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ABSTRACT. This paper revisits the procedure developed by Sato(1983)
which achieves Aggregate Correct Revelation in the sense that the sum of the Nash
equilibrium strategies always coincides with the aggregate value of the correct MRSs.
The procedure renamed the Generalized $MDP$ Procedure can possess other desirable
properties shared by continuous-time locally strategy proof planning $pro$cedures,
i.e., feasibility, monotonicity and Pareto efficiency. Under myopia assumption, each
player’s dominant strategy in the local incentive game associated at any iteration of
the procedure is proved to reveal his$/her$ marginal rate of substitution for a public
good. In connection with the Generalized $MDP$ Procedure, this paper analyses the
structure of the locally strategy proof procedures as algorithms and game forms. An
altemative characterization theorem of locally strategy proof procedures is given by
making use of the new Condition, Ttansfer It is shown that the exponent attached
to the decision function of public good is characterized. Coalitional and Bayesian
incentive compatibility are also discussed. Finally referred to are myopia, non-
myopia and discreteness in planning procedures.
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of incentives, Nonlinearized MDP $Pro$cedure, Fujigaki-Sato Procedure, Transfer In-
dependence
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1. INTRODUCTION

Since the appearance of Samuelson’s seminal paper(1954), the prevalent view was that the
free rider problem was inevitable in the provision of pure public goods: once the good was
made available to one person, it was available to all. This pessimistic view was shattered
by the advent of the MDP Procedure. It was epoch-making. Since then a large literature
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has accumulated that develops individually rational and incentive compatible planning
procedures for optimally providing public goods.

At the 1969 meeting of the Econometric Society in Brussels, Jacques Dr\‘eze and de la
Vall$6e$ Poussin, and Edmond Malinvaud independently presented tatonnement processes
for guiding and financing an efficient production of public goods. As Malinvaud noted
in his paper the two approaches closely resembled each other: each attempted a dynamic
presentation of the Samuelson’s Condition for the optimal provision of public goods.
Subsequently, Malinvaud published a further article on the subject, proposing a mixed
(price-quantity) procedure. Their papers are among the most important contributions
in planning theory and in public economics. They came to be termed the Malinvaud-
$Dr6z$ -Poussin(hereafter, MDP) Procedure, and spawned numerous papers.1

Initiated by these three great pioneers, this field of research made remarkable progress
in the last four decades. They sowed the seeds for the subsequent developments in the
theory of public goods, and initiated the successful introduction of a game theoretical
approach in the planning theory of public goods. Numerous succeeding contributions
generated the means of providing incentives to correctly reveal preferences for public
goods. The analyses of incentives in tatonnement procedures began in late sixties and was
mathematically refined by the characterization theorems of Champsaur and Rochet(1983),
which generalized the previous results of ltujigaki and Sato(1981) and (1982), as well as
Laffont and Maskin(1983). Champsaur and Rochet highlighted the incentive theory in
the planning context to reach the acme and calminated in their generic theorems. Most
of these procedures can be characterized by the conditions, the formal definitions of which
are given in Section 3: (i) Feasibility, (ii) Monotonicity, (iii) Pareto Efficiency, (iv) Local
Strategy Proof, and (v) Neutrality.

Very appealing for its mathematical elegance and the direct application of the Samuel-
son’s Condition, it received a lot of attention in the $1970s$ and $1980s$ , especially on the
problem of incentives in planning procedures with public goods, but there has been very
little work on it over the last twenty years, leaving some very difficult problems. This pa-
per is a follow up on the literature on the use of processes as mechanisms for aggregating
the decentralized information needed for determining an optimal quantity of public goods.
This paper tries to add some results on the MDP Procedure. In addition to implementa-
tion, it is required that the equilibria of the Procedure be limit points of a given dynamic
adjustment process. This paper also aims at clarifying the structure of the locally strategy
proof planning procedures as algorithms and game forms, including the MDP Procedure.
They are called locally strategy proof, if players’ correct revelation for a public good is
a dominant strategy in the local incentive game associated with each iteration of proce-
dures. This property is not possessed by the original MDP Procedure. As algorithms,
they can reach any Pareto optimum. The task of the MDP Procedure is to enable the
planner or the planning board to determine an optimal amount of public goods. This
paper revisits the procedure developed by Sato(1983) who advocated Aggregate Comct
Revelation in the sense that the sum of the Nash equilibirum strategies always coincides
with the aggregate value of correct preferences for public goods. I could win free and es-
cape out of the impossibility theorem among the above five desiderata, without requiring
dominance. The procedure developed by Sato(1983) is able to possess similar desirable

$\overline{lSee}$Malinvaud(1969), (1970), (1970-1971), (1971) and (1972), and $Dr6ze$ and de la $Vall6e$

Poussin(1969) and (1971). For an idea of the tatonnement process, see Dr\‘eze(1972).
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features shared by continuous-time procedures, i.e., efficiency and incentive compatibility.
An altemative characterization theorem of locally strategy proof procedures is given by
making use of the new Condition, Ransfer Independence. It means that the transfer in
decision functions of public good is independent of any strategy of players.

The continuous procedures so far presented differ from that of Champsaur, Dr\‘eze,
and Henry(1977) in the sense that the step-sizes for revising a public good are variable
at each iteration along the solution paths.2 The continuous procedures are also differ-
ent from Green and Schoumaker(1978), where global information, viz., a part of each
player’s indifference curve, is needed to be revealed. Only local information, i.e., mar-
ginal rates of substitution(MRSs) of any player is required to determine the trajectories
of the continuous processes. It is verified that the best reply strategy for each player is
to reveal his$/her$ true MRS for the public good at each interation of procedures, which
maximizes each player’s payoff in the local incentive game. Thus, some continuous pro-
cedures can achieve local strategy proof. I employ the idea of modeling agents as having
myopia, which can bring desirable numerous results on incentives in continuous planning
procedures.

The remainder of the paper is organized as follows. The next section outlines the
general framework. Section 3 reviews the MDP Procedure, renames the Non-linearized
MDP Procedure, and introduces the Generalized MDP Procedure which achieve neutrality
and aggregate correct revelation. It explores players’ strategic manipulability in the
incentive game associated with each iteration of the procedure and presents the theorems.
Section 4 analyzes the structure of the locally strategy proof planning procedures. The
last section provides some final remarks.

2. THE MODEL

The simplest model incorporating the essential features of the problem proposed in this
paper involves two goods, one public good and one private good, whose quantities are
represented by $x$ and $y$ , respectively. Denote $y_{i}$ as an amount of the private good
allocated to the ith consumer. The economy is supposed to possess $n$ individuals. Each
consumer $i\in N=\{1, \ldots,n\}$ is characterized by his/her initial endowment of a private
good $\omega_{i}$ and his$/her$ utility function $u_{i}$ : $R_{+}^{2}arrow R$. The production sector is represented
by the transformation function $G$ : $R+arrow R_{+}$ , where $y=G(x)$ signifies the minimal
private good quantities needed to produce the public good $x$ . It is assumed as usual that
there is no production of private good. Following assumptions and definitions are used
throughout this paper.

Assumption 1. For any $i\in N,$ $u_{i}(\cdot,$ $\cdot)$ is strictly concave and at least twice continuously
differentiable.

Assumption 2. For any $i\in N,$ $\partial u_{i}(x,y_{i})/\partial x\geq 0,$ $\partial u_{i}(x,y_{i})/\partial y_{i}>0$ and $\partial u_{i}(x, 0)/\partial x=$

$0$ for any $x$ .
2The essence of the discrete version of the MDP Procedure(CDH Procedure) can be captured in

Henry and Zylberberg(1977). See, in addition, Ruys(1974), Tulkens(1978), Laffont(1982) and (1985),
Mukherji(1990) and Salani6(1998) for lucid summaries of the MDP Procedure. It can be seen as a non-
tatonnement process, due to its feasibility, one can therefore truncate it at any time. As for a contribution
to the MDP literature, see Von Dem Hagen(1991), where a differential game approach is taken.
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Assumption 3. $G(x)$ is convex and twice continuously differentiable.

Let $\gamma(x)=dG(x)/dx$ denote the marginal rate of transformation which is assumed to
be known to the planning center. It asks each individual $i$ to report his$/her$ marginal
rate of substitution between the public good and the private good used as a num\’eraire to
determine an optimal quantity of the public good.

$\pi_{i}(x,y_{i})=\frac{\partial u_{i}(x,y_{i})/\partial x}{\partial u_{i}(x,y_{i})/\partial y_{i}}$.

