<table>
<thead>
<tr>
<th>Title</th>
<th>Grobner bases on projective bimodules and the Hochschild cohomology (Languages, Computations, and Algorithms in Algebraic Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KOBAYASHI, YUJI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1655: 132-139</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140849</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Gröbner bases on projective bimodules
and the Hochschild cohomology *

Part IV. (Co)homology

Yuji Kobayashi

Department of Information Science, Toho University
Funabashi 274-8510, Japan

This is a continuation of the previous papers [3], [4] and [5]. We develop the
theory of Gröbner bases on projective modules over an algebra based on a well-ordered
semigroup. We construct resolutions of modules admitting Gröbner bases. This gives
an effective way to compute the (co)homology of such modules.

14 Suitable orders

Let $S = B \cup \{0\}$ be a well-ordered reflexive semigroup with 0 and K be a
commutative ring with 1. Let $F = K \cdot B$ be the K-algebra based on B and let
I be a (two-sided) ideal of F. Let $A = F/I$ be the quotient algebra of F by I
and $\rho : F \rightarrow A$ be the natural surjection. We fix a (reduced) Gröbner basis G
of I.

Let X be an left edged set and $F \cdot X$ be the projective left F-module generated
by X. Assume that a left compatible well-order $>$ on $B \cdot X$ is given and it is
extended to a partial order \triangleright on $F \cdot X$ in a natural way. The leading term of
$f \in F \cdot X$ with respect to \triangleright is denoted by $\mathrm{lt}(f)$.

Let H be a set of monic left uniform elements of $F \cdot X$, which is considered
to be a left edged set. Let $F \cdot H$ be the projective left F-module generated by H.
For $h \in H$, $[h]$ denotes the formal generator of $F \cdot H$ corresponding to $h \in H$.

We define a (strict) partial order \triangleright' on $B \cdot X$ as follows. For $x[h], x'[h'] \in
B \cdot H$, such that $x \cdot \mathrm{lt}(h) \neq 0$ and $x' \cdot (h') \neq 0$, define $x[h] \triangleright' x'[h']$ if and only if

(i) $x \cdot \mathrm{lt}(h) > x' \cdot \mathrm{lt}(h')$, or
(ii) $x \cdot \mathrm{lt}(h) = x' \cdot \mathrm{lt}(h')$ and $x > x'$.

Clearly, this partial order is well founded. Let $L'(H)$ (resp. $L''(H)$) be the
K-subspace of $F \cdot H$ spanned by

$\{x[h] \in B \cdot X | x \cdot \mathrm{lt}(h) \neq 0\}$ (resp. $\{x[h] \in B \cdot X | x \cdot \mathrm{lt}(h) = 0\}$).

*This is a preliminary report and the details appear elsewhere.
Easily we see that $L''(H)$ is an F-submodule of $F \cdot H$ and

$$F \cdot H = L'(H) \oplus L''(H)$$

holds.

The partial order $>'$ is total on $\{x[h] \in B \cdot X \mid x \cdot \text{lt}(h) \neq 0\}$, and is extended to a partial order $>\prime$ on $L'(H)$ in the same way as we did on $F \cdot X$. The partial order $>\prime$ satisfies the following weak compatibility. For $f, g \in L'(H)$ and $a, b \in B$

(1) $f > g, axw \neq 0 \Rightarrow (af)'> (ag)'$, and
(2) $a > b, axw \neq 0 \Rightarrow (af)' > (bf)'$,

where $(af)', (ag)'$ and $(bf)'$ are the projections of af, ag and bf to $L'(H)$ respectively.

A left compatible well-order $> \text{ on } B \cdot H = \{x[h] \mid x \in B, h \in H\}$ is suitable, if

(i) it extends the partial order $> \text{ on } L'(H)$, and
(ii) $x[h] > \int(xt)$ for any $x \in B$ and $h = w\xi - t \in H$,

where $>$ is the partial order on $F \cdot H$ naturally extended from $>$. So, a well-order $> \text{ on } F \cdot H$ is suitable, if for any $x, x', a, b \in B$ and $h = w\xi - t, h' = w'\xi' - t' \in H$

with $w, w' \in B, \xi, \xi' \in X$ and $t, t' \in F \cdot X$, the following conditions are satisfied:

(iii) $x[h] > x'[h'], yx \neq 0, yx' \neq 0 \Rightarrow yx[h] > yx'[h'],$
(iv) $a > b, ax \neq 0, bx \neq 0 \Rightarrow ax[h] > bx[h].$
(v) $xw \neq 0, x^w' \neq 0, xw > x^w' \text{ or } (xw = x^w', x > x') \Rightarrow x[h] > x'[h'],$

and (ii) above.

