Gröbner bases on projective bimodules and the Hochschild cohomology *

Part IV. (Co)homology

YUJI KOBAYASHI

Department of Information Science, Toho University Funabashi 274–8510, Japan

This is a continuation of the previous papers [3], [4] and [5]. We develop the theory of Gröbner bases on projective modules over an algebra based on a well-ordered semigroup. We construct resolutions of modules admitting Gröbner bases. This gives an effective way to compute the (co)homology of such modules.

14 Suitable orders

Let $S = B \cup \{0\}$ be a well-ordered reflexive semigroup with 0 and K be a commutative ring with 1. Let $F = K \cdot B$ be the K-algebra based on B and let I be a (two-sided) ideal of F. Let A = F/I be the quotient algebra of F by I and $\rho: F \to A$ be the natural surjection. We fix a (reduced) Gröbner basis G of I.

Let X be an left edged set and $F \cdot X$ be the projective left F-module generated by X. Assume that a left compatible well-order > on $B \cdot X$ is given and it is extended to a partial order \succ on $F \cdot X$ in a natural way. The leading term of $f \in F \cdot X$ with respect to \succ is denoted by lt(f).

Let H be a set of monic left uniform elements of $F \cdot X$, which is considered to be a left edged set. Let $F \cdot H$ be the projective left F-module generated by H. For $h \in H$, [h] denotes the formal generator of $F \cdot H$ corresponding to $h \in H$.

We define a (strict) partial order >' on $B \cdot X$ as follows. For $x[h], x'[h'] \in B \cdot H$, such that $x \cdot \text{lt}(h) \neq 0$ and $x' \cdot (h') \neq 0$, define x[h] >' x'[h'] if and only if

- (i) $x \cdot \operatorname{lt}(h) > x' \cdot \operatorname{lt}(h')$, or
- (ii) $x \cdot \operatorname{lt}(h) = x' \cdot \operatorname{lt}(h')$ and x > x'.

Clearly, this partial order is well founded. Let L'(H) (resp. L''(H)) be the K-subspace of $F \cdot H$ spanned by

$$\{x[h] \in B \cdot X \mid x \cdot \operatorname{lt}(h) \neq 0\} \quad (\text{resp. } \{x[h] \in B \cdot X \mid x \cdot \operatorname{lt}(h) = 0\}).$$

^{*}This is a preliminary report and the details appear elsewhere.

Easily we see that L''(H) is an F-submodule of $F \cdot H$ and

$$F \cdot H = L'(H) \oplus L''(H)$$

holds.

The partial order >' is total on $\{x[h] \in B \cdot X \mid x \cdot \operatorname{lt}(h) \neq 0\}$, and is extended to a partial order \succ' on L'(H) in the same way as we did on $F \cdot X$. The partial order \succ' satisfies the following weak compatibility. For $f, g \in L'(H)$ and $a, b \in B$

- (1) $f \succ' g$, $axw \neq 0 \implies (af)' \succ' (ag)'$, and
- $(2) \ a > b, axw \neq 0 \ \Rightarrow \ (af)' \succ' (bf)',$

where (af)', (ag)' and (bf)' are the projections of af, ag and bf to L'(H) respectively.

A left compatible well-order > on $B \cdot H = \{x[h] \mid x \in B, h \in H\}$ is suitable, if

- (i) it extends the partial order order >' on L'(H), and
- (ii) $x[h] \succ \int (xt)$ for any $x \in B$ and $h = w\xi t \in H$,

where \succ is the partial order on $F \cdot H$ naturally extended from \gt . So, a well-order \gt on $F \cdot H$ is suitable, if for any $x, x', a, b \in B$ and $h = w\xi - t, h' = w'\xi' - t' \in H$ with $w, w' \in B, \xi, \xi' \in X$ and $t, t' \in F \cdot X$, the following conditions are satisfied:

- (iii) $x[h] > x'[h'], yx \neq 0, yx' \neq 0 \implies yx[h] > yx'[h'],$
- (iv) a > b, $ax \neq 0$, $bx \neq 0 \Rightarrow ax[h] > bx[h]$.
- (v) $xw \neq 0, x'w' \neq 0, xw > x'w'$ or $(xw = x'w', x > x') \Rightarrow x[h] > x'[h'],$ and (ii) above.