Definition 1. An allocation $z$ is feasible if and only if

$z \in Z=\{(x,y_{1}, \ldots,y_{n})\in R_{+}^{n+1}|\sum_{i\in N}y_{i}+G(x)=\sum_{i\in N}\omega_{i}\}$ .

Definition 2. An allocation $z$ is individually rational if and only if

$(\forall i\in N)[u_{i}(x,y_{i})\geq u_{i}(0,\omega_{i})]$ .

Definition 3. A Pareto optimum for this economy is an allocation $z^{*}\in Z$ such that
there exists no feasible allocation $z$ with

$(\forall i\in N)[u_{i}(x,y_{i})\geq u_{i}(x^{*}, y_{i}^{*})]$

$(\exists j\in N)[u_{j}(x,y_{j})>u_{j}(x^{*},y_{j}^{*})]$ .

These assumptions and definitions altogether give us conditions for Pareto optimality
in our economy.

Lemma 1. Under Assumptions $1arrow 3$ , necessary and sufficient conditions for an allo-
cation to be Pareto optimal is

$\sum_{i\in N}\pi_{i}\leq\gamma$
and $( \sum_{i\in N}\pi_{l}-\gamma)x=0$ .

These are called the Samuelson’s Conditions. FUrthermore, conventional mathemat-
ical notation is used throughout in the same manner as in my previous paper(1983).
Hereafter all variables are assumed to be functions of time $t$ , however, the argument $t$ is
often omitted unless confusion could arise. The analyses in the following sections bypass
the possibility of boundary problem at $x(t)=0$ . This is an innocuous assumption in the
single public good case, because $x$ is always increasing. The boundary problem is treated
in Sato(2003). The results below can be applied to the model with many public goods.

3. THE CLASS OF MDP PROCEDURES

3.1. A Brief Review of the $MDP$ Procedure and Its Properties

Let us describe a generic model of our planning procedures for a public good and a
private good as:
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$\{\begin{array}{l}dx/dt\equiv X(t)dy_{i}/dt\equiv Y_{i}(t), \forall i\in N.\end{array}$

The MDP Procedure is the best-known member belonging to the family of the quantity-
guided procedures, in which the planning center asks individual agents their MRS’s be-
tween the public good and the private num\’eraire. Then the center revises an allocation
according to the discrepancy between the sum of the reported MRSs and the MRT. The
relevant information exchanged between the center and the periphery is in the form of
quantity. Besides full implementation, we require an additional property: its equilibria
must be approachable via an adjustment process. Suppose a game is played repeatedly
in continuous time. Call $\psi(t)=(\psi_{1}(t), \ldots, \psi_{n}(t))\in R_{+}^{n}$ the strategy profile played at
any iteration $t\in[0, \infty)$ of the procedure. Needless to say, $\psi_{i}$ is not necessarily equal to
$\pi_{i}$ , thus, the incentive problem matters.

The $MDP$ Procedure reads:

$\{\begin{array}{l}X(\psi(t))=\sum_{j\in N}\psi_{j}(t)-\gamma(t)Y_{i}(\psi(t))=-\psi_{i}(t)X(\psi(t))+\delta_{i}\{\sum_{j\in N}\psi_{j}(t)-\gamma(t)\}X(\psi(t)), \forall i\in N.\end{array}$

Denote a distributional coefficient $\delta_{i}>0,$ $\forall i\in N$ , with $\sum_{i\in N}\delta_{i}=1$ , determined
by the planner prior to the beginning of an operation of the procedure. Its role is to
share among individuals the “social surplus”, $\{\sum_{j\in N}\psi_{j}(t)-\gamma(t)\}X(\psi(t))$ , which is always
positive except at the equilibirum.

Remark 1. Dr\‘eze and de la Vall\’ee Poussin(1971) set $\delta_{i}>0$ , which was followed by
Roberts(1979a,b), whereas $\delta_{i}\geq 0$ was assumed by Champsaur(1976) who advocated a
notion of neutrality to be explained below.

A local incentive game associated with each iteration of the process is formally defined
as the normal form game$(\Psi, U);\Psi=\cross j\in N\Psi_{J}\subset R_{+}$ is the Cartesian product of the $\Psi_{j}$ ,
which is the set of player $j$ ’s strategies, and $U=(U_{1}, \ldots, U_{n})$ is the n-tuple of payoff
functions. The time derivative of consumer $i$ ’s utility is such that

$\frac{du_{i}}{dt}\equiv U_{i}(\psi(t))=\frac{\partial u_{i}}{\partial x}X(\psi(t))+\frac{\partial u_{i}}{\partial y_{i}}Y_{i}(\psi(t))$

$= \frac{\partial u_{i}}{\partial x}\{\pi_{i}X(\psi(t))+Y_{i}(\psi(t))\}$

which is the payoff that each player obtains at iteration $t$ in the local incentive game along
the procedure.

The behavioral hypothesis underlying the above equations is the following $my\dot{\varphi}a$

assumption. In order to maximize his$/her$ instantaneous utility increment $U_{i}(\psi(t))$ as
his$/her$ payoff, each player determines his/her dominant strategy $\psi_{i}\in\Psi_{i}$ . Let $\psi_{-i}=$

$(\psi_{1}, \ldots,\psi_{i-1},\psi_{i+1}, \ldots,\psi_{n})\in\Psi_{-i}=\cross J\in N-\{i\}\Psi$ .

Definition 4. A dominant strategy for each player in the local incentive game $(\Psi, U)$

is the strategy $\tilde{\psi}_{i}\in\Psi_{i}$ such that

$(\forall\psi_{i}\in\Psi_{i})(\forall\psi_{-i}\in\Psi_{-i})(\forall i\in N)[u_{i}(\tilde{\psi}_{i}, \psi_{-i})\geq u_{i}(\psi_{i}, \psi_{-i})]$ .
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In the Procedure below, the planning authority plans to provide an optimal quantity of
a public good by revising its quantity at iteration $t=[0, \infty)$ . In order for the planner to
decide in what direction an allocation should be changed, it proposes a tentative feasible
quantity of the public good, $x(O)$ at the initial time $0$ given by the planner to which
agents are asked to report his/her true MRS, $\pi_{i}(x(0),\omega_{i}),$ $\forall i\in N$ , as a local privately
held information. At each date $t$ the planner can easily calculate for any $t$ the sum of
their announced MRS’s to change the allocation at the next iteration $t+dt$ . It is supposed
that the planner can get an exact value of MRT.

The continuous-time dynamics is summarized as follows.
Step $0$) At initial iteration $0$ , the planner proposes a feasible allocation and asks

individual players to reveal their preference for the public good.
Step t) At each iteration $t$ , players reveal their strategy and the planner calculates

the discrepancy between the sum of MRS’s and the MRT. Unless the equality between
the above two holds, the planner suggests a new proposal allocation, and players update
and reveal their preferences. If the Samuelson’s Condition holds at some iteration, the
MDP Procedure is truncated and an optimal quantity of the public good is determined.

3.2. Normative Conditions for the Family of the $MDP$ Procedures

The conditions presented in Introduction are in order.

Condition $F$. Feasibility

$( \forall t\in[0, \infty))[\gamma(t)X(\psi(t))+\sum_{j\in N}Y_{j}(\psi(t))=0]$ .

Condition $M$. Monotonicity

$(\forall\psi\in\Psi)(\forall i\in N)(\forall t\in[0, \infty))$

$[U_{i}( \psi(t))=\frac{\partial u_{i}}{\partial y_{i}}\{\pi_{i}(t)X(\psi(t))+Y_{i}(\psi(t))\}\geq 0]$ .

Condition $PE$ . Pareto Efflciency

$( \forall\psi\in\Psi)[X(\psi(t))=0\Leftrightarrow\sum_{j\in N}\psi_{j}(t)=\gamma(t)]$ .

Condition $LSP$. Local Strategy Proof

$(\forall\psi_{i}\in\Psi)(\forall\psi_{-i}\in\Psi_{-i})(\forall i\in N)(\forall t\in[0, \infty))$

$[\pi_{i}(t)X(\pi_{i}(t),\psi_{-i}(t))+Y_{i}(\pi_{i}(t),\psi_{-i}(t))\geq\pi_{i}(t)X(\psi(t))+Y_{i}(\psi(t))]$ .