Remark that if $xw \neq 0$, the inequality $x[h] > \int(xt)$ in (ii) follows from (iii).

If the base semigroup S is coherent, that is, $xy \neq 0$ for any $x, y \in B$ with $\tau(x) = \sigma(y)$, then $F \cdot H = L'(H)$ and $>'$ is a total order on $B \cdot H$, and hence $>'$ itself is suitable. We do not know the general condition for the existence of a suitable well-order. In the next section we assume that $>'$ is a suitable well-order on $B \cdot H$, and it is extended to a partial order $> \text{ on } F \cdot H$. For a nonzero $f \in LF \cdot H$, $\text{lt}(f)$ denotes the maximal term of f with respect to $>$, and set $rt(f) = f - \text{lt}(f)$.

15 Gröbner basis made from critical pairs and critical z-elements

Lct $h = w\xi - t, h' = w'\xi - t' \in H$ and $x, x' \in B$ such that $xw = x^w' \neq 0$, the appearance (x, w) is at the immediate right of (x', w') in xw and x and x' are left coprime, then we have the critical pair of the first kind and the element

$$c_1 = x[h] - x'[h'] + \int(x \cdot t) - \int(x't')$$

in (11.1) ([5]). Since $(x, w\xi) > (x', w'\xi), x[h] > x'[h']$ by (iii) above. Moreover,

$x[h] > \int(xt)$ and $x'[h'] > \int(x't')$ by (ii) (or (iii)). Thus, $\text{lt}(c_1) = z[h]$.
Let \(u - v \in G \) and \(x, y, y' \in B \) such that \(xw = yuy' \neq 0 \), \((x, w\xi) \) is rightmost in \(xw\xi \). \((y, u, y')\) is rightmost in \(xw \). and \(x \) and \(y \) are coprime, then we have the cortical pair of the second kind and the element

\[
c_2 = x[h] + \int (x \cdot t) - \int (yuy'\xi)
\]

in (11.2). We have \(x[h] \succ \int(xt) \) and \(x[h] \succ \int(yuy'\xi) \) because \(xw\xi \succ xt \) and \(xw\xi \succ yuy'\xi \). Thus, \(\text{lt}(c_2) = z[h] \).

Let \(z \in B \) be such that \(xw = 0 \), then we have a \(z \)-element \(zt \). This situation is critical, if there is no nonidempotent left factor \(y \) of \(z \); \(z = yz' \) such that \(y'w = 0 \). In this case we call \(zt \) a critical \(z \)-element, and we have the element

\[
c_3 = z[h] + \int(z \cdot t)
\]

in (11.3) made from a critical \(z \)-element. We see \(\text{lt}(c_3) = z[h] \) by (ii).

Let \(C \) be the set of the elements \(c_1, c_2 \) made from critical pairs together with the elements \(c_3 \) made form critical \(z \)-elements.

Let \(\delta : F \cdot H \to F \cdot X \) be the morphism of left \(F \)-modules defined by \(\partial_1([h]) = h \) for \(h \in H \), and let \(\rho : F \cdot X \to A \cdot X \) be the canonical surjection. Let \(\mathcal{K} = \text{Ker}(\delta \circ \rho) \).

Theorem 15.1. If \(H \) is a Gröbner basis on \(F \cdot X \) and \(\succ \) is a suitable well-order on \(B \cdot H \), then the set \(C \) is a Gröbner basis on \(F \cdot H \) of the kernel \(\mathcal{K} \) modulo \(G \).

Under the existence of a suitable order we can strengthen Theorem 11.3 in [5] as follows. Remark that the set \(C \) here excludes \(z \)-elements that are not critical.

