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Dihedral groups and subalgebras of Moonshine
VOA

Ching Hung Lam

1 Introduction

This article is based on a joint work with G. Hohn and H.Yamauchi and an
ongoing research with H.Yamauchi.

The classifiation of finite simple groups asserts that there are exactly 26
simple groups (called sporadic groups) which does not belong to any infinite
family. The largest group of such kind is called the Monster and denoted by
M. Among the 26 sporadic groups, 20 are involved in the Monster. They are
often be realized by the centralizers of some elements.

Sporadic groups realized by the centralizers in M

Classes Centralizer in M Sporadic groups
2A 2.B Babymonster
2B 21+24.001 COl
34 3.Fil, Fil,
3B 3112 Sz Suz
3C 3x Th Th
5A 5x Ha Ha
5B 516 HJ HJ

The main purpose of this article is to study some of these groups us-
ing certain subalgebras of the Moonshine VOA V% To explain our results
more precisely, let us review the background of our method and the results
established in [LYY1, LYY2, LM].



66

Eg-observation. John McKay has discovered many mysterious properties
about finite groups, especially about the Monster simple group. Among
them, there is a observation of McKay which relates the Monster group
and some sporadic groups involved in the Monster to certain affine Coxeter-
Dynkin diagrams [Mc]. It is known that the Monster group satisfies a 6-
transposition property, i.e., given any two 2A-involutions a, b of the Mounster
simple group M, the product of a and b has order less than or equal to 6.
More precisely, the product ab will fall into one of nine conjugacy classes in
the Monster [ATLAS, C] as follows:

1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C.

Here, the first number denotes the order of the elements in the conjugacy
class and the second letter is arranged in descending order of the size of the
centralizer of the elements.

It was pointed out by McKay [Mc| that the orders of the elements in these
conjugacy classes coincide with the numerical labels of the nodes in an affine
Eg Dynkin diagram and he observed there is an interesting correspondence
between these nine conjugacy classes of Ml with the nine nodes of the affine
diagram as follows:

I L)
o- o o -0 o- o -0 o
1A 2A 3A 4A 5A 6A 4B 2B

There are similar relations that associate the Babymonster to the E--diagram
and Fischer’s largest 3-transposition group Fiy4 to the Eg-diagram as follows.

E,-observation. Let s,t be 2A-involutions of the Babymonster B. It is
known that the product st belongs to one of the Babymonster conjugacy
classes 1A, 2B, 2C, 3A or 4B and McKay noticed [Mc] that the order of
these elements coincide with the numerical labels of the affine E; Dynkin
diagram and there is a correspondence as below.

]20
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1A 2B 3A 4B 3A 2B 1A

o
o
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In this case, the correspondence is no longer one-to-one but only up to the
diagram automorphism.

Eg-observation. Similarly, for the Fischer group Figy, the products of any
two 2C-involutions of Fiyy belongs to one of the conjugacy classes 1A, 2A
or 3A of Fisy. It was again noted by McKay [Mc| that the order of these
elements coincide with the numerical labels of the affine Eg Dynkin diagram
and there is a correspondence as follows:

o 1A
o 2A
o— ¥ S o o
1A 24 3A 24 14

This correspondence is again not one-to-one but only up to diagram auto-
morphisms.

Involutions associated to Virasoro vectors. The main tool for study-
ing the above phenomenon is the one-to-one correspondence between 2A-
involutions of the Monster and simple ¢ = 1/2 Virasoro vectors in V.
Miyamoto showed in [Mil] that given a Virasoro vector e of a VOA V, an
involutive automorphism 7, of V can be defined based on fusion rules of
Vir(e)-modules, where Vir(e) denotes the Virasoro sub VOA generated by e.
If e is a simple ¢ = 1/2 Virasoro vector and V = V¥ is the Moonshine VOA,
it is known [C, Mil, Mal, H62] that there is a one-to-one correspondence
between 2A-elements of the Monster and simple ¢ = 1/2 Virasoro vectors of
the Moonshine VOA via Miyamoto involutions.

By the one-to-one correspondence, properties of 2A-involutions of the
Monster can be deduced by analyzing corresponding simple ¢ = 1/2 Virasoro
vectors of the Moonshine VOA.