Condition $N$. Neutrality

$($ョ$z^{*}\in P_{0})($ョ$\delta\in\Delta)(\forall z(\cdot)\in Z)[z^{*}=\lim_{tarrow\infty}z(t, \delta)]$

where $P_{0}$ is the set of individually rational Pareto optima(IRPO), $\Delta$ is the set of $\delta=$

$(\delta_{1}, \ldots, \delta_{n})$ , and $z(\cdot)$ is a solution of the procedure.
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It was Champsaur(1976) who advocated the notion of neutrality for the MDP Proce-
dure, and Comet(1983) generalized it by omitting two restrictive assumptions imposed
by Champsaur: i.e., (i) uniqueness of solution and (ii) concavity of the utility functions.
Neutrality depends on the distributional coefficient vector $\delta$ . Remember that the role of $\delta$

is to attain any IRPO by redistributing the social surplus generated during the operation
of the procedure: $\delta$ varies trajectories to reach every IRPO. In other words, the planning
center can guide an allocation via the choice of $\delta$ , however, it cannot predetermine a final
allocation to be achieved. This is a very important property for the non-cooperative
games, since the equity considerations among players matter.3

Remark 2. Conditions except $PE$ must be fulfilled for any $t\in[0, \infty)$ . $PE$ is based
on the announced values, $\psi_{i},\forall i\in N$ , which implies that a Pareto optimum reached is
not necessarily equal to the one achieved under the truthful revelation of preferences for
the public good. Condition $LSP$ signifies that the truth-telling is a dominant strategy.
Condition $N$ means that for every efficient point $z^{*}\in Z$ and for any initial point $z_{0}\in Z$ ,
there exists $\delta$ and $z(t, \delta)$ , a trajectory starting from $z_{0}$ , such that $z^{*}=z(\infty, \delta)$ .

The MDP Procedure enjoys feasibility, monotonicity, stability, neutrality, and incen-
tive properties pertaining to minimax and Nash strategies, as was proved by Dr\‘eze and
de la Vall\’ee Poussin(1971), and Roberts(1979a,b). The MDP Procedure as an algorithm
evolves in the allocation space and stops when the Samuelson’s Conditions are met so.
that the public good quantity is optimal, and simultaneously the private good is allocated
in a Pareto optimal way: i.e., $(x^{*}, y_{1}^{*}, \ldots,y_{n}^{*})$ is Pareto optimal.

3.3. The Locally Strategy Proof $MDP$ Procedure

In our context, as a planner’s most important task is to achieve an optimal allocation
of the public good, he or she has to collect the relevant information from the periphery
so as to meet the conditions presented above. Fortunately, the necessary information
is available if the procedure is locally strategy proof. It was already shown by Fhjigaki
and Sato(1982), however, that the incentive compatible n-person MDP Procedure cannot
preserve neutrality, since $\delta_{i},\forall i\in N$ , was concluded to be fixed, i.e., $1/n$ to accomplish
LSP, keeping the other conditions fulfilled. This is a sharp contrasting result, since the
class of Groves mechanisms is neutral.[See Green and Laffont(1979, pp. 75-76.)]

Fujigaki and Sato(1981) presented the Locally Strategy $PwofMDP$ Procedure which
reads:

$\{\begin{array}{l}X(\psi(t))=(\sum_{j\in N}\psi_{j}(t)-\gamma(t))|\sum_{j\epsilon N}\psi_{j}(t)-\gamma(t)|^{n-2}Y_{i}(\psi(t))=-\psi_{i}(t)X(\psi(t))+(1/n)(\sum_{j\in N}\psi_{j}(t)-\gamma(t))X(\psi(t)), \forall i\in N.\end{array}$

Remark 3. We termed our procedure the ”GeneraliZed MDP Procedure” in our
paper(1981). Certainly, the public good decision function was generalized to include that
of the MDP Procedure, whereas, the distributional vector was fixed to the above specific
value. Thus, in order to be more precise, let me call hereafter the above procedure the

3For the concepts of neutrality associated with planning procedures, see Comet$(1977a, b, c, d)$ and
(1979), Comet and Lasry(1977), Rochet(1982), Sato(1983), (2003) and (2005). See also d’Aspremont
and Dr&e(1979) for a version of neutrality which is valid for the generic context.
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Fujigaki-Sato$(FS)$ Procedure or the Non-linearized $MDP$ Procedure as contrasted with
the original MDP Procedure which has a linear adjustment speed of public good. The
genuine Generalized MDP Procedure is presented below.

The FS Procedure for optimally providing the public good has the following properties:
i $)$ The Procedure monotonically converges to an individually rational Pareto optimum,

even if agents do not report their true valuation, i.e., MRS for the public good.
ii) Revealing his/her true MRS is always a dominant strategy for each myopically

behaving agent.
iii) The Procedure generates in the feasible allocation space similar trajectories as the

MDP Procedure with uniform distribution of the instantaneous surplus occurred at each
iteration, which leaves no influence of the planning authority on the final plan. Hence,
the Procedure is non-neutral.

Remark 4. The property ii) is an important one that cannot be enjoyed by the original
MDP Procedure except when there are only two agents with the equal surplus share, i.e.,
$\delta_{l}=1/2,$ $i=1,2$ . The result on non-neutrality in iii) can be modified by designing the
Generalized MDP Procedure below. See Roberts(1979a, b) for these properties.

Theorems are enumerated without proofs which were given in FN tjigaki and Sato(1981).

Theorem 1. The $FS$ Procedure fulfills Conditions $F,$ $M,$ $PE$ and $LSP$. However, it
cannot satisfy Condition $N$.

Theorem 2. For the $FS$ Procedure and for any $z_{0}\in Z$ , there exists a unique solution
$z(\cdot)$ : $[0, \infty)arrow Z$ , which $is$ such that $\lim_{tarrow\infty}z(t)$ exists and is a Pareto optimum.

Remark 5. For the existence of solutions to the equations with the discontinuous
right-hand side, see Henry(1972) and Champsaur et al.(1977) who reproduced Castaing
and Valadier(1969) and Attouch and Damlamian(1972).

3.4. Best Reply Strategy and the Nash Equilibrium Strategy

In the local incentive game the planner is assumed to know the true information of
individuals, since the FS Procedure induces them to elicit it. Its operation does not even
require truthfulness of each player to be a Nash equilibrium strategy, but it needs only
aggregate correct revelation to be a Nash equilibrium, as was verified in Sato(1983). It
is easily seen from the above discussion that the FS Procedure is not neutral at all, which
means that local strategy proof impedes the attainment of neutrality. Hence, Sato(1983)
proposed another version of neutrality, and Condition Aggregate Correct Revelation(ACR)
which is much weaker than $LSP$. In order to introduce Condition ACR, I need $\phi_{i}$ as a
best reply strategy given by

$\phi_{i}(t)=\frac{1}{n(\delta_{i}-1)}[(1-n)\pi_{i}(t)-(1-n\delta_{i})(\sum_{j\neq i}\psi_{j}-\gamma)],$ $\forall i\in N$ .

Let $a’=(a_{1}, \ldots, a_{n})$ and $a_{i}=(1-n\delta_{i})/(n-1)$ , then one observes
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$(\{\begin{array}{lll}1 \cdots 0\cdots \cdots \cdots 0 \cdots 00\cdots \cdots \cdots 1\end{array}\}+\{\begin{array}{lll}a_{1} \cdots a_{1}\cdots \cdots \cdots a_{i} \cdots a_{i}a_{n}\cdots \cdots \cdots a_{n}\end{array}\})\{\begin{array}{l}\psi_{1}|\psi_{i}\vdots\psi_{n}\end{array}\}=\{\begin{array}{l}\pi_{1}\vdots\pi_{i}\vdots\pi_{n}\end{array}\}+\gamma\{\begin{array}{l}a_{1}\vdots a_{i}\vdots a_{n}\end{array}\}$ .

Let us solve a system of $n$ linear equations to get a Nash equilibrium strategy. First
of all, the inverse matrix is computed as:

$(I+A)^{-1}=(I-A)/(1+ \sum_{i\in N}a_{i})=I-A$ .

The Nash equilibrium strategy reads

$\Phi=(I+A)^{arrow 1}(\pi+a\gamma)=(I-A)(\pi+a\gamma)$

$= \pi+a\gamma-(\sum_{j\in N}\pi_{j}+\gamma\sum_{j\in N}a_{j})a$

$= \pi-(\sum_{\in N}\pi_{j}-\gamma)a$ .

Hence, the Nash equilibrium strategy for player $i$ is

$\phi_{i}=\pi_{i}-\frac{1-n\delta_{i}}{n-1}(\sum_{\in N}\pi_{j}-\gamma)$ .

It is easily seen that
$\phi_{i}=\pi_{i}if\delta_{i}=1/n$

which is a requirement of LSP procedures.