Corollary 15.2. If \(H \) is a Gröbner basis and \(\succ \) is a suitable order on \(F \cdot H \), then \(C \) generates \(\mathcal{K} \) modulo \(G \).

16 Projective resolutions

Let \(M \) be a left \(A \)-module defined by a Gröbner basis \(H \) on the projective left \(A \)-module \(A \cdot X \) generated by a left edged set \(X \), that is, \(M \cong F \cdot X / L^\ell(H, G) \), where \(L^\ell(H, G) \) is the submodule of \(F \cdot X \) generated by \(H \) modulo \(G \). We assume that there is a suitable order \(\succ \) on \(B \cdot H \).

Let \(C \) be the Gröbner basis on \(F \cdot H \) made from critical pairs and critical \(z \)-elements in the previous section. Considering \(C \) to be a left edged set, we have the projective left \(A \)-module \(A \cdot C \). Let \(\partial' : A \cdot C \to A \cdot H \) be the morphism of left \(A \)-modules defined by

\[
\partial'([c]) = c
\]

for \(c \in C \). Let \(\eta : A \cdot X \to M \) be the canonical surjection. Since \(H \) generates \(L^\ell(H, G) \) and \(C \) generates the kernel \(\text{Ker}(\rho \circ \delta) \) modulo \(G \), we have
Theorem 16.1. The sequence

\[A \cdot C \xrightarrow{\partial'} A \cdot H \xrightarrow{\partial} A \cdot X \xrightarrow{\eta} M \to 0 \]

is exact.

Suppose that a suitable well-order can be defined on the projective left \(F \)-module \(F \cdot C \), then we have the Gröbner basis \(D \) on \(F \cdot C \) made from critical pairs and critical \(z \)-elements with respect to \(C \) and \(G \) and a morphism \(\partial'' : A \cdot D \to A \cdot C \) defined by \(\partial''([d]) = d \). If we can repeat this construction (that is, if a suitable well-order exists at every step), then we can construct a projective resolution of \(M \).

Corollary 16.2. Let \(M \) be a left \(A \)-module defined by a Gröbner basis \(X_1 \) on the projective left \(A \)-module \(A \cdot X_0 \) generated by a left edged set \(X_0 \). If at every step above, a suitable well-order exists, we have a projective resolution of \(M \):

\[\cdots \to A \cdot X_n \xrightarrow{\delta_n} A \cdot X_{n-1} \to \cdots \to A \cdot X_1 \xrightarrow{\delta_1} A \cdot X_0 \xrightarrow{\eta} M \to 0. \]

Suppose that \(F \) has an identity element 1 and \(A \) is supplemented with a morphism \(\epsilon : A \to K \). Let \(X \) be a generating set of nonidemtents of \(B \), then \(\{ a - \epsilon(\rho(a)) \cdot 1 \mid a \in X \} \) forms a Gröbner basis for \(\text{Ker}(\epsilon) \) modulo \(G \). Starting with this Gröbner basis, we can construct a projective resolution of \(K \) and we can compute the (co)homology of the algebra \(A \) (or the semigroup \(S \)).

17 Bimodules and the Hochschild cohomology

The enveloping semigroup \(S^e = (B \times B) \cup \{0\} \) of \(S = B \cup \{0\} \) is a well-ordered reflexive semigroup, in which the product and the order are given as

\[(x, y) \cdot (x', y') = (xx', yy'),\]

and

\[(x, y) \succ (x', y') \iff x \succ x' \text{ or } (x = x' \text{ and } y \succ y')\]

for \(x, y, x', y' \in B \), respectively. The enveloping algebra \(A^e = A \otimes_K A^o \) of \(A = F/I \) is isomorphic to the quotient \(F^e/I^e \), where \(I^e = I \otimes F + F \otimes I \), and the set

\[G^e = \{ g \otimes 1, 1 \otimes g \mid g \in G \}. \]

is a Gröbner basis of the ideal \(I^e \). An \(F \)-bimodule (resp. \(A \)-bimodule) is naturally a left \(F^e \)-module (resp. left \(A^e \)-module).

