<table>
<thead>
<tr>
<th>Title</th>
<th>NEW RESULTS ON DADE'S CONJECTURE (Finite Groups, Vertex Operator Algebras and Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>HUANG, SHIH-CHANG</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1656: 118-126</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140867</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
NEW RESULTS ON DADE’S CONJECTURE

SHIH-CHANG HUANG

1. INTRODUCTION

Let G be a finite group and p a prime dividing the order of G. There are several conjectures connecting the representation theory of G with the representation theory of certain p-local subgroups (i.e. the p-subgroups and their normalizers) of G. For example, it seems to be true, that if P is a Sylow p-subgroup of G, then the number of complex irreducible characters of G of degree coprime with p equals the same number for the normalizer $N_G(P)$.

This conjecture, called McKay conjecture [58], and its block-theoretic version due to Alperin [1] were generalized by various authors. In [52], Isaacs and Navarro proposed a refinement of the McKay conjecture that deals with congruences of character degrees mod p, and in [53], Isaacs, Malle and Navarro suggested a version of the McKay conjecture that includes characters of normal subgroups. In a series of papers [32], [33], [34], Dade developed several conjectures expressing the number of complex irreducible characters with a fixed defect in a given p-block of G in terms of an alternating sum of related values for p-blocks of certain p-local subgroups of G. The ordinary conjecture is the simplest one among others, and the most complicated one is called the inductive form, which implies all the other. If G has a trivial Schur multiplier and a cyclic outer automorphism group, it follows that Dade’s inductive conjecture is also true for G in this case. Dade claimed that, if the inductive form is true for all finite simple groups, then it is true for all finite groups. In [33], Dade proved that his (projective) conjecture implies the McKay conjecture. Motivated by the Isaacs-Navarro conjecture [52], Uno [63] suggested a further refinement of Dade’s conjecture including the p'-parts of character degrees.

This note is organised as follows: In Section 2, we fix notation and state Dade’s and Uno’s invariant conjectures in detail. In Section 3, we sketch the proof of Dade’s and Uno’s invariant conjecture for some exceptional groups in the defining characteristic. In Section 4, we sketch the proof of Dade’s and Uno’s invariant conjecture for some classical groups in the defining characteristic. In Section 5, we present some new results on Dade’s conjecture.

2. CONJECTURES OF DADE AND UNO

Let R be a p-subgroup of a finite group G. Then R is radical if $O_p(N(R)) = R$, where $O_p(N(R))$ is the largest normal p-subgroup of the normalizer $N(R) := N_G(R)$. Denote by Irr(G) the set of all irreducible ordinary characters of G, and by Blk(G) the set of p-blocks. If $H \leq G$, $\tilde{B} \in \text{Blk}(G)$, and d is an integer, we denote by Irr(H, \tilde{B}, d) the set of characters $\chi \in \text{Irr}(H)$ satisfying $d(\chi) = d$ and $b(\chi)^G = \tilde{B}$ (in the sense of Brauer), where $d(\chi) = \log_p(|H|_p) - \log_p(\chi(1)_p)$ is the p-defect of χ and $b(\chi)$ is the block of H containing χ.

$\text{CONJECTURE}\:$
Given a p-subgroup chain

$$C : P_0 < P_1 < \cdots < P_n$$

of G, define the length $|C| := n$, $C_k : P_0 < P_1 < \cdots < P_k$ and

$$N(C) = N_G(C) := N_G(P_0) \cap N_G(P_1) \cap \cdots \cap N_G(P_n).$$

The chain C is said to be radical if it satisfies the following two conditions:

(a) $P_0 = O_p(G)$ and
(b) $P_k = O_p(N(C_k))$ for $1 \leq k \leq n$.

Denote by $\mathcal{R} = \mathcal{R}(G)$ the set of all radical p-chains of G.