3.5. Aggregate Corect Revelation and the Generalized $MDP$ Procedures

Let $\pi=(\pi_{1}, \ldots, \pi_{n})$ be a vector of MRS’s for the public good and $\Pi$ be its set.
Sato(1983) proposed the following:

Condition $ACR$. Aggregate Correct Revelation:

$( \forall\pi\in\Pi)(\forall t\in[0, \infty))[\sum_{i\in N}\phi_{i}(\pi(t))=\sum_{i\in N}\pi_{i}(t)]$ .

Remark 6. Condition $ACR$ means that the sum of Nash equilibrium strategies,
$\phi_{i},\forall i\in N$ , always coincides with the aggregate value of the correct MRS’s. Clearly,
$ACR$ only claims truthfulness in the aggregate.

I needed also the following two conditions. Let $\rho$ : $R_{+}^{n}arrow R_{+}^{n}$ be a permutation
function and $T_{i}(\psi)$ be a transfer in private good to agent $i$ .
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Condition TA. TMransfer Anonimity

$(\forall\psi\in\Psi)(\forall i\in N)(\forall t\in[0, \infty))[T_{i}(\psi(t))=T_{l}(\rho(\psi(t)))]$ .
Remark 7. Condition $TA$ says that the agent $i$ ’s transfer in private good is invariant

under permutation of its arguments: i.e., the order of strategies does not affect the value
of $T_{i}(\psi(t)),\forall i\in$ N. Sato(1983) proved that $T_{i}( \psi(t))=T_{i}(\sum_{j\in N}\psi_{j}(t)-\gamma(t))$ which
is an example of transfer rules.

Condition $TN$. Ttansfer Neutrality

$(\forall z^{*}\in P_{0})($ョ$T\in\Omega)($ョ$z( \cdot)\in Z)[z^{*}=\lim_{tarrow\infty}z(t, T)]$

where $T=(T_{1}, \ldots, T_{n})$ is a vector of transfer functions and $\Omega$ is its set.

Now I enumerate the properties of the Generalized MDP Procedures just renamed
supra. Proofs are already given in Sato(1983), so omitted here.

Theorem 3. The Generalized $MDP$ Procedures fulfill Conditions $ACR,$ $F,$ $M,$ $PE,$ TA
and $TN$. Conversely, any planning process $satis\theta ing$ these conditions is characterized to:

$\{\begin{array}{l}X(\psi(t))=(\sum_{j\in N}\psi_{j}(t)-\gamma(t))|\sum_{j\in N}\psi_{j}(t)-\gamma(t)|^{n-2}Y_{i}(\psi(t))=-\psi_{i}(t)X(\psi(t))+T_{i}(\sum_{j\in N}\psi_{j}(t)-\gamma(t)),\forall i\in N.\end{array}$

Theorem 4. Revealing preferences $tru$thfully in any Generalized $MDP$ Procedure is a
minimax strategy for any $i\in N$ . It is the only mini$\max$ strategy for any $i\in N$ , when
$x>0$ .

Theorem 5. $\phi_{i}=\pi_{i}$ holds for any $i\in N$ at the equilibrium of the Generalized $MDP$

Procedures.

Theorem 6. For every individually rational Pareto optimum $t$ , there exists a vector
of transfers $T$ and a trajectory $z(\cdot)$ : $[0, \infty)arrow Z$ of the differential equations defining the
Generalized $MDP$ Procedures such that $u_{i}(z^{*})= \lim_{tarrow\infty}u_{i}(x(t), y_{i}(t)),$ $\forall i\in N$ .

Keeping the same non-linear public good decision function as derived from Condition
$LSP$, Sato(1983) could state the above characterization theorem. In the sequel, I employ
the Generalized MDP Procedure with $T_{i}( \sum_{j\in N}\psi_{j}-\gamma)=\delta_{i}(\sum_{j\in N}\psi_{j}-\gamma)X(\psi)$ . Via
the pertinent choice of $T_{i}(\cdot)$ we can make the family of the Generalized MDP Procedures,
including the MDP Procedure and the FS Procedure as special members.

Remark 8. Champsaur and Rochet(1983) gave a systematic study on the family of
planning procedures that are asymptotically efficient and locally strategy proof. Now
we know that the class of the $LSP$ procedures is large enough, which includes the Bowen
Procedure, the Champsaur-Rochet Procedure, the Fujigaki-Sato Procedure, the General-
ized Wicksell Procedure, and Laffont-Maskin Procedure as special members, as classified
by Rochet(1982), Sato(2003) and (2005).
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4. THE STRUCTURE OF LOCALLY STRATEGY PROOF PROCEDURES

4.1. The $MDP$ Procedure $vs$ . the Non-linearized $MDP$ Procedure

The existence of Non-linearized MDP Procedures is assured by the integrability and
differentiability of the decision funcitions which determine the procedures. The MDP
Procedure has a linear decision function and its adjustment speed of public good is con-
stant. Whereas, the Non-linearized MDP Procedure has a non-linear decision function
which is a kind of a “turnpike”. If illustrated in the coordinates, when the Non-linearized
MDP Procedure is located far from the origin, it runs nimbler, while its adjustment speed
of public good reduces in the neighborhood of the origin. This structural difference of
these procedures has made a sharp contrast about the strength of incentive compatibility.
This difference stems from the integrability and differentiability of the decision function
of public good.

With examples, I show that the difference between the MDP Procedure and Non-
linearized MDP Procedure.

Theorem 7. When $n\geq 3$ , the $MDP$ Procedure can be manipulated by players’ strategic
behaviors, whereas the Non-linearized $MDP$ Procedure cannot.

Proof. Let me show that the original MDP Procedure can be manipulated by players
in the local incentive game associated with the procedure when there are three agents.
Under the truthful revelation of preference, as a payoff to player $i$ , the time derivative of
utility is represented by

$U_{i}= \delta_{i}(\sum_{j\in N}\pi_{j}-\gamma)^{2}X\geq 0$.

Let $\varphi$ signify underreporting of preference on the part of player 3 with $\pi_{3}>\psi_{3}$ .
Whereas, it is assumed that $\psi_{1}=\pi_{1}$ and $\psi_{2}=\pi_{2}$ .

$\frac{du_{3}^{\varphi}}{dt}=(\pi_{3}-\psi_{3})X+\delta_{3}(\sum_{J\in N}\psi_{j}-\gamma)X\geq 0$ .

If $\sum_{JEN}\psi_{j}-\gamma>0$ , then

$\frac{du_{3}^{\varphi}}{dt}-\frac{du_{3}}{dt}=(\pi_{3}-\psi_{3})\{(1-\delta_{3})(\sum_{\in N}\psi_{j}-\gamma)-\delta_{3}(\sum_{j\not\in i}\psi_{j}+\pi_{i}-\gamma)\}$ .

Thus, player 3 may get more payoff by falsifying his$/her$ preference for the public good
unless $\delta_{3}=1/2$ .

Specify their quasi-linear utility function as $u_{1}=2x+y_{1},$ $u_{2}=3x+y_{2}$ and $u_{3}=5x+y_{3}$

Then, $\partial u_{i}/\partial y_{i}=1,$ $i=1,2$, and 3, $\pi_{1}=\psi_{1}=2$ and $\pi_{2}=\psi_{2}=3$ . Suppose that the public
good is produced as $g(x)=3x$ and the $\gamma=3$ . Provided that individua13 underreports
his preference by announcing $\psi_{3}=1$ instead of his true MRS, $\pi_{3}=5$ .
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The Generalized MDP Procedure with three persons reads

$\{\begin{array}{l}X=(\sum_{j=1}^{3}\psi_{j}-\gamma)|\sum_{j=1}^{3}\psi_{j}-\gamma|Y_{i}=-\psi_{i}X+\frac{1}{3}(\sum_{j=1}^{3}\psi_{j}-\gamma)X.\end{array}$

With the above numerical example, this Procedure yields $du_{3}^{\varphi}/dt=45<114.33=du_{3}/dt$ .
Similarly, $du_{3}^{\eta}/dt=81<114.33=du_{3}/dt$ , where $\eta$ means “overreporting”, when $he/she$

reports $\psi_{3}=7$ instead of his true value, 5. Consequently, free-riding individua13 loses
his$/her$ payoff in the both cases of underreporting and overreporting. The Non-linearized
MDP Procedure gives the payoff such that

$U_{i}=( \pi_{i}-\psi_{i})X+\frac{1}{3}(\sum_{j=1}^{3}\psi_{j}-\gamma)^{2}|(\sum_{j=1}^{3}\psi_{j}-\gamma)|$

where $\pi_{i}=\psi_{i}$ assures $U_{i}\geq 0,$ $\forall i=1,2$ and 3, thus, the Non-linearized MDP Procedure is
locally strategy proof for three persons. This is not the property enjoyed by the original
MDP Procedure. Q.E.D.