Let \(X \) be an edged set and

\[F \cdot X \cdot F = \bigoplus_{\xi \in X} F\sigma(\xi) \times \tau(\xi)F \]

be the projective \(F \)-bimodule generated by \(X \) and let \(H \) be a set of monic uniform elements of \(F \cdot X \cdot F \). We have three kinds of critical pairs with respect
to H modulo G. Let $h = w\xi z - t, h' = w'\xi z' - t' \in H$, $u - v \in G$ and $x, y, x', y' \in B$.

First suppose that $xw = x'w' \neq 0$ and $zy = z'y' \neq 0$, x and x' are left coprime, y and y' are right coprime, and the appearance of $w\xi z$ in the context (x, y) is immediate right of the appearance of $w'\xi z'$ in the context (x', y'). Then we have a critical pair $(xty, x't'y')$ of the first kind and the element

$$c_1 = x[h]y - x'[h']y' + \int(xty) + \int(x't'y').$$

of the projective F-bimodule $F \cdot H \cdot F$ generated by H. Next suppose that $xw = yuy' \neq 0$, u is rightmost in xw, $w\xi$ is rightmost in $xw\xi$ and x and y are left coprime. Then, we have a critical pair $(xty, yvy'\xi w')$ of the second kind, and an element

$$c_2 = x[h] - \int(yv\xi y\xi z) + \int(xt)$$

of $F \cdot H \cdot F$. Dually suppose that $zx = y'u' \neq 0$, u is leftmost in zx, ξz is leftmost in $xw\xi$, and x and y are right coprime. Then, we have a critical pair $(txu, w\xi y'vy)$ of the third kind, and an element

$$c_3 = [h][x] - \int(w\xi y'vy) + \int(tx)$$

of $F \cdot H \cdot F$. If $xw = 0$ but $xt \neq 0$ and there is no nonidempotent left factor y of x; $x = yuy'$ such that $x'w = 0$, we have a critical z-element xt and an element

$$c_4 = x[h] + \int(xt).$$

If $zx = 0$ but $tx \neq 0$ and there is no nonidempotent right factor y of x; $x = x'y'$ such that $zx' = 0$, we have a critical z-element tx and an element

$$c_5 = [h][x] + \int(tx).$$

Let C be the collection of all elements c_1, c_2, c_3, c_4 and c_5 above, and let $A \cdot C \cdot A$ be the projective A-module generated by C.

Let $\delta : F \cdot H \cdot F \to F \cdot X \cdot F$ be the morphisms of left F-bimodules defined by $\delta([h]) = h$ for $h \in H$, and let $\rho : F \cdot X \cdot F \to A \cdot X \cdot A$ be the canonical surjection. Let M be the A-bimodule defined by H modulo G, that is, $M = A \cdot X \cdot A/L(M, G)$, where $L(M, G)$ is the submodule of $A \cdot X \cdot A$ generated by $\rho(M)$. Let $\partial : A \cdot H \cdot A \to A \cdot X \cdot A$ and $\partial' : A \cdot C \cdot A \to A \cdot H \cdot A$ be the morphisms of A-bimodules defined by $\partial([h]) = h$ and $\partial'([c]) = c$.

Theorem 17.1. If H is a Gröbner basis on $F \cdot X \cdot F$ and $>$ is a suitable well-order on $B \cdot H \cdot B$, then the set C is a Gröbner basis on $F \cdot H \cdot F$ of the kernel of $\rho \circ \delta$ modulo G. Moreover we have an exact sequence of A-bimodules:

$$A \cdot C \cdot A \xrightarrow{\partial'} A \cdot H \cdot A \xrightarrow{\partial} A \cdot X \cdot A \xrightarrow{\eta} M \to 0$$

Corollary 17.2. Let M be an A-bimodule defined by a Gröbner basis X_1 on the projective left F-bimodule $F \cdot X_0 \cdot F$ generated by a left edcaged set X_0. If at every step above, a suitable well-order exists, we have a projective A-bimodule resolution of M:

$$\cdots \to A \cdot X_n \cdot A \xrightarrow{\partial_n} A \cdot X_{n-1} \cdot A \to \cdots \to A \cdot X_1 \cdot A \xrightarrow{\partial_1} A \cdot X_0 \cdot A \xrightarrow{\eta} M \to 0.$$
Let E be the set of all idempotents in B, and let X be a generating set of nonidempotents of B. Considering them as edged sets we have projective F-bimodules $F \cdot E \cdot F, F \cdot X \cdot F$ and A-bimodules $A \cdot E \cdot A, A \cdot X \cdot A$ generated by them. We have an augmentation map $\epsilon : F \cdot E \cdot F \to F$ and $\bar{\epsilon} : A \cdot E \cdot A \to A$ defined by $\epsilon([e]) = e$ and $\bar{\epsilon}([e]) = e$ for $e \in E$.