Suppose $1 \to G \to E \to \overline{E} \to 1$ is an exact sequence, so that E is an extension of G by \overline{E}. Then E acts on \mathcal{R} by conjugation. Given $C \in \mathcal{R}$ and $\psi \in \text{Irr}(N_G(C))$, let $N_E(C, \psi)$ be the stabilizer of (C, ψ) in E, and

$$N_E(C, \psi) := N_E(C, \psi)/N_G(C).$$

For $\tilde{B} \in \text{Blk}(G)$, an integer $d \geq 0$ and $U \leq \overline{E}$, we define the set

$$\text{Irr}(N_G(C), \tilde{B}, d, U) := \{\psi \in \text{Irr}(N_G(C), \tilde{B}, d) \mid N_E(C, \psi) = U\}.$$

Dade's Invariant Conjecture ([34]) If $O_p(G) = 1$ and $\tilde{B} \in \text{Blk}(G)$ with defect group $D(\tilde{B}) \neq 1$, then

$$\sum_{C \in \mathcal{R}/G} (-1)^{|C|} |\text{Irr}(N_G(C), \tilde{B}, d, U)| = 0,$$

where \mathcal{R}/G is a set of representatives for the G-orbits of \mathcal{R}.

Let H be a subgroup of G, $\varphi \in \text{Irr}(H)$, and let $r(\varphi) = r_p(\varphi)$ be the integer $0 < r(\varphi) \leq (p-1)$ such that the p'-part $(|H|/\varphi(1))_{p'}$ of $|H|/\varphi(1)$ satisfies

$$\left(\frac{|H|}{\varphi(1)}\right)_{p'} \equiv r(\varphi) \mod p.$$

Given $1 \leq r < (p+1)/2$, let $\text{Irr}(H, [r])$ be the subset of $\text{Irr}(H)$ consisting of those characters φ with $r(\varphi) \equiv \pm r \mod p$. For $\tilde{B} \in \text{Blk}(G)$, $C \in \mathcal{R}$, an integer $d \geq 0$ and $U \leq \overline{E}$, we define the set

$$\text{Irr}(N_G(C), \tilde{B}, d, U, [r]) := \text{Irr}(N_G(C), \tilde{B}, d, U) \cap \text{Irr}(N_G(C), [r]).$$

The following refinement of Dade's conjecture is due to Uno.

Uno's Invariant Conjecture ([63], Conjecture 3.2) If $O_p(G) = 1$ and $\tilde{B} \in \text{Blk}(G)$ with defect group $D(\tilde{B}) \neq 1$, then for all integers $d \geq 0$ and $1 \leq r < (p+1)/2$,

$$\sum_{C \in \mathcal{R}/G} (-1)^{|C|} |\text{Irr}(N_G(C), \tilde{B}, d, U, [r])| = 0.$$
3. Dade’s/Uno’s invariant conjecture for some exceptional groups

In this section, we sketch the proof of Dade’s/Uno’s invariant conjecture for some exceptional groups in the defining characteristic. Let Aut(G) and Out(G) be the automorphism and outer automorphism groups of G, respectively. Let n be a positive integer and

$$G \in \{G_2(p^n) \mid p \geq 5\}, \quad 3D_4(p^n) \mid p = 2$$

or odd, $2F_4(2^{2n+1})$. Then Out(G) is cyclic and the Schur multiplier of G is trivial. So the invariant conjecture for G is equivalent to the inductive conjecture.

Let $O =$ Out(G) = $\langle \alpha \rangle$, where α is a field automorphism of order $|\alpha| = \begin{cases} n & \text{if } G = G_2(p^n) \quad (p \geq 5), \\ 3n & \text{if } G = 3D_4(p^n), \\ 2n+1 & \text{if } G = 2F_4(2^{2n+1}). \end{cases}$

We fix a Borel subgroup B and maximal parabolic subgroups P and Q of G containing B as in [17], [42], [41], [44] and [45]. In particular, we may assume that α stabilizes B, P and Q. We note that the maximal parabolic subgroups P, Q are the groups denoted by P_a, P_b respectively in [45].

By the remarks on p. 152 in [50], G has only two p-blocks, the principal block B_0 and one defect-0-block (corresponding to the Steinberg character). Hence we have to verify Dade’s/Uno’s conjecture only for the principal block B_0.