4.2. An Altemative Characterization Theorem and Ransfer Independence

Next, let me give an alternative proof to Theorem 2 in Rtjigaki and Sato(1981)
by making use of a new axiom. This is a modified version of the property introduced
by Green and Laffont(1979), which means the equality of the increment of transfer in
accordance with the marginal change of strategy. This is an important condition which
is connected with equity.

Condition $TI$ . T)ransfer Independence:

$( \forall i,j\in N)[\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}=\frac{\partial T_{j}(\psi)}{\partial\psi_{j}}]$ .

Then, the following characterization theorem holds.

Theorem 8. Any planning procedure that satisfies Conditions $ACR$ and $TI$ is charac-
terized to:

$\{\begin{array}{l}G(P)=a(\sum_{j\in N}\psi_{j}-\gamma)|\sum_{j\in N}\psi_{j}-\gamma|^{n-1}, a\in R_{++}T_{i}(\psi)=\int G(\sum_{j\in N}\psi_{j}-\gamma)d\psi_{i}+H_{i}(\psi_{-i}), \forall i\in N\end{array}$

where $H_{i}(\psi_{-i})$ is an arbitrary hnction independent of $\psi_{i}$ .

Proof. Consider the process

$\{\begin{array}{l}X=G(P)Y=-\psi_{i}G(P)+\delta_{i}PG(P).\end{array}$

Using the decision function specified above yields the payoff to player $i$ :

$U_{i}= \frac{\partial u_{i}}{\partial y_{i}}\{\pi_{i}G(P)-\psi_{i}G(P)+\delta_{i}PG(P)\}$ .
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Differentiating with respect to $\psi_{i}$ this gives

$\frac{dU_{i}}{d\psi_{i}}=\frac{\partial u_{i}}{\partial y_{i}}\{\pi_{i}\frac{dG(P)}{dP}-G(P)-\psi_{i}\frac{dG(P)}{dP}+\delta_{i}[G(P)+P\frac{dG(P)}{dP}]\}=0$ .

As a reference, if Condition LSP holds, then

$G(P) \frac{1-\delta_{i}}{\delta_{i}}=P\frac{dG(P)}{dP},$ $\forall i\in N$ .

This equation holds only if $\delta_{i}=\delta_{j},\forall i,j\in N$ . Consequently, local strategy proof of the
MDP Procedure with two persons requires $\delta_{i}=1/2,$ $\forall i\in N$ . Hence, the MDP Procedure
can possess LSP only for a two-person economy.

Instead, if Condition ACR holds,

$G(P)= \frac{1}{n-1}P\frac{dG(P)}{dP},$ $\forall i\in N$ .

Solving for $G(P)$ yields

$G(P)=aP^{n-1},$ $a\in R_{++}$ .
Since $G(P)$ is sign-preserving from Lemma 4 in Fujigaki and Sato(1982), we finally get

$G(P)=aP|P|^{n-2},$ $a\in R++\cdot$

Next, let me show with Conditions ACR and TI that

$T_{i}( \psi)=\int G(\sum_{j\in N}\psi_{j}-\gamma)d\psi_{i}+H_{i}(\psi_{-i}),$ $\forall i\in N$ .

The best reply strategy $\phi_{i}$ for player $i$ is, given $\psi_{-i}$

$\phi_{i}=\{\frac{\partial G(P)}{\partial\psi_{i}}\}^{-1}\{\pi_{i}\frac{\partial G(P)}{\partial\psi_{i}}-G(P)+\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}\},$ $\forall i\in N$

where all the partial derivatives are evaluated at $\psi_{i}=\pi_{i}$ .
From Condition ACR

$\sum_{i\in N}\{\frac{\partial G(P)}{\partial\psi_{i}}I^{-1}\{-G(P)+\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}I=0$ .

Since $G(P)$ is symmetric with respect to $\psi_{i}$ ,

$\frac{\partial G(P)}{\partial\psi_{i}}=\frac{\partial G(P)}{\partial\psi_{j}}\neq 0$.

Thus,

$\sum_{i\in N}\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}=nG(P)$
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or
$\frac{1}{n}\sum_{i\in N}\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}=G(P)$.

If Condition TI holds, then

$\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}=G(P)$ .

Therefore the desired conclusion follows in a straightforward manner. Q.E.D.

Remark 9. In Theorem 8, without Condition TI, the function $T_{i}(\psi)$ cannot be
uniquely determined, and thus,

$\frac{1}{n}\{\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}\}=\delta_{i}G(P)$ .

4.3. Measure of Incentives

I show that the exponent attached to the public good decision function has a close
relationship to the number of individuals participating in the procedure and that this fact
enables procedures to achieve local strategy proof.

Theorem 9. Any planning procedure hlfills $LSP$ if and only if the exponent attached
to the public good decision function is $\beta=n-1$ .

Proof. Consider the following adjustment function:

$\{\begin{array}{l}X(\psi)=(\sum_{j\in N}\psi_{j}-\gamma)^{\beta}Y_{i}(\psi)=-\psi_{i}X(\psi)+(1/n)(\sum_{j\in N}\psi_{j}-\gamma)X(\psi), \foralli\in N\end{array}$

where $\beta\geq 1$ is a parameter.
Let me show that this procedure fulfills LSP if and only if $\beta=n-2$ . For this purpose,

define a measure of incentives below. In the local incentive game associated with each
iteration of the process, the payoff for each player $i$ is given by

$U_{i}( \psi)=\frac{\partial u_{i}}{\partial y_{i}}\{\pi_{i}-\psi_{i}+\frac{1}{n}(\sum_{\in N}\psi_{j}-\gamma)\}(\sum_{\in N}\psi_{j}-\gamma)^{\beta}$

Differentiating this with respect to $\psi_{i}$ gives

$\frac{\partial U_{i}(\psi_{i},\psi_{-i})}{\partial\psi_{i}}=\frac{\partial u_{i}}{\partial y}\{\beta(\pi_{i}-\psi_{i})+\frac{\beta-n+1}{n}\}(\sum_{\in N}\psi_{j}-\gamma)^{\beta}=0$ .

Since $( \sum_{j\in N}\psi_{j}-\gamma)^{\beta}\neq 0$ out of equilibrium, the best reply strategy for player $i$ is

$\psi_{i}=\pi_{i}+\frac{\beta-n+1}{\beta n}$ .
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Here introduced is a measure of incentives:

$\Phi(n)=\sum_{i\in N}(\psi_{i}-\pi_{i})^{2}$
.

Substitution yields

$\Phi(n)=(\frac{\beta-n+1}{\beta n})^{2}$

Differentiating this with respect to $\psi_{i}$ gives

$\frac{\partial\Phi(n)}{\partial\psi_{i}}=\frac{2(\beta+1)(n-1-\beta)}{\beta^{2}n^{3}}=0$ .

The measure of incentives $\Phi(n)$ has a maximum at $n-1$ . As $n>1$ , we know that
$\Phi(n)arrow 0$ as $\betaarrow n-1$ and that $\Phi(n)=0$ if and only if $\beta=n-1$ . Consequently, the
Non-linearized MDP Procedure has the unique form of decision function with $\beta=n-1$

of public good to achieve LSP. Q.E.D.

4.4. Coalitionally Locally Strategy Proof Procedures

The problem of misrepresenting preferences by colluding individuals has been dealt
with for static revelation mechanisms by some authors. For instance, Bennett and
Conn(1977) considered an economy with one public good and proved that there is no
revelation mechanism which is group incentive compatible; that is, for any revelation
mechanism to provide public goods, if any coalition formation is possible, some group
of individuals will be able to gain by misrepresenting their preferences for the public
good. Green and Laffont(1979) also studied the problem of coalitional manipulability.
They verified under the separability of utility functions that revelation of the truth was
a dominant strategy for each individual in demand revealing mechanisms used to provide
public goods. They also showed that any revelation mechanism can be manipulated by
coalitions of two or more agents. Their payoff by colluding, however, approaches zero as
the number of agents becomes infinite, i.e., the large economy.

The main purpose of this subsection is to show whether the Local Strategy Proof MDP
Procedure is robust to coalitional manipulation of preferences on the part of the agents.
If the structure of coalitions is fixed and known to the planner, their misreporting can be
overcome by treating each coalition as an individual agent and applying the LSP MDP
Procedure to the strategies composing of the aggregated preferences over the members of
each coalition. Thus, we can have a Coalitionally Locally Strategy Proof (CLSP) planning
procedure, to be defined below. But what could happen if the coalition structure is flexible
and unknown to the planner? Is it possible to construct a CLSP planning process?