Let $$H = \{ a[\tau(a)] - [\sigma(a)]a \mid a \in X \}.$$ Then, H is a Gröbner basis on $F \cdot E \cdot F$ for Kerϵ. In this way we have an exact sequence

$$A \cdot X \cdot A \to A \cdot E \cdot A \to M \to 0,$$

where the morphism ∂ is defined by $\partial([a]) = a[\tau(a)] - [\sigma(a)]a$ ($a \in X$). Thus, if under the existence of suitable order in every step, we can construct a projective A-bimodule resolution of A. This gives a way to compute the Hochschild cohomology of the algebra A.

18 Examples

Since the free monoid Σ^* is well-ordered and coherent, its submonoids are well-ordered and coherent. So, the existence of suitable order is guaranteed in every step of construction. In this section we pick up some easy submonoids of Σ^* and compute the (co)homology (other examples can be found in [1], [2]).

Example 18.1. Let B be the submonoid of $\{a\}^*$ generated by $X = \{a^2, a^3\}$. B is isomorphic to the additive monoid $\mathbb{N} \setminus \{1\}$ of natural numbers excluding 1. Let $F = K \cdot B$ be the algebra based on $B \cup \{0\}$. We have an augmentation map $\epsilon : F \cdot [] \cdot F \to F$ given by $\epsilon([]) = 1$, and a Gröbner basis

$$\{ \alpha_1 = a^2[,] - [,]a^2, \beta_1 = a^3[,] - [,]a^3 \}$$

of Kerϵ. Let $X = \{\alpha, \beta\}$ and define a morphism $\partial_1 : F \cdot X \cdot F \to F \cdot [] \cdot F$ by $\partial_1([\alpha]) = \alpha_1$, and $\partial_1([\beta]) = \beta_1$.

From the equation $a^3 \cdot a^2 = a^2 \cdot a^3$ we have a critical pair of the first kind $(a^3[,]a^2, a^2[,]a^3)$ and an element

$$\alpha_2 = a^3[\alpha] - [\alpha]a^3 - a^2[\beta] + [\beta]a^2$$

of $F \cdot X \cdot F$. From the equation $(a^2)^2 \cdot a^2 = a^3 \cdot a^3$ we have another critical pair of first kind $(a^4[,]a^2, a^3[,]a^3)$ and an element

$$\beta_2 = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] - [\beta]a^3$$

of $F \cdot X \cdot F$. There is no critical pairs of the other kinds because the Gröbner basis G on F is empty. There is no ε-element either because S is coherent. Hence, these two elements form a Gröbner basis of Ker∂_1. We have a morphism $\partial_2 : F \cdot X \cdot F \to F \cdot X \cdot F$ given by $\partial_2([\alpha]) = \alpha_2$ and $\partial_2([\beta]) = \beta_2$. Note that \text{lt}(\alpha_2) = a^3[\alpha]$ and \text{lt}(\beta_2) = a^4[\alpha].
From the equation \(a^3 \cdot a^3 = a^2 \cdot a^4\) we have an element
\[
\alpha_3 = a^3[\alpha] + [\alpha]a^3 - a^2[\beta] + [\beta]a^2,
\]
and from the equation \((a^2)^2 \cdot a^3 = a^3 \cdot a^4\) we have an element
\[
\beta_3 = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] + [\beta]a^3.
\]
They form a Gröbner basis of \(\text{Ker}(\partial_2)\). Continuing this calculation we can construct a free bimodule resolution of \(F\):
\[
\rightarrow A \cdot X \cdot A \xrightarrow{\partial_3} A \cdot X \cdot A \rightarrow \cdots \rightarrow A \cdot X \cdot A \xrightarrow{\partial_1} A \cdot [\cdot] \cdot A \xrightarrow{\eta} F,
\]
where \(\partial_n\) is given by
\[
\partial_1([\alpha]) = a^2[\cdot] - [\cdot]a^2, \quad \partial_1([\beta]) = a^3[\cdot] - [\cdot]a^3, \\
\partial_n([\alpha]) = a^3[\alpha] + (-1)^{n-1}[\alpha]a^3 - a^2[\beta] + [\beta]a^2
\]
and
\[
\partial_n([\beta]) = a^4[\alpha] + a^2[\alpha]a^2 + [\alpha]a^4 - a^3[\beta] + (-1)^{n-1}[\beta]a^3
\]
for \(n \geq 2\).

