $\underline{u}_{\epsilon}$ are Lipschitz continuous (with Lipschitz constant depending on $\epsilon$).

(ii) As $\epsilonarrow 0,\overline{u}_{\epsilon}\backslash u$ and $\underline{u}_{\epsilon}\nearrow u$ locally $unif_{07}mly$ .

$(iii).For\epsilon>0$ and $x\in \mathbb{R}^{N}$ let $\overline{y}_{\epsilon}(x)$ and $\underline{y}_{e}p(x)$ be points where the maximum and

minimum are achieved in (3.1) and (3.2) respectively. Then, for some $o(1)arrow 0$ as
$\epsilonarrow 0$ ,

$|\overline{y}_{\epsilon}(x)-x|=o(1)$ and $|\underline{y}_{e}p(x)-x|=o(1)$ .

(iv) $\overline{u}_{\epsilon}$ is semiconvex and $\underline{u}_{\epsilon}$ is semiconcave, and $D^{2}\overline{u}_{\epsilon}\geqq-I/\epsilon$ and $D^{2}\underline{u}_{\xi}\leqq-I/\epsilon$, where
I is the identity $N\cross N$ matrix. Moreover, $\overline{u}_{\epsilon}$ and $\underline{u}_{\epsilon}$ are twice differentiable $a.e$ .

(v) If $u$ is Lipschitz continuous, then the Lipschitz constants of $\overline{u}_{\epsilon}$ and $\underline{u}_{<}are$ indepen-

dent of $\epsilon$ . Moreover,

$\Vert\vec{u}_{\epsilon}-u\Vert\leqq\Vert Du\Vert\epsilon$ and $\Vert\underline{u}_{\epsilon}-u\Vert\leqq\Vert Du\Vert\epsilon$ .

(vi) If $u$ is a subsolution (resp. supersolution) of (2.1), then $\overline{u}_{\epsilon}$ (resp. k) is a subsolution
(resp. supersolution) of

$F(D^{2}w, Dw, w,\overline{y}_{\in}(x))=0$ and $F(D^{2}w, Dw, w, x)=o(1)$

and

$F(D^{2}w, Dw, w,\underline{y}_{e}p(x))=0$ and $F(D^{2}w, Dw, w, x)=o(1)$ ,

respectively for some $o(1)arrow 0$ .
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4. ERROR ESTIMATES FOR HAMILTON-JACOBI EQUATIONS

Rates of convergence for monotone, consistent and stable approximation schemes for
viscosity solutions of Hamilton-Jacobi equations like

(4.1) $F(Du, u, x)=0$ in $U$

were obtained by Crandall and Lions [CL] and the author [S] very early in the development
of the theory of viscosity solutions.

I describe next briefly the basic result and a present a new semi-rigorous proof. To obtain
an error it is necessary to strengthen the monotonicity hypothesis to (2.4) to

(4.2) $\{\begin{array}{l}there exists \lambda>0 such that, if u\leqq v, m\geqq 0, then, for all r>0,S([u+m]_{x}, r+m, x, h)\geqq S([v]_{x}, r, x, h)+\lambda m,\end{array}$

and to introduce a rate in the consistency condition (2.6). For (2.1) the natural assumption

is

(4.3) $\{\begin{array}{l}there exists a universal constant C>0 such that, for all smooth phi and all x,|S([\phi]_{x}, \phi(x), x, h)-F(D\phi(x), \phi(x), x)|\leqq C(1+|D^{2}\phi(x)|)h.\end{array}$

The result of [CL] and [S] is:

Theorem 3. Let the solution $u$ of (2.1) be Lipschitz continuous and assume (2.5), (4.2)

and (4.3). There exists $K>0$ , depending on $F$ and the Lipschitz constant of $u_{f}$ such that

$\Vert u-u^{h}\Vert\leqq Kh^{1/2}$

The rate in Theorem 3 is optimal in this generality. When $F$ is convex Capuzzo-Dolcetta

and Ishii [CI] the rate be improved from one side to

(4.4) $-Kh\leqq u-u^{h}\leqq Kh^{1/2}$

Next I present a formal proof of Theorem 3. The argument, which has not appeared

anywhere else, can be made rigorous after some minor modifications.

Sketch of the proof of Theorem 3. Here I show that

$u^{h}\leqq u+Kh^{1/2}$ ,

since the other inequality follows similarly.