Retaining the same assumptions as in Sato(1983), we add some new definitions and
notation. Let $C\subseteq N$ be a coalition of individual agents. The vector $\psi_{C}$ denotes the
projection of $\psi\in R^{n}$ , the marginal rate of substitution announced by the coalition $C$.
Let $\Pi_{c}\in R^{n}$ be a vector of the true rate of substitution of the coalition $C$. We use
$(\psi/\psi_{C})$ to signify the components of $\psi$ with the exception of $\psi_{i},$ $i\in C$ , and we use also
the notation $(\psi,\psi_{N/C})$ .
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Definition 5. A joint strategy for a coalition $C,\tilde{\psi}_{C}\in R^{|C|}$ is called a dominant joint
strategy if it fulfills

$(\forall\tilde{\psi}_{C}\in R^{|C|})(\forall\psi_{N}/c\in R^{|N/C|})(\forall i\in C)[u_{i}(\tilde{\psi}_{C}, \psi_{N/C})\geq u_{i}(\psi_{C}, \psi_{N/C})]$

where $||$ means a cardinality.

Definition 6. The payoff function of an agent in a coalition is given by

$u_{i}( \psi_{C}, \psi_{N/C})=\frac{\partial u_{i}}{\partial x}X(\psi_{C}, \psi_{N/C})+\frac{\partial u_{i}}{\partial y_{i}}Y_{i}(\psi_{C}, \psi_{N/C})$

$= \frac{\partial u_{i}}{\partial y_{i}}[\pi_{i}X(\psi_{C},\psi_{N/C})+Y_{i}(\psi_{C}, \psi_{N/C})]$ .

Definition 7. $\psi_{C}$ is said to be a coalitionally dominant equilibrrium if it composes a
dominant joint strategy against every coalition $C\in 2^{n}-\{\phi\}$ .

Thus, we can state the condition related to coalitions.

Condition CLSP: Coalitionally Local Strategy Proof

$(\forall\psi_{C}\in R^{|C|})(\forall\psi_{N}/c\in R^{|N/C|})(\forall\psi_{i}\in\Psi_{i})(\forall\psi_{-i}\in\Psi_{-i})(\forall i\in C)(\forall t\in[0, \infty))$

$[\pi_{i}X(\pi_{C}, \psi_{N/c})+Y_{i}(\pi_{C}, \psi_{N/C})\geq\pi_{i}X(\psi_{C}, \psi_{N/c})+Y_{i}(\psi_{C}, \psi_{N/c})]$ .

The following theorem shows the non-existence of CLSP procedures.

Theorem 10. There exists no $procedure$ which fdfllls Condition CLSP.

Proof Clearly, a CLSP planning procedure is a LSP process. Let us consider the
joint payoff $U_{ik}(\psi_{C}, \psi_{N/C})$ of the two-size coalition $\{i, k\}$ .

$U_{ik}( \psi_{C}, \psi_{N/C})=\sum_{\ell=i,k}\frac{\partial u_{\ell}}{\partial y_{\ell}}\{\pi_{\ell}-\psi_{\ell}+\frac{1}{n}(\sum_{\in N}\psi_{j}-\gamma)\}X(\psi_{C}, \psi_{N/C})$ .

Differentiation with respect to $\psi_{i}$ gives

$\frac{\partial U_{ik}(\psi_{C},\psi_{N/C})}{\partial\psi_{i}}=\sum_{\ell=i,k}\frac{\partial u_{\ell}}{\partial y_{\ell}}\{\frac{1-n}{n}X(\psi_{C}, \psi_{N/C})$

$+( \pi_{\ell}-\psi_{\ell}+\frac{1}{n}\sum_{j\in N}\psi_{j}-\frac{1}{n}\gamma)\frac{\partial X(\psi_{C},\psi_{N/C})}{\partial\psi_{\ell}}\}$ .

Since $X(\psi_{C}, \psi_{N/C})=0$ at an equilibrium where the above equation is zero if

$\pi_{i}-\psi_{i}+\frac{1}{n}\sum_{j\in N}\psi_{j}-\frac{1}{n}\gamma=0$

and
$\pi_{k}-\psi_{k}+\frac{1}{n}\sum_{j\in N}\psi_{j}-\frac{1}{n}\gamma=0$ .
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Combining these two yields
$\pi_{i}-\psi_{i}-\pi_{k}+\psi_{k}=0$

which does not imply the requirement of LSP:
$\pi_{i}=\psi_{i}$ and $\pi_{k}=\psi_{k}$ .

Hence, even the $tw(\succ size$ coalition $\{i, k\}$ can manipulate the LSP procedure. Q.E.D.

4.5. Bayesian Incentive Compatible Planning Procedures

Let me refer to Bayesian strategies. A Bayesian approach to incentive compatible
procedures is taken, because dominant strategies often fail to exist. Given the lack of
knowledge of other players’ preferences, Nash equilibrium strategies are difficult to be
justified unless recontracting is permitted.

Assume that individuals’ types are independently distributed; the distribution func-
tions for individual $i$ of type $\psi_{i}\in[a, b]$ is $\mu_{i}(\psi_{i})$ . These distributions are common knowl-
edge among agents. Let $\mu_{i}(\psi_{-i})\equiv\Pi_{j\neq i}\mu_{j}(\psi_{j})$ be individual $i$ ’s belief over the types of
other individuals. Then, we have

Conditon BLSP: Bayesian Locally Strategy Proof

$(\forall\psi_{i}\in\Psi_{i})(\forall\psi_{-i}\in\Psi_{-i})(\forall i\in N)(\forall t\in[0, \infty))$

$\int_{\Psi-i}U_{i}(X(\pi_{i}(t), \psi_{-i}(t)), Y_{i}(\pi_{i}(t),\psi_{arrow i}(t)))d\mu_{i}(\psi_{-i})\geq\int\Psi-iU_{i}(X(\psi(t)), Y_{i}(\psi_{i}(t)))d\mu_{i}(\psi_{-i})$ .

Omitting an argument $t$ , the following theorem is presented.

Theorem 11. A Bayesian Locally Strategy Proof Planning Procedure is characterized
$as$:

$\int_{\Psi_{-t}}X_{i}(\psi)d\mu_{i}(\psi_{-i})=\int_{\Psi_{-i}}(\sum_{j\in N}\psi_{j}-\gamma)|\sum_{j\in N}\psi_{j}-\gamma|^{n-2}d\mu_{i}(\psi_{-i})$

$\int_{\Psi_{-i}}T_{i}(\psi)d\mu_{i}(\psi_{-i})=\frac{1}{n}\int_{\Psi_{-:}}(\sum_{\in N}\psi_{j}-\gamma)^{n}d\mu_{i}(\psi_{-i})$

$+ \frac{1}{n(n-1)}\sum_{i\neq j}\int_{\Psi_{-i}}(\sum_{\in N}\psi_{j}-\gamma)^{n}d\mu_{i}(\psi_{-i})$

Proof: A dominant strategy is a Baysian strategy, so that the public good decision
function follows the LSP procedure as above to be the form as stated in the Theorem.
The player’s payoff is given by

$U_{i}(t)= \int_{\Psi_{-i}}\{\frac{\partial u_{i}}{\partial x}X(\psi)+\frac{\partial u_{i}}{\partial y_{i}}Y_{i}(\psi)\}d\mu_{i}(\psi_{-i})$

$= \int_{\Psi_{-i}}\frac{\partial u_{i}}{\partial y_{i}}\{\pi_{i}X(\psi)+Y_{i}(\psi)\}d\mu_{i}(\psi_{-i})$

$= \int_{\Psi_{-i}}\frac{\partial u_{i}}{\partial y_{i}}\{(\pi_{i}-\psi_{i})X(\psi)+T_{i}(\psi)\}d\mu_{i}(\psi_{-i})$ .
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Differentiating with respect to $\psi_{i}$ yields the payoff:

$U_{i}(t)= \int_{\Psi_{-i}}\{-X(\psi)+\pi_{i}-\psi_{i}+\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}\}d\mu_{i}(\psi_{-i})=0$.

As required by BLSP, $\pi_{i}=\psi_{i}$ , the above equation is

$\int_{\Psi_{-i}}\frac{\partial T_{i}(\psi)}{\partial\psi_{i}}d\mu_{i}(\psi_{-i})=\int_{\Psi_{-t}}X(\psi)d\mu_{i}(\psi_{-i})$ .