By a corollary of the Borel-Tits theorem [28], the normalizers of radical p-subgroups are parabolic subgroups. The radical p-chains of G (up to G-conjugacy) are given in Table 1.

Table 1 Radical p-chains of G.

<table>
<thead>
<tr>
<th>C</th>
<th>$N_G(C)$</th>
<th>$N_A(C)$</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>${1}$</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C_2</td>
<td>${1} < O_p(P)$</td>
<td>P</td>
<td>$P \times \langle \alpha \rangle$</td>
</tr>
<tr>
<td>C_3</td>
<td>${1} < O_p(P) < O_p(B)$</td>
<td>B</td>
<td>$B \times \langle \alpha \rangle$</td>
</tr>
<tr>
<td>C_4</td>
<td>${1} < O_p(Q)$</td>
<td>Q</td>
<td>$Q \times \langle \alpha \rangle$</td>
</tr>
<tr>
<td>C_5</td>
<td>${1} < O_p(Q) < O_p(B)$</td>
<td>B</td>
<td>$B \times \langle \alpha \rangle$</td>
</tr>
<tr>
<td>C_6</td>
<td>${1} < O_p(B)$</td>
<td>B</td>
<td>$B \times \langle \alpha \rangle$</td>
</tr>
</tbody>
</table>

Since C_5 and C_6 have the same normalizers $N_G(C_5) = N_G(C_6)$ and $N_A(C_5) = N_A(C_6)$, it follows that

$$|\text{Irr}(N_G(C_5), B_0, d, u, [r])| = |\text{Irr}(N_G(C_6), B_0, d, u, [r])|$$

for all $d \in \mathbb{N}$, $u \mid |\alpha|$ and $1 \leq r < (p+1)/2$. Thus the contribution of C_5 and C_6 in the alternating sum of Dade’s/Uno’s invariant conjecture is zero. So Dade’s/Uno’s invariant conjecture for G is equivalent to

$$|\text{Irr}(G, B_0, d, u, [r])| + |\text{Irr}(B, B_0, d, u, [r])| = |\text{Irr}(P, B_0, d, u, [r])| + |\text{Irr}(Q, B_0, d, u, [r])|$$

for all $d \in \mathbb{N}$, $u \mid |\alpha|$ and $1 \leq r < (p+1)/2$.

In order to verify (1), we need to determine the character tables of parabolic subgroups of G. Up to conjugacy, G has four parabolic subgroups: G, B, P and Q. Here, we present the results on the character tables of parabolic subgroups of G:
For $L \in \{G, B, P, Q\}$, the action of $O = \text{Out}(G)$ on the conjugacy classes of elements of L induces an action of O on the sets of $\text{Irr}(L)$ and then an action on the parameter sets. Using the degrees and character values on the conjugacy classes we can describe the action of O on the parameter sets. Suppose $u \mid |\alpha|$ and set $t := \frac{|\alpha|}{u}$ and $H := \langle \alpha^t \rangle$. Let $\text{Irr}(L, B_0, d, [r]) = \text{Irr}(L, B_0, d) \cap \text{Irr}(L, [r])$. Our main task is to show that

$$\text{Irr}(G, B_0, d, [r]) \cup \text{Irr}(B, B_0, d, [r]) \quad \text{and} \quad \text{Irr}(P, B_0, d, [r]) \cup \text{Irr}(Q, B_0, d, [r])$$

are isomorphic O-sets. Our approach is similar to that in [43]: we want to use [51, Lemma (13.23)], so we have to count fixed points of subgroups $H \leq O$. Then (1) is equivalent to

$$|\text{Irr}(G, B_0, d, [r])^\alpha| + |\text{Irr}(B, B_0, d, [r])^\alpha| = |\text{Irr}(P, B_0, d, [r])^\alpha| + |\text{Irr}(Q, B_0, d, [r])^\alpha|.$$

Then we compute the number of fixed points of $\text{Irr}(L, B_0, d, [r])$ under the action of H and prove that above equation holds.