Let,$\underline{u}_{\epsilon}$ be the inf-convolution of $u$ . Since $u$ is Lipschitz continuous, Proposition 2 (v)

yields
$\Vert u-\underline{u}_{\epsilon}\Vert\leqq\Vert Du\Vert\epsilon$ .

Next I compare $u^{h}$ and $\underline{u}_{\epsilon}$ . The key idea is to use $\underline{u}_{\epsilon}$ as a test function in (4.3). This

is, of course, not immediately clear, since test functions are supposed to be $C^{2}$-functions
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and the $u_{\epsilon}$ ’s are clearly not. This technical difficulty can be, however, overcome using
typical viscosity solution techniques (doubling variables, etc.). To simplify the argument
even further I will make the additional (formal) assumption that actually

$|D^{2}\underline{u}_{\epsilon}|\leqq 1/\epsilon$ .

With all these simplifications, (4.3) yields

$S(Lu]_{h},\underline{u}_{\epsilon}(x), x, h)\geqq F(D\underline{u}_{\epsilon},\underline{u}_{\epsilon}, x)-C(1+|D^{2}\underline{u}_{\epsilon}|)h$

Finally assume that, for some $c>0$ ,

$F(D\underline{u}_{\epsilon},\underline{u}_{\epsilon}, x)\geqq-c\epsilon$ .

Then
$S([u_{\epsilon}]_{h_{-}},u_{<}(x), x, h) \geqq-c\epsilon-c(1+\frac{1}{\epsilon})h$ .

Let $m= \max(u_{-}^{h_{-}}u_{<})$ . Then
$u^{h}\leqq u_{\epsilon}+m$ ,

and, in view of (4.2),

$S([\underline{u}_{\epsilon}]_{x}^{h}, u_{\epsilon}(x), x, h)\leqq S([u_{h}^{h}-m]_{x}, u^{h}(x)-m, x, h)\leqq-\lambda m+S([u_{h}]^{h}, u^{h}(x), x, h)$ .

It follows that
$\lambda m\leqq C(1+\frac{1}{\epsilon})h+c\epsilon$

and, hence,
$u^{h}-u \leqq u^{h}-\underline{u}_{\epsilon}+\underline{u}_{\epsilon}arrow u\leqq(\Vert Du\Vert+c)\epsilon+C(1+\frac{1}{\epsilon})h$ .

optimizing in $\epsilon$ yields the rate. $\square$

5. RATES OF CONVERGENCE FOR $($ UNIFORMLY$)$ ELLIPTIC EQUATIONS

To obtain an error estimate for approximations to (2.1), it is necessary, in addition to
(4.2), to introduce again a rate in (2.6). Since (2.1) depends on the Hessian, it is natural

to assume that

(5.1) $\{\begin{array}{l}there exists a universal constant C>0 such that, for all smooth phi,|S([\phi]_{x}^{h}, \phi(x),x, h)-F(D^{2}\phi, D\phi, \phi)x)|\leqq C(1+|D^{3}\phi|)h ;\end{array}$

note that instead of $|D^{2}\phi|$ in the right hand side of the above estimate, it is possible to use
some H\"older-seminorm of $D^{2}\phi$ , etc..

No matter what the exact form of (5.1) is, however, the scheme of proof described in
Section 4 fails because it is not known how to approximate viscosity solutions of (2.1)

by appropriate sub- and super-solutions for which there is a control on the modulus of
regularity of the second-derivative.
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Consider next, for simplicity, the problem

(5.2) $\{\begin{array}{l}F(D^{2}u)=f in U,u=g on \partial U.\end{array}$

If $F$ is uniformly elliptic and convex it is known from the Krylov-Safonov-Evans regularity

theory that the solutions are actually in $C^{2,\alpha}$ for some $\alpha\in(0,1)$ . In this setting it is then

straightforward to obtain an error estimate. For more general equations but still uniformly

continuous and convex, Krylov [Kl, K2, K3] and Barles and Jacobsen [BJl, BJ2] were able

to find error estimates using stochastic control and pde techniques, respectively. The results

of $[$K3$]$ also apply to degenerate elliptic but always convex nonlinearities,

More recently Caffarelli and the author [CSl] considered (5.2) with $F$ uniformly elliptic

but neither convex nor concave. The approach of [CSl] is based on a new regularity result

for viscosity solutions of (5.2) and the notion of $\delta$-viscosity solutions which are regulariza-

tions/approximations at uniform $(\delta^{\alpha})$ distance from the solution. Proving the error estimate

then reduces to showing that the numerical solutions are $\delta=\delta(h)$-viscosity solutions. The

regularity is used to obtain the result about the $\delta$-solutions.