Integrating this with respect to $\psi_{i}$ gives

$\int_{\Psi_{-i}}T_{l}(\psi)d\mu_{i}(\psi_{-i})=\frac{1}{n}\int_{\Psi_{-i}}(\sum_{\in N}\psi_{j}-\gamma)^{n}d\mu_{i}(\psi_{-i})+H_{i}(\psi_{-i})$

where $H_{1}(\Psi_{-i})$ is an arbitrary real vaJued function. In order that the sum of transfers
must be zero, let me set

$H_{i}( \psi_{-i})=\frac{1}{n(n-1)}\sum_{i\neq j}\int_{\Psi_{-i}}(\sum_{\in N}\psi_{j}-\gamma)^{n}d\mu_{i}(\psi_{-i})$

which is stated in the Theorem. Q.E.D.

This possibility theorem contrasts with the Roberts’ impossibility theorem which is
a result of dropping the myopia assumption. Roberts(1987) challenged a difficult issue
which is not yet fully settled: i.e., he attempted to relax both the assumptions of myopia
and complete information in a simplest version of an iterative planning framework due to
Champsaur, Dr\‘eze, and Henry(1977). In his procedure the agents initially imperfectly
informed but gradually learn about each other to predict future behaviors of others. He
discussed the Baysian incentive compatibility of his procedure. And he gave a numerical
example of a condominium as a public good, entrance of which is redecorated by its
members who use the iterative process.4 Much remains to be done to fully analyze the
Baysian incentive compatible planning procedures.

5. DISCUSSION ON DISCRETENESS, MYOPIA AND NONMYOPIA

Here I present some comments on the discrete procedures. Incidentally, little is known
about the speed of convergence of the procedures, particularly when they are formulated
in the discrete versions, which is the only realistic ones from the standpoint of actual
planning. The continuous version implies that the player’s responses are transmitted
continuously to the planner, with no computation cost or adjustment lag.5 However, for
the simplicity of presentation, the technical advantages of the differential approach is well-
known. As Malinvaud(1970-71, p.192) rightly pointed out that a continuous formulation
removes the difficult question of choosing an adjustment speed. Hence, the continuous

4See Spagat(1995) for incisive critics on iterative planning theory and his re-examination of the stan-
dard procedures in the Bayesian learning real-time model.

5See Laffont and Saint-Pierre(1979) for an exception with an information processing cost.
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version is justified mainly by convenience. Moreover, a continuous fromulation might be
considered as an approximation to a discrete representation.6

Casual observations suggest that discrete procedures are more realistic than continu-
ous ones, and that revisions of resource allocation are essentially made in descrete time.
But most planning procedures discussed in the literature are formulated in continuous
time, because of the difficulties involved in using the discrete version. As indicated
by Malinvaud(1967) and others, this dilemma concems a traditional technical difficulty
which is summarized in such a way that if one selects a pitch large enough to get a rapid
convergence, one runs the risk of no convergence. On the other hand, if one chooses a
pitch small enough to expect an exact convergence, there is a possibility of delay.

Discrete versions of the MDP Procedure have been presented by several authors, and
there are different strains of the related literature. The first strain- taken by Champsaur,
Dr\‘eze, and Henry(1977)–is characterized by a decreasing adjustment pitch(or step-size)
as a parameter, with which they could overcome a dilemma associated with a discrete
formulation by keeping the pitch constant as long as it allows progress in efficiency, and
by halving it as soon as it is impossible. The above-mentioned dilemma associated with
discrete procedures is therefore overcome.7 Discussions of incentives in discrete-time
MDP Procedures are given in Henry(1979), and Schoumaker(1979), (1977) and (1979).
They analyzed players’ strategic behaviors in the discrete MDP Processes, by ruling out
the assumption of tmthful revelation. The result they achieved is that their procedures
still converge to a Pareto optimum even under strategic preference revelation \‘a la Nash.

Approaching the same issue from another angle, Green and Schoumaker(1980) pre-
sented a discrete MDP Process with a flexible step-size at each iteration, and studied its
incentive properties in the game theoretical framework. Their analysis dispensed with
the (strategic indifference” assumption imposed by Henry(1979) and Schoumaker(1979):
i.e., the players choose $trutharrow telling$ if the resulting outcome would be indifferent. Their
discrete-time procedure, however, requires reporting global information with respect to
the preferences of consumers. More precisely, consumers’ marginal willingness to pay
functions are constrained to be compatible with a part of their utility functions. Essen-
tially, a Nash equilibrium concept is employed. Although their ideas are interesting, the
informational burden in their model is much greater than that in other approaches.

Mas-cole11(1980) proposed a voluntary financing process, which is a global analog of

6The essence of the discrete version of the MDP Procedure(CDH Procedure) can be captured in
Henry and Zylberberg(1977). See, in addition, Ruys(1974) Tulkens (1978), Laffont (1982), Mukherji(1990)
and Salani6(1998) for lucid summaries of the MDP Procedure. It can be seen as a non-t\S tonnement

process,” because of its feasibility, one can therefore truncate it at any time. As for a contribution
to the MDP literature, see Von Dem Hagen(1991), where a differential game approach is taken. De
$n_{enquale(1992)}$ defined a dynamic mechanism different from the MDP Procedure, that implements with
local dominant strategies a Pareto efficient and individually rational allocations in a general two-agent
model. Chander(1993) verified the incompatibility between core convergence property and local strategy
proofness. Sato(2004) designed the Hedonic MDP Procedure for optimally providing attributes which
compose the goods in the new consumer theoretical context to take “quality” into consideration.

7See Henry and Zylberberg(1978) for graphically illustrating how the method of a decreasing pitch
successfully works until a Pareto optimum is attained. Although they treated the case with increasing
retums to scale, the structure is isomorphic to the model with public goods. $Cr6mer(1983)$ and (1990)
took another approach to treat increasing retums to scale, as well as useful ideas that can be applied for
public goods. See Heal(1986) for a comprehensive account of the planning theory and the dilemma of
choosing a step-size in discrete procedures. See also Henry and Zylberberg(1977) for the Heal Procedure.
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the MDP Procedure.8 He obtained characterizations of Pareto optimal and core states in
terms of valuation functions. The incentive probelm was not considered. Chander(1985)
presented a discrete version of the MDP Procedure and he insisted that his system is the
most informationally efficient allocation mechanism, without taking any consideration on
its incentive property, though. Otsuki(1978) employed the feasible direction method in
the theory of discrete planning, and applied it to the MDP and the Heal Procedures by
devising implementable algorithms. Again, the problem of incentives was not treated in
his paper.

Allard et al.(1989) proposed definitions of temporary and intertemporal Pareto Opti-
mality. In their paper individuaJs are represented by Roy-consistent expectation functions
induced by their learning processes. In order to explain their concepts of expectation
functions, they referred to a pure exchange MDP Process, in which the planner asks agents
to evaluate present goods and to send him/her their demands. So as to value present
goods, they must forecast future quantities. Thus, Allard et al.(1989) assumed that the
consumers are endowed with expectation functions.

As was criticized by Coughlin and Howe(1989), none of the above discrete procedures
satisfied a criterion of intertemporal Pareto optimality. Following them, only the process
devised by Green and Schoumaker(1980) insinuated a possible avenue to the criterion of
intertemporal Pareto optimality. Sato(2001) showed a different version of the Green and
Schoumaker(1980) ’s discrete process with variable step-sizes and only local informational
requirement.

Incidentally, how can we justify the myopia assumption which is a crucial underpinning
to obtain a lot of fruitful results in the theory of incentives, especially in the planning
procedures for optimally allocating public goods? Indeed in reality people seems to
be considered to behave myopically rather than farsightedly. Matthews(1982, p. 638)
wrote that “myopia may be regarded as a tractable approximation, a result of “bounded
rationality”.” Laffont(1985, pp. 19-20) justffied myopia as follows: the participants in a
planning procedure always believe that it is the last step of the procedure or that they will
not enter the complexities of strategic behavior for a longer time horizon. In the MDP
Procedure correct revelation of preferences is a maximin strategy in the global game, as
was pointed out by $Dr6ze$ . As the procedure is monotone in utility functions, the worst
that could happen is the termuination of the procedure: in other words, the global game
reduces to the local game, in which the maximin stratgy consists of correctly revealing
preferences. Conversely, choosing a myopic strategy reduces to adopting a maximin
approach to the global game. It would be logical, however, to adopt a maximin strategy
in the local game, too.