Remark that if $xw \neq 0$, the inequality $x[h] \succ \int (xt)$ in (ii) follows from (iii). If the base semigroup S is coherent, that is, $xy \neq 0$ for any $x, y \in B$ with $\tau(x) = \sigma(y)$, then $F \cdot H = L'(H)$ and >' is a total order on $B \cdot H$, and hence >' itself is suitable. We do not know the general condition for the existence of a suitable well-order. In the next section we assume that > is a suitable well-order on $B \cdot H$, and it is extended to a partial order \succ on $F \cdot H$. For a nonzero $f \in LF \cdot H$, t(f) denotes the maximal term of f with respect to \succ , and set t(f) = f - t(f).

15 Gröbner basis made from critical pairs and critical z-elements

Let $h = w\xi - t, h' = w'\xi - t' \in H$ and $x, x' \in B$ such that $xw = x'w' \neq 0$, the appearance (x, w) is at the immediate right of (x', w') in xw and x and x' are left coprime, then we have the critical pair of the first kind and the element

$$c_1=x[h]-x'[h']+\int (x\cdot t)-\int (x't')$$

in (11.1) ([5]). Since $(x, w\xi) > (x', w'\xi)$, x[h] > x'[h'] by (iii) above. Moreover, $x[h] \succ \int (xt)$ and $x'[h'] \succ \int (x't')$ by (ii) (or (iii)). Thus, $\operatorname{lt}(c_1) = z[h]$.

Let $u-v \in G$ and $x, y, y' \in B$ such that $xw = yuy' \neq 0$, $(x, w\xi)$ is rightmost in $xw\xi$. (y, u, y') is rightmost in xw, and x and y are coprime, then we have the cortical pair of the second kind and the element

$$c_2 = x[h] + \int (x \cdot t) - \int (yvy'\xi)$$

in (11.2). We have $x[h] \succ \int (xt)$ and $x[h] \succ \int (yv'y'\xi)$ because $xw\xi \succ xt$ and $xw\xi \succ yvy'\xi$. Thus, $\mathrm{lt}(c_2) = z[h]$.

Let $z \in B$ be such that xw = 0, then we have a z-element zt. This situation is *critical*, if there is no nonidempotential left factor y of z; z = yz' such that y'w = 0. In this case we call zt a critical z-element, and we have the element

$$c_3 = z[h] + \int (z \cdot t)$$

in (11.3) made from a critical z-element. We see $lt(c_3) = z[h]$ by (ii).

Let C be the set of the elements c_1 , c_2 made from critical pairs together with the elements c_3 made form critical z-elements.

Let $\delta: F \cdot H \to F \cdot X$ be the morphism of left F-modules defined by $\partial_1([h]) = h$ for $h \in H$, and let $\rho: F \cdot X \to A \cdot X$ be the canonical surjection. Let $\mathcal{K} = \text{Ker}(\delta \circ \rho)$.

Theorem 15.1. If H is a Gröbner basis on $F \cdot X$ and > is a suitable well-order on $B \cdot H$, then the set C is a Gröbner basis on $F \cdot H$ of the kernel K modulo G.

Under the existence of a suitable order we can strengthen Theorem 11.3 in [5] as follows. Remark that the set C here excludes z-elements that are not critical.

Corollary 15.2. If H is a Gröbner basis and \succ is a suitable order on $F \cdot H$, then C generates K modulo G.

16 Projective resolutions

Let M be a left A-module defined by a Gröbner basis H on the projective left A-module $A \cdot X$ generated by a left edged set X, that is, $M \cong F \cdot X/L^{\ell}(H,G)$, where $L^{\ell}(H,G)$ is the submodule of $F \cdot X$ generated by H modulo G. We assume that there is a suitable order > on $B \cdot H$.