Definition 4. $u\in C(\overline{U})$ is a $\delta$-subsolution (resp. $\delta$-supersolution) of (5.2) if, for all $x\in U$

such that $B(x, \delta)\subset U$ and all quadratics $P$ such that $P=O(\delta^{-\alpha})$ , for some universal $\alpha>0$ ,

$u\leqq P$ (resp. $u\geqq P$) in $B(x, \delta)$ and $u(x)=P(x),$ $F(D^{2}P)\leqq f(x)$ $($resp. $F(D^{2}P)\geqq f(x))$ .

It is easy to check that viscosity solutions are always $\delta$-subsolutions, while $\delta$-solutions are
not always solutions.

The main result about $\delta$-viscosity solutions proved in [CSl] and [CS2] is:

Theorem 5. Let $u$ be a Lipschitz continuous solution of (5.2) and assume that $u^{+}$ (resp.

$u^{-})$ is $\delta$ -subsolution (resp. delta-supersolution) of (5.2) such that, for some $\eta>0,$ $|u^{\pm}-$

$u|=O(\delta^{\eta})$ on $\partial U$ . Then there exists a universal $\theta>0$ such that $u-u^{\pm}=O(\delta^{\theta})$ in $U$ .

Before I discuss Theorem 5 we show how it implies error estimates for (monotone and

consistent) numerical approximations of (5.2). The key step is

Theorem 6. Assume (4.2) and (5.1). Then $u^{h}$ is a $\delta=Lh$-solution of $F(D^{2}u)=f\pm Kh$

for some uniforrn, $K>0$ and $L>0$ .

Proof. Since the arguments are similar, here I show that $u^{h}$ is an h-subsolution. To this end

assume that, for some $x\in U$ such that $B(x, h)\subset U$ and $P\in S^{N}$ such that $P=O(h^{-\alpha})$ ,

$u^{h}\leqq Q$ in $B(x, Lh)$ and $(u^{h}-P)(x)=0$ . The claim is an immediate consequence of the

the monotonicity and the strong consistency. The constant $L$ depends, among other things,
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on the particular choice of the scheme, i.e., the number of grid points around a fixed point
$x$ that enter in the scheme. $\square$

Theorem 5 and Theorem 6 yield the main result about rates, which is proved in [CSl].

Theorem 7. Let $u\in C^{0,1}(U)$ and $u^{n}$ be solutions of (5.2) and (2.3) and assume that
(4.2), (5.1) and that $F$ is uniformly elliptic. There exist universal $\theta>0$ and constant $K$

depending on $F$ and the Lipschitz constant of $u$ such that, on $\overline{U}$ ,

$\Vert u-u^{h}\Vert\leqq Kh^{\theta}$

To simplify things in the statement of Theorem 7 I omitted any discussion about the
boundary conditions. Finally a result similar to Theorem 7 also holds for the general
problem (2.1) for $F$ uniformly elliptic. The proof will appear in [CS3].

Next I discuss briefly some of the ingredients of the proof of Theorem 5. For the details
I refer to [CSl] and [CS2]. The first key step is

Theorem 8. Let $u\in C^{0,1}$ be a solution of $F(D^{2}u)=f$ in $B_{1}$ with $f$ Lipschitz and $F$

uniformly elliptic. There enist positive $t_{0}$ and $\sigma 0$ , depending on the ellipticity constants of $F$

and the dimension, such that, for $t\geqq t_{0}$ , there exist $A_{t}\subset B_{1}$ such $that|(B_{1}\backslash A_{t})\cap B_{1/2}|\leqq t^{-\sigma}$

and, for all $x_{0}\in A_{t}\cap B_{1/2}$ , there exist $P_{t,x_{0}}^{\pm}\in S^{N}$ such that $F(P_{t,x_{0}}^{\pm})=f(x_{0}),$ $|P_{t,x_{0}}^{\pm}|\leqq t$

and

$u(x)=u(x_{0}) \frac{1}{2}(P_{t,x_{0}}^{\pm}(x-x_{0}), x-x_{0})+O(t|x-x0|^{3})$ $in$ $B_{1}$ .