Let me introduce two justifications of myopic by Moulin(1984, pp. 131-132). The
first one is to consider an isolated player who finds himself/herself so small that his$/her$

proper choice of strategies influences the others’ choice in a negligible way. The other,
which completes the first, is complete ignorance where no player knows his$/her$ opponents’
utility functions; a player knows that he$/she$ is unable to predict in what direction the
change occurs. The method of Truchon(1984) to examine a nonmyopic incentive game,
where each agent’s payoff is a utility at the final allocation. Different from the others,
‘huchon introduced a “threshold” into his model to analyze agents’ strategic behavior.

8For another global analog, seeglobal analog, see also Dubins’ mechanism which is a speed transform of the MDP
Procedure explained in Green and Laffont(1979).
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T. Sato(1983) also investigated how the MDP Procedure works when players with in-
dividual expectation functions nonmyopically play a sequential game, by letting them
forecast what allocation would be proposed over the period when $he/$she takes a certain
path of strategies. Assume also that the agents have rational expectations on the time
interval, although the latters are bounded; they not only have complete knowledge as to
the planning rules of the procedure defined below, but also can at least predict an alloca-
tion to be attained at the beginning of the next interval. Champsaur and Laroque(1982,
p.326)wrote that $[s]$ uch a situation of limited intertemporal consistency is similar to the
discrete procedures.” Champsaur and Laroque(1981) and (1982) took into consideration
the effects of the agents’ strategies upon the final allocation. Sato(2001) extended his
model to involve a public good in order to examine nonmyopic behaviors on the part of
strategic players, as in Champsaur and Laroque(1981).

The Generalized MDP Procedure is able to keep neutrality, which is different from
Champsaur and Laroque(1981) ’s result on nonneutrality of the procedures with intertem-
poral strategic behaviors of agents. This possibility stems from Sato(1983) who proposed
aggregate correct revelation as a condition to be replaceable with local strategy proofness,
and he constructed a planning procedure which simutaneously satisfies three desiderata:
efficiency, neutrality and aggregate correct revelation. Sato(2001) attempted a different
approach, in which discussions can be extended to a piecewise linearized procedure. The
above dynamic system can be generalized to involve many public goods, amounts of which
can be simultaneously adjusted at each iteration. This result differs from Champsaur,
Dr\‘eze, and Henry(1977), in which the quantity of only one public good can be revised
at each discrete date. To examine incentive properties of the procedure, an assumption
of truthful revelation of preferences is omitted. Each player’s announcement, $\psi_{i}$ , is not
necessarily equal to his$/her$ true MRS, $\pi_{i}$ . Thus, $\pi_{i}$ must have been replaced with $\psi_{i}$ in
the dynamic system of the $\lambda MDP$ Procedure. The nonmyopia assumption is introduced
for our procedure, since a discrete time framework is a weaker representation of myopia.
The procedure and the game are repeated for each interval in our framework.

What associated with the above process instead of intertemporal game used by Champ-
saur and Laroque(1981) is so to speak a “bounded” or “piecewise” intertemporal game,
since I divide the time interval in the model. A piecewise intertemporal game played
at discrete dates of each time interval of the procedure is formally defined as the normal
form game $(\Psi, V)$ . $\Psi=\cross i\in N\Psi_{i}\subset R_{+}$ is the Cartesian product of $\Psi_{i}$ which is the set of
player $i$ ’s strategies, and $V=(V_{1}(\tau_{s+1}), \ldots, V_{n}(\tau_{s+1}))$ is the n-tuple of payoff functions at
the end of the current time interval $[\tau_{s}, \tau_{s+1})$ such that $V_{i}(\tau_{s+1})=u_{i}(x(\tau_{s+1}), y_{i}(\tau_{s+1}))$ ,
$\forall i\in$ N. Let $\chi(t)$ and $v_{i}(t)$ be revisions at discrete date $t$ of the public good and the
private good, respectively.

The maximization problem for any player is as follows: $\forall\tau_{s+1}\in T$ and $\forall t\in[\tau_{s}, \tau_{s+1})$

${\rm Max} V_{i}(\tau_{s+1})$

$s.t$ . $x(t)=x(\tau_{s})+\chi(t)$ and $y_{\mathfrak{i}}(t)=y_{i}(\tau_{s})+v_{i}(t)$ .

The behavioral hypothesis underlying the above equation is the nonmyopia assump-
tion: i.e., each player determines his$/her$ best reply strategy at the beginning of each
interval $[\tau_{s},\tau_{\epsilon+1})$ in order to maximize his$/her$ payoff, $V_{i}(\tau_{s+1})$ , at the beginning of the
next interval $[\tau_{s+1},\tau_{s+2})$ .
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Another Myopia Assumption: Every player is assumed to behave nonmyopically:
viz., when each player determines his/her strategy in a piecewise intertemporal game,
he$/she$ does not maximize the time derivative of utility function but the utility increment
based on the allocation that $he/she$ can foresee to get at the end of the current interval.

This behavioral hypothesis may be justified by considering that the future develop-
ment of an allocation cannot be predicted for exactly. Hence, every player has to make a
piecewise decision under uncertainty. Players are rather assumed to forecast at least what
will happen at the next discrete date. The myopia assumption is common in local games
associated with both continuous and discrete planning procedures such as the MDP and
the CDH(Champsaur-Dr\‘ezeHenry) Procedures. See Henry(1979), Schoumaker(1977)
and (1979) for the details of this point. Also, nontatonnement procedures are of con-
cern in real economic life. Hence, in view of obvious practical relevance, Sato(2001)
constructed our discrete process in a nont\^atonnement setting, however, I was confined
myself to develop a piecewise linearized process as an approximation. Under nonmyopia
assumption, sincere revelation of preference for the public good at any discrete date of
the Generalized $MDP$ Procedure is a best reply strategy for each player.

6. FINAL REMARKS

The present paper has revisited the Generalized MDP Procedures and analyzed their
properties. In doing so, I have extended the Sato’s(1983) Procedure with a public good.
In the local game associated with any iteration of the procedure, each player’s payoff is the
utility increment at each point of time. Laffont’s differential method is used to formalize
the procedure that has desirable properties. Calling this process the Nonlinearized MDP
Procedure or Fujigaki-Sato Procedure, I have shown that it can simultaneously achieve
efficiency and local strategy proofness. That is, it converges to a Pareto optimum and
that the best replay strategy of each player at each iteration is to declare $his/her$ true
MRS, i.e., $\overline{\psi}_{i}(t)=\pi_{i}(t)$ . Instead, the Generalized MDP Procedure can possess aggregate
correct revelation.

Recognizing the difficulties conceming the possibility of manipulating private infor-
mation by individuals, the literature has verified that this incentive problem could be
treated by the planning procedures that require a continuous revelation of information,
provided that agents adopt a myopic behavior. Whereas, if individuals are farsighted, the
traditional impossibility results occur, i.e., incentive compatibility is incompatible with ef-
ficiency, as were pointed out by Champsaur, Laroque and Rochet. This paper has studied
an instantaneous situation where agents are only asked to reveal their true MRS at con-
tinuous dates, where the direction and speed of adjustment are changed. Consequently,
the associated dynamic process named the lfujigaki-Sato Procedure has concluded to be
nonlineared. Individuals are assumed to take myopic behaviors at each date. Their
behavior is hence characterized myopia, not farsightedness. The idea of looking at an
intermediate time horizon for agents’ manipulations of information is more natural and
more realistic, but more difficult than myopia and farsightedness.

In the literature on the problem of incentives in planning procedures, the myopic
strategic behavior prevailed. Many papers imposed this behavioral hypothesis; i.e., my-
opia, on which the forgoing discussions crucially depended, spawning numerous desirable
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results in connection with the family of MDP Procedures. The aim of this paper has been
to examine the consequences of the assumption that individuals choose their strategies to
maximize an instantaneous change in utility function at each iteration along the proce-
dure, as analyzed by Sato(1983). Also verified is that the Generalized MDP Procedure
can always keep neutrality which is different from Champsaur and Laroque(1981) and
(1982), and Laroque and Rochet(1983). They analyzed the properties of the MDP $Prx$

cedure under the nonmyopic assumption. They treated the case where each individual
attempts to forecast the influence of his$/her$ announcement to the planning center over
a predetermined time horizon, and optimizes his$/her$ responses accordingly. It is proved
that, if the time horizon is long enough, any noncooperative equilibrium of intertemporal
game attains an approximately Pareto optimal allocation. But at such an equilibrium,
the influence of the center on the final allocation is negligible, which entails nonneutrality
of the procedure. Their attempt is to bridge the gap between the local instantaneous
game and the global game, as was pointed out by Hammond(1979). Sato(2001) aimed,
however, to bridge the gap between the local game and intertemporal game, by construct-
ing a compromise of continuous and discrete procedures: i.e., the piecewise linearized
procedure.
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