Let C be the Gröbner basis on $F \cdot H$ made from critical pairs and critical z-elements in the previous section. Considering C to be a left edged set, we have the projective left A-module $A \cdot C$. Let $\partial' : A \cdot C \to A \cdot H$ be the morphism of left A-modules defined by

$$\partial'([c]) = c$$

for $c \in C$. Let $\eta: A \cdot X \to M$ be the canonical surjection. Since H generates $L^{\ell}(H,G)$ and C generates the kernel $\operatorname{Ker}(\rho \circ \delta)$ modulo G, we have

Theorem 16.1. The sequence

$$A \cdot C \xrightarrow{\partial'} A \cdot H \xrightarrow{\partial} A \cdot X \xrightarrow{\eta} M \to 0$$

is exact.

Suppose that a suitable well-order can be defined on the projective left F-module $F \cdot C$, then we have the Gröbner basis D on $F \cdot C$ made from critical pairs and critical z-elements with respect to C and G and a morphism $\partial'' : A \cdot D \to A \cdot C$ defined by $\partial''([d]) = d$. If we can repeat this construction (that is, if a suitable well-order exists at every step), then we can construct a projective resolution of M.

Corollary 16.2. Let M be a left A-module defined by a Gröbner basis X_1 on the projective left A-module $A \cdot X_0$ generated by a left edged set X_0 . If at every step above, a suitable well-order exists, we have a projective resolution of M:

$$\to A \cdot X_n \xrightarrow{\partial_n} A \cdot X_{n-1} \to \cdots \to A \cdot X_1 \xrightarrow{\partial_1} A \cdot X_0 \xrightarrow{\eta} M \to 0.$$

Suppose that F has an identity element 1 and A is supplemented with a morphism $\epsilon: A \to K$. Let X be a generating set of nonidenmotents of B, then $\{a - \epsilon(\rho(a)) \cdot 1 \mid a \in X\}$ forms a Gröbner basis for $Ker(\epsilon)$ modulo G. Starting with this Gröbner basis, we can construct a projective resolution of K and we can compute the (co) homology of the algebra A (or the semigroup S).

17 Bimodules and the Hochschild cohomology

The enveloping semigroup $S^e = (B \times B) \cup \{0\}$ of $S = B \cup \{0\}$ is a well-ordered reflexive semigroup, in which the product and the order are given as

$$(x,y)\cdot(x',y')=(xx',y'y),$$

and

$$(x,y) \succ (x',y') \Leftrightarrow x \succ x' \text{ or } (x=x' \text{ and } y \succ y')$$

for $x, y, x', y' \in B$, respectively. The enveloping algebra $A^e = A \otimes_K A^o$ of A = F/I is isomorphic to the quotient F^e/I^e , where $I^e = I \otimes F + F \otimes I$, and the set

$$G^e = \{ g \otimes 1, 1 \otimes g \mid g \in G \}.$$

is a Gröbner basis of the ideal I^e . An F-bimodule (resp. A-bimodule) is naturally a left F^e -module (resp. left A^e -module).

Let X be an edged set and

$$F \cdot X \cdot F = \bigoplus_{\xi \in X} F \sigma(\xi) \times \tau(\xi) F$$

be the projective F-bimodule generated by X and let H be a set of monic uniform elements of $F \cdot X \cdot F$. We have three kinds of critical pairs with respect

to H modulo G. Let $h = w\xi z - t, h' = w'\xi z' - t' \in H, u - v \in G$ and $x, y, x', y' \in B$.

First suppose that $xw = x'w' \neq 0$ and $zy = z'y' \neq 0$, x and x' are left coprime, y and y' are right coprime, and the appearance of $w\xi z$ in the context (x,y) is immediate right of the appearance of $w'\xi z'$ in the context (x',y'). Then we have a critical pair (xty,x't'y') of the first kind and the element

$$c_1 = x[h]y - x'[h']y' + \int (xty) + \int (x't'y').$$

of the projective F-bimodule $F \cdot H \cdot F$ generated by H. Next suppose that $xw = yuy' \neq 0$, u is rightmost in xw, $w\xi$ is rightmost in $xw\xi$ and x and y are left coprime. Then, we have a critical pair $(xt, yvy'\xi w')$ of the second kind, and an element