It turns out that the conclusions of Theorem 8 carry over to the $\sup-$ and inf-convolution
approximations of Lipschitz continuous solutions of (5.2).

Indeed the following holds:

Theorem 9. Assume the hypotheses of Theorem 8 and let $u_{\epsilon}^{+}$ and $u_{\overline{\epsilon}}$ be respectively the

$\sup-$ and inf-convolution of $u$ . There exist universal $t_{0},$ $\sigma>0$ such that, for all $t\geqq t_{0}$ ,

there exist $A_{t}^{\epsilon}\subset B_{1}$ with $|(B_{1}\backslash A_{t}^{\epsilon})\cap B_{1/2}|\leqq t^{-\sigma}$ and, for all $x_{0}\in A_{t}^{\epsilon}\cap B_{1/2}$ , there exist
$P_{t,x_{0}}^{\pm,\epsilon}\in S^{N}$ such that $F(\begin{array}{l}\pm,\epsilon t,x_{0}\end{array})=f(x_{0})+o(1),$ $|P_{t,x_{0}}^{\pm,\epsilon}|\leqq t$ and

$u_{\epsilon}^{\pm}(x)=u_{\epsilon}(x o)+\frac{1}{2}(P_{t,x0}^{\pm,\epsilon}(x-x_{0}), (x-x_{0}))+O(t|x-x_{0}|^{3})$ $in$ $B_{1}$ .

The result follows from Theorem 8 provided one uses some additional properties of the

$\sup-$ and inf-convolutions which hold only for solutions to uniformly elliptic equations. They

are stated in
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Proposition 10. Let $u_{\epsilon}^{+}$ and $u_{\overline{\epsilon}}$ be respectively the sup-and inf-convolution approximations

to a Lipschitz continuous solution of (2.1) and denote by $y^{+}(x)$ (resp. $y^{-}(x)$ ) a point where

the the $\sup$ (resp. inf) is achieved in the definition. Then:

(i) There exists a universal $C>0$ such that $|x_{1}-x_{2}|\leqq C|y(x_{1})-y(x_{2})|$ . $($ ii $)$ If $P$ is

a paraboloid touching $u_{\epsilon}^{+}$ (resp. $u_{\overline{\epsilon}}$ ) from above (resp. below) at $x$ , then $u$ is touched at
$y^{+}(x)$ (resp. $y^{-}(x)$ ) from above (resp. below) by a paraboloid $P_{\epsilon}$ and

$D^{2}u_{\epsilon}^{+}(x)\geqq D^{2}u(y^{+}(x))+C\epsilon^{2}|Du|^{2}$ and $D^{2}u_{\overline{\epsilon}}(x)\leqq D^{2}u(y^{-}(x))-C\epsilon^{2}|Du|^{2}$

I conclude with a heuristic discussion of the proof of Theorem 8. The first step is to change

the right hand side by $\delta^{\alpha}$ to have some room for the calculations. Then the solution and the

given $\delta- subarrow$ and super-solutions are regularized by $\epsilon=\epsilon(\delta)\suparrow$ and inf-convolution. These

are semi-convex or concave in the right direction, provide appropriate bounds for the Hessian
and have second-order expansions (with controlled error) outside small sets with measure
estimated by the size of the quadratics in the expansion. The approximations are clearly
$\delta- sub-$ and super-solutions around points of second-differentiability. What happens on the

small exceptional sets is controlled by the classical Alexandrov-Bakelman-Pucci estimate
by constructing the convex envelop $\Gamma(w)$ of the difference $w$ of the approximations of $u$

and the $\delta$-solutions. The control on the sizes of the Hessians and the exceptional sets force

the contact set $\{\Gamma(w)=w\}$ , where the support of $D^{2}\Gamma(w)$ is concentrated, to be small.

The estimate on the Hessian of the approximations then implies that, even in this small

exceptional case, the quantity $\det\Gamma^{2}(w)|\{\Gamma(w)=w\}|$ , which controls the size of $w$ , falls

within the $\delta^{\alpha}$ margin of error.
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