4. Dade's/Uno's Invariant Conjecture for Some Classical Groups

In this section, we sketch the proof of Dade's/Uno's invariant conjecture for some classical groups in the defining characteristic. Let $\text{Aut}(G)$ and $\text{Out}(G)$ be the automorphism and outer automorphism groups of G, respectively. Let n be a positive integer and

$$G \in \{\text{Sp}_{4}(2^{n}), \text{SU}_{4}(2^{2n}), \text{Sp}_{4}(p^{n}) \mid p \text{ odd}\}.$$

First, we consider $G \in \{\text{Sp}_{4}(2^{n}), \text{SU}_{4}(2^{2n})\}$. Then $\text{Out}(G)$ is cyclic. So, the proof of Dade's invariant conjecture for G is similar to that for exceptional groups. Next, we consider Uno's invariant conjecture for $G = \text{Sp}_{4}(q)$ in the defining characteristic p, where $q = p^{n}$ with an odd prime p.

By [54, Proposition 2.4.4], we have $O = \text{Out}(G) = \langle \phi \rangle \times \langle \alpha \rangle$ and $A = \text{Aut}(G) = G \rtimes O$, where ϕ is a diagonal automorphism of order 2 and α is a field automorphism of G with order n. We fix a Borel subgroup B and maximal parabolic subgroups P and Q of G containing B as in [65]. In particular, we may assume that α stabilizes B, P and Q. In the remaining part of this section, we consider the action of O on the irreducible characters of G, B, P and Q.

Let $L \in \{G, B, P, Q\}$.

(A) Suppose $U \leq \langle \alpha \rangle$. In this case, we use character tables of L to determine the action of subgroups $U \leq \langle \alpha \rangle$ on the irreducible characters of L. Since the group of field automorphism is cyclic, so the proof is similar to that for exceptional groups.

(B) Suppose $U = \langle \phi \rangle$. Using the degrees and values of irreducible characters of L on certain L-conjugacy classes, we can count fixed points of the action of ϕ on the irreducible characters of L.

(C) Suppose $U \leq O = \langle \alpha \rangle \times \langle \phi \rangle$. By proofs (A) and (B), there exists a bijection ψ from

<table>
<thead>
<tr>
<th>G</th>
<th>$\text{Irr}(G)$</th>
<th>$\text{Irr}(B)$, $\text{Irr}(P)$, $\text{Irr}(Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_2(p^n)$ $(p \geq 5)$</td>
<td>Chang, Ree [30]</td>
<td>An, Huang [17]</td>
</tr>
<tr>
<td>$3D_4(p^n)$</td>
<td>Deriziotis, Michler [36]</td>
<td>Himstedt [41], [42]</td>
</tr>
<tr>
<td>$2F_4(2^{2n}+1)$</td>
<td>Malle [57]</td>
<td>Himstedt, Huang [44], [45]</td>
</tr>
</tbody>
</table>
Irr\((G, B_0, d, [r]) \cup \text{Irr}(B, B_0, d, [r])\) onto \text{Irr}(P, B_0, d, [r]) \cup \text{Irr}(Q, B_0, d, [r])\)
such that
\[\psi(\chi)^x = \psi(\chi^x), \quad \chi \in \text{Irr}(G, B_0, d, [r]) \cup \text{Irr}(B, B_0, d, [r])\]
for any \(x \in \langle \alpha \rangle\) or \(x \in \langle \phi \rangle\).

Let \(y \in U\), so that \(y = y_1y_2\) with \(y_1 \in \langle \alpha \rangle\) and \(y_2 \in \langle \phi \rangle\). Thus \(\psi(\chi)^y = \psi(\chi)^{y_1y_2} = \psi(\chi^{y_1})^{y_2} = \psi(\chi^y)\). This completes the proof of Uno's invariant conjecture for \(Sp_4(q)\) in the defining characteristic \(p\), where \(q = p^n\) with an odd prime \(p\).