$$c_2 = x[h] - \int (yvy'\xi z) + \int (xt)$$

of $F \cdot H \cdot F$. Dually suppose that $zx = y'uy \neq 0$, u is leftmost in zx, ξz is leftmost in $xw\xi$, and x and y are right coprime. Then, we have a critical pair $(tx, w\xi y'vy)$ of the third kind, and an element

$$c_3 = [h]x - \int (w\xi y'vy) + \int (tx)$$

of $F \cdot H \cdot F$. If xw = 0 but $xt \neq 0$ and there is no nonidempotential left factor y of x; x = yx' such that x'w = 0, we have a critical z-element xt and an element

$$c_4 = x[h] + \int (xt).$$

If zx = 0 but $tx \neq 0$ and there is no nonidempotential right factor y of x; x = x'y such that zx' = 0, we have a critical z-element tx and an element

$$c_5 = [h]x + \int (tx).$$

Let C be the collection of all elements c_1, c_2, c_3, c_4 and c_5 above, and let $A \cdot C \cdot A$ be the projective A-bimodule generated by C.

Let $\delta: F\cdot H\cdot F\to F\cdot X\cdot F$ be the morphisms of left F-bimodules defined by $\delta([h])=h$ for $h\in H$, and let $\rho: F\cdot X\cdot F\to A\cdot X\cdot A$ be the canonical surjection. Let M be the A-bimodule defined by H modulo G, that is, $M=A\cdot X\cdot A/L(M,G)$, where L(M,G) is the subbimodule of $A\cdot X\cdot A$ generated by $\rho(M)$. Let $\partial: A\cdot H\cdot A\to A\cdot X\cdot A$ and $\partial': A\cdot C\cdot A\to A\cdot H\cdot A$ be the morphisms of A-bimodules defined by $\partial([h])=h$ and $\partial'([c])=c$.

Theorem 17.1. If H is a Gröbner basis on $F \cdot X \cdot F$ and > is a suitable well-order on $B \cdot H \cdot B$, then the set C is a Gröbner basis on $F \cdot H \cdot F$ of the kernel of $\rho \circ \delta$ modulo G. Moreover we have an exact sequence of A-bimodules:

$$A \cdot C \cdot A \xrightarrow{\partial'} A \cdot H \cdot A \xrightarrow{\partial} A \cdot X \cdot A \xrightarrow{\eta} M \to 0$$

Corollary 17.2. Let M be an A-bimodule defined by a Gröbner basis X_1 on the projective left F-bimodule $F \cdot X_0 \cdot F$ generated by a left edged set X_0 . If at every step above, a suitable well-order exists, we have a projective A-bimodule resolution of M:

$$\rightarrow A \cdot X_n \cdot A \xrightarrow{\partial_n} A \cdot X_{n-1} \cdot A \rightarrow \cdots \rightarrow A \cdot X_1 \cdot A \xrightarrow{\partial_1} A \cdot X_0 \cdot A \xrightarrow{\eta} M \rightarrow 0.$$

Let E be the set of all idempotents in B, and let X be a generating set of nonidempotents of B. Considering them as edged sets we have projective F-bimodules $F \cdot E \cdot F$, $F \cdot X \cdot F$ and A-bimodules $A \cdot E \cdot A$, $A \cdot X \cdot A$ generated by them. We have an augmentation map $\epsilon : F \cdot E \cdot F \to F$ and $\overline{\epsilon} : A \cdot E \cdot A \to A$ defined by $\epsilon([e]) = e$ and $\overline{\epsilon}([e]) = e$ for $e \in E$.

Let

$$H = \{ a[\tau(a)] - [\sigma(a)]a \mid a \in X \}.$$

Then, H is a Gröbner basis on $F \cdot E \cdot F$ for $Ker(\epsilon)$. In this way we have an exact sequence

$$A \cdot X \cdot A \xrightarrow{\partial} A \cdot E \cdot A \xrightarrow{\epsilon} M \to 0$$

where the morphism ∂ is defied by $\partial([a]) = a[\tau(a)] - [\sigma(a)]a$ $(a \in X)$. Thus, if under the existence of suitable order in every step, we can construct a projective A-bimodule resolution of A. This gives a way to compute the Hochschild cohomology of the algebra A.