From this resolution we can compute the Hochschild cohomology of \(F\) as follows. Here, \(K\) is a field of characteristic \(p\).

\[
H^0(F) = F,
\]
\[
H^1(F) = \begin{cases} F & \text{ if } p = 2 \text{ or } 3 \\ \oplus_{i \geq 2} K \cdot a^i & \text{ otherwise.} \end{cases}
\]

Let \(n \geq 2\). If \(p = 2\),
\[
H^n(F) = K \oplus K \cdot a^2 \oplus K \cdot a^3 \oplus K \cdot a^5.
\]
If \(p = 3\),
\[
H^n(F) = K \oplus K \cdot a^2 \oplus K \cdot a^4,
\]
and if \(p \neq 2, 3\),
\[
H^n(F) = \begin{cases} K \oplus K \cdot a^2 & \text{if } n \text{ is even} \\ K \cdot (2a^2, 3a^3) \oplus K \cdot (2a^3, 3a^4) & \text{if } n \text{ is odd.} \end{cases}
\]

Example 18.2. Let \(B\) be the submonoid of \(\{a, b\}^*\) generated by \(X = \{ab, ba, aba\}\), and let \(S = B \cup \{0\}\) and \(F = K \cdot B\) is the algebra based on \(S\). We have an augmentation \(\epsilon : F \cdot [\cdot] \rightarrow F\) given by \(\epsilon([\cdot]) = 1\). We have a Gröbner basis
\[
\]
of \(\text{Ker}(\epsilon)\) and a differential map
\[
\partial_1 : F \cdot X \cdot F \rightarrow A \cdot [\cdot] \cdot A
\]
with
\[\partial_1([ab]) = ab[-]ab, \quad \partial_1([ba]) = ba[-]ba, \]
\[\partial_1([aba]) = aba[-]aba. \]

X is not a code because we have a word equation \((aba)ba = ab(aba)\). From this equation we have a critical pair \((aba[-]ba, ab[-]aba)\), and we obtain a Gröbner basis of \(\text{Ker}(\partial_1)\):
\[
\{ aba[ba] + [aba]ba - ab[aba] - [ab]aba \}.
\]

In this way we get a free bi-module resolution of \(F\):
\[
0 \rightarrow F \cdot \{ababa\} \cdot F \xrightarrow{\partial_2} F \cdot X \cdot F \xrightarrow{\partial_1} F \cdot [-] \cdot F \xrightarrow{\epsilon} F,
\]
where
\[
\partial_2([ababa]) = aba[ba] + [aba]ba - ab[aba] - [ab]aba.
\]

\(F\) is supplemented with \(\epsilon : F \rightarrow K\) defined by \(\epsilon(ab) = \epsilon(ba) = \epsilon(aba) = 0\). Tensoring with the \(F\)-module \(K\) on the right, we have a minimal free left resolution of \(K\):
\[
0 \rightarrow F \cdot \{ababa\} \xrightarrow{\delta_2} F \cdot X \xrightarrow{\delta_1} F \xrightarrow{\epsilon} K,
\]
\[
\delta_1([ab]) = ab, \quad \delta_1([ba]) = ba, \quad \delta_1([aba]) = aba,
\]
\[
\delta_2([ababa]) = aba[ba] - ab[aba].
\]

The Betti number \(b_2 = \dim_K(\text{Tor}_2^F(K, K)) = 1\) seems reflect the ambiguity of \(X\); how distant from codes.

References