5. Results on Dade's Conjecture

So far, Dade's conjecture has been proved for the following cases:

(a) Sporadic simple groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{11}, J_1)</td>
<td>final</td>
<td>Dade [32]</td>
</tr>
<tr>
<td>(M_{12})</td>
<td>final</td>
<td>Dade</td>
</tr>
<tr>
<td>(M_{22})</td>
<td>final</td>
<td>Huang [47]</td>
</tr>
<tr>
<td>(M_{23}, M_{24})</td>
<td>final</td>
<td>Schwartz, An, Conder [13]</td>
</tr>
<tr>
<td>(J_2)</td>
<td>final</td>
<td>Dade</td>
</tr>
<tr>
<td>(J_3)</td>
<td>final</td>
<td>Kotlica [55]</td>
</tr>
<tr>
<td>(McL)</td>
<td>final</td>
<td>Murray [59], Entz, Pahlings [38]</td>
</tr>
<tr>
<td>(Ru)</td>
<td>final</td>
<td>Dade, An, O'Brien [18]</td>
</tr>
<tr>
<td>(He)</td>
<td>final</td>
<td>An [4]</td>
</tr>
<tr>
<td>(HS)</td>
<td>final</td>
<td>Hassan, Horváth [39]</td>
</tr>
<tr>
<td>(Co_1)</td>
<td>final</td>
<td>An, O'Brien [23]</td>
</tr>
<tr>
<td>(Co_2)</td>
<td>final</td>
<td>An, O'Brien [19]</td>
</tr>
<tr>
<td>(Co_3)</td>
<td>final</td>
<td>An [6]</td>
</tr>
<tr>
<td>(Suz)</td>
<td>final</td>
<td>Himstedt [40]</td>
</tr>
<tr>
<td>(O'N)</td>
<td>final</td>
<td>An, O'Brien [18], Uno, Yoshiara [64]</td>
</tr>
<tr>
<td>(Th)</td>
<td>final</td>
<td>Uno [63]</td>
</tr>
<tr>
<td>(L_3)</td>
<td>final</td>
<td>Sawabe, Uno [61]</td>
</tr>
<tr>
<td>(HN)</td>
<td>final</td>
<td>An, O'Brien [22]</td>
</tr>
<tr>
<td>(Fi_{23})</td>
<td>final</td>
<td>An, O'Brien [20]</td>
</tr>
<tr>
<td>(Fi_{22})</td>
<td>invar.</td>
<td>An, O'Brien [21]</td>
</tr>
<tr>
<td>(J_4)</td>
<td>An, O'Brien, Wilson [24]</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>(p) odd</td>
<td>An, Wilson [25]</td>
</tr>
<tr>
<td>(Fi'_{24})</td>
<td>An, Cannon, O'Brien, Unger [12]</td>
<td></td>
</tr>
</tbody>
</table>

(b) Classical groups:
Here, we present new results on Dade's conjecture for exceptional groups and classical groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Conditions</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_2(q)$</td>
<td>final, $p</td>
<td>q (p \geq 5), q = 3, 4$</td>
</tr>
<tr>
<td>$D_4(q)$</td>
<td>final, $p</td>
<td>q (p = 2 or odd)$</td>
</tr>
<tr>
<td>$F_4(2^{2n+1})$</td>
<td>final, $p = 2$</td>
<td>Himstedt, Huang [46]</td>
</tr>
<tr>
<td>$Sp_4(2^n)$</td>
<td>final, $p = 2$</td>
<td>An, Himstedt, Huang [15]</td>
</tr>
<tr>
<td>$SU_4(2^n)$</td>
<td>invar., $p</td>
<td>q (p odd)$</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The author would like to thank RIMS and the organizer for the opportunity to be here and present this work. Part of this work was done while he visited Chiba University in Japan. He would like to thank Professor Shigeo Koshitani for his support and great hospitality. He also acknowledges the support of a JSPS postdoctoral fellowship from the Japan Society for the Promotion of Science.

REFERENCES

[45] F. Himstedt and S. Huang, Character tables of the maximal parabolic subgroups of the Ree groups $2F_4(q^2)$, submitted.