18 Examples

Since the free monoid Σ^* is well-ordered and coherent, its submonids are well-ordered and coherent. So, the existence of suitable order is guaranteed in every step of construction. In this section we pick up some easy submonoids of Σ^* and compute the (co)homology (other examples can be found in [1], [2]).

Example 18.1. Let B be the submonoid of $\{a\}^*$ generated by $X = \{a^2, a^3\}$. B is isomorphic to the additive monoid $\mathbb{N} \setminus \{1\}$ of natural numbers excluding 1. Let $F = K \cdot B$ be the algebra based on $B \cup \{0\}$. We have an augmentation map $\epsilon : F \cdot [] \cdot F \to F$ given by $\epsilon([]) = 1$, and a Gröbner basis

$$\{\alpha_1 = a^2[] - []a^2, \beta_1 = a^3[] - []a^3\}$$

of $\operatorname{Ker}(\epsilon)$. Let $X = \{\alpha, \beta\}$ and define a morphism $\partial_1 : F \cdot X \cdot F \to F \cdot [] \cdot F$ by $\partial_1([\alpha]) = \alpha_1$, and $\partial_1([\beta]) = \beta_1$.

From the equation $a^3 \cdot a^2 = a^2 \cdot a^3$ we have a critical pair of the first kind $(a^3[]a^2, a^2[]a^3)$ and an element

$$\alpha_2 = a^3[\alpha] - [\alpha]a^3 - a^2[\beta] + [\beta]a^2$$

of $F \cdot X \cdot F$. From the equation $(a^2)^2 \cdot a^2 = a^3 \cdot a^3$ we have another critical pair of first kind $(a^4[]a^2, a^3[]a^3)$ and an element

$$\beta_2 = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] - [\beta]a^3$$

of $F \cdot X \cdot F$. There is no critical pairs of the other kinds because the Gröbner basis G on F is empty. There is no z-element either because S is coherent. Hence, these two elements form a Gröbner basis of $\operatorname{Ker}(\partial_1)$. We have a morphism $\partial_2 : F \cdot X \cdot F \to F \cdot X \cdot F$ given by $\partial_2([\alpha]) = \alpha_2$ and $\partial_2([\beta]) = \beta_2$. Note that $\operatorname{lt}(\alpha_2) = a^3[\alpha]$ and $\operatorname{lt}(\beta_2) = a^4[\alpha]$.

From the equation $a^3 \cdot a^3 = a^2 \cdot a^4$ we have an element

$$\alpha_3 = a^3[\alpha] + [\alpha]a^3 - a^2[\beta] + [\beta]a^2,$$

and from the equation $(a^2)^2 \cdot a^3 = a^3 \cdot a^4$ we have an element

$$\beta_3 = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] + [\beta]a^3.$$

They form a Gröbner basis of $Ker(\partial_2)$, continuing this calculation we can construction a free bimodule resolution of F:

$$\to A \cdot X \cdot A \xrightarrow{\partial_n} A \cdot X \cdot A \to \cdots \to A \cdot X \cdot A \xrightarrow{\partial_1} A \cdot [] \cdot A \xrightarrow{\eta} F,$$

where ∂_n is given by

$$\partial_1([\alpha]) = a^2[] - []a^2, \ \partial_1([\beta]) = a^3[] - []a^3,$$
$$\partial_n([\alpha]) = a^3[\alpha] + (-1)^{n-1}[\alpha]a^3 - a^2[\beta] + [\beta]a^2$$

and

$$\partial_n([\beta]) = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] + (-1)^{n-1}[\beta]a^3$$

for $n \geq 2$.

From this resolution we can compute the Hochschild cohomology of F as follows. Here, K is a field of characteristic p.

$$H^{0}(F) = F,$$

$$H^{1}(F) = \begin{cases} F & \text{if } p = 2 \text{ or } 3\\ \oplus_{i \geq 2} K \cdot a^{i} & \text{otherwise.} \end{cases}$$

Let $n \geq 2$. If p = 2,

$$H^n(F) = K \oplus K \cdot a^2 \oplus K \cdot a^3 \oplus K \cdot a^5.$$

if p = 3,

$$H^n(F) = K \oplus K \cdot a^2 \oplus K \cdot a^4,$$

and if $p \neq 2, 3$,

$$H^n(F) = \left\{ \begin{array}{ll} K \oplus K \cdot a^2 & \text{if } n \text{ is even} \\ K \cdot (2a^2, 3a^3) \oplus K \cdot (2a^3, 3a^4) & \text{if } n \text{ is odd.} \end{array} \right.$$

Example 18.2. Let B be the submonoid of $\{a, b\}^*$ generated by $X = \{ab, ba, aba\}$, and let $S = B \cup \{0\}$ and $F = K \cdot B$ is the algebra based on S. We have an augmentation $\epsilon : F \cdot [] \cdot F \to F$ given by $\epsilon([]) = 1$. We have a Gröbner basis

$$\{ \, ab[\,] - [\,]ab, \, ba[\,] - [\,]ba, \, aba[\,] - [\,]aba \, \},$$

of $Ker(\epsilon)$ and a differential map

$$\partial_1: F \cdot X \cdot F \to A \cdot [] \cdot A$$

with

$$\partial_1([ab]) = ab[] - []ab, \ \partial_1([ba]) = ba[] - []ba,$$

 $\partial_1([aba]) = aba[] - []aba.$

X is not a code because we have a word equation (aba)ba = ab(aba). From this equation we have a critical pair (aba[]ba, ab[]aba), and we obtain a Gröbner basis of $Ker(\partial_1)$:

$$\{aba[ba] + [aba]ba - ab[aba] - [ab]aba\}.$$

In this way we get a free bi-module resolution of F:

$$0 \to F \cdot \{ababa\} \cdot F \xrightarrow{\partial_2} F \cdot X \cdot F \xrightarrow{\partial_1} F \cdot [\] \cdot F \xrightarrow{\epsilon} F,$$

where

$$\partial_2([ababa]) = aba[ba] + [aba]ba - ab[aba] - [ab]aba.$$

F is supplemented with $\epsilon: F \to K$ defined by $\epsilon(ab) = \epsilon(ba) = \epsilon(aba) = 0$. Tensoring with the F-module K on the right, we have a minimal free left resolution of K:

$$egin{aligned} 0 &
ightarrow F \cdot \{ababa\} \stackrel{ar{\partial_2}}{
ightarrow} F \cdot X \stackrel{ar{\partial_1}}{
ightarrow} F \stackrel{ar{\epsilon}}{
ightarrow} K, \ ar{\partial_1}([ab]) = ab, \ ar{\partial_1}([ba]) = ba, \ ar{\partial_1}([aba]) = aba, \ ar{\partial_2}([ababa]) = aba[ba] - ab[aba]. \end{aligned}$$

The Betti number $b_2 = \dim_K(\operatorname{Tor}_2^F(K, K)) = 1$ seems reflect the ambiguity of X; how distant from codes.

References

- [1] Y. Kobayashi, Gröbner bases of associative algebras and the Hochschild cohomology, Trans. Amer. Math. Soc. 375 (2005), 1095-1124.
- [2] Y. Kobayashi, Gröbner bases on path algebras and the Hochschild cohomology algebras, Sci. Math. Japonicae 64 (2006), 411-437.
- [3] Y. Kobayashi, Gröbner bases on projective bimodules and the Hochschild cohomology I. Rewriting on vector spaces, Kokyuroku 1503, RIMS (Kyoto University), 2006, 30-40.
- [4] Y. Kobayashi, Gröbner bases on projective bimodules and the Hochschild cohomology II. Critical pairs, Kokyuroku **1562**, RIMS (Kyoto University), 2007, 40-45.
- [5] Y. Kobayashi, Gröbner bases on projective bimodules and the Hochschild cohomology III. Syzygies, Kokyuroku 1604, RIMS(Kyoto University), 2008, 142-150.