In Dong et. al. [DLMN], a special Virasoro vector of central charge 1/2
is defined in the lattice VOA V . It is given by

1 1 o V2
evim = Tgovim T35 D (VT +0(™),
~ aed+(Ey))
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where w_ g, is the Virasoro element of V, 55 and ®¥(Eg) is a set of positvie
roots.
Next, we shall explain the main ideas in [LYY1, LYY2, LM].

Dihedral subalgebras associated to the affine Es diagram. We shall
construct some automorphisms of V5, from the affine Eg diagram. Let nX
be one of the Monster conjugacy classes in

{14,24,3A,4A,54,6A,4B,2B,3C}

and let L, x be a sublattice of Ex obtained by removing the node labeled n.X
in (1.1). Then the index [Fg : L,y] = n and we have a coset decomposition

n—1
ES = U(Ln.\' + ja)

j=0
Correspondingly, we have a decomposition

n—1

Vg, = D Vst tia)
=0

Define an automorphism p, x acting on the component V\/g( Lox+ja) by e2mv=1i/n,
Then p,x is an automorphism of V 5p, of order n.

Let e be the special ¢ = 1/2 Virasoro vector of V5, . Denote by Uy, x the
the subalgebra of V s, generated by e and f := p,xe. In [LYY1, LYY2, LM],
the subalgebra U, x is studied in detail. The main result is a one to one cor-
respond between the subalgebras U, x and dihedral subgroups generated by
two 2A-involutions of the Monster via the one-to-one correspondence be-
tween the simple ¢ = 1/2 Virasoro and 2A-involutions. In other words, there
exists a natural embedding of Up,x — V% such that the product 7.7 on Ve
is exactly in the Monster conjugacy class n.X.

Sakuma’s G-transposition theorem. On the other hand, Sakuma [S]
showed that the 6-transposition property of the Monster can be deduced
from the theory of VOAs. He has shown: Let V = @®p»oV, be a VOA
over R with V5 = R1 and V4 = 0, and assume that the invariant bilinear
form on V is positive definite. Then for any pair e, f of simple ¢ = 1/2
Virasoro vectors in V, we always have |7.7f| < 6 on V. He also determined



69

the possible structures for the Griess subalgebra generated by e and f in the
degree two subspace V,. There are exactly nine possible cases and they agree
with the dihedral subalgebras U,y discussed in the previous paragraph. In
other words, the dihedral subalgebras U, x exhaust all the possibilities and
they are all involved in the Moonshine VOA.

2 Commutant subalgebras and automorphism
group

We are mainly interested in the commutant subalgebra of U,x in V¥ and its
automorphism groups.

U4 and Babymonster VOA. Let t be a 2A-involution of the Monster
M. Then the centralizer Cy(t) is a double cover 2.B of the Babymonster
simple group B. By the one-to-one correspondence, there exists a unique
simple ¢ = 1/2 Virasoro vector e of the Moonshine VOA V¥ such that ¢ =
7.. Denote by Comyt(Vir(e)) the commutant subalgebra of Vir(e) in V.
Then the centralizer Cwy(7.) naturally acts on it. Since all simple ¢ = 1/2
Virasoro vectors of V! are mutually conjugate under the Monster, the VOA
structure on Comy:(Vir(e)) is independent of ¢ € V¥ so that we denote
it by VB" and call it the Babymonster VOA. It is proved in [H62, Y] that
the Babymonster is indeed the full automorphism group of the Babymonster
VOA and therefore the Babymonster VOA VB! is probably the most natural
object to be considered in the study of the Babymonster simple group.

Wj-algebra L(4/5,0) + L(4/5,3) and VF® Let g be a 3A4-element of M.
Then the normalizer My(g) = 3.Fizq. On the other hand, Miyamoto showed
that if W = L(%5,0) & L(#s,3) is a subalgebra of V¥ one can recover a
3A-element of the Monster.

Now fixed a subalgebra W = cong = L(#/5,0) & L(4/s5,3) in V¥ and define

VF? .= Comyx (W) (2.1)
Let p be the 3A-clemet defined by W. Then we have
Lemma 2.1. Ny(p) C Stabpy(W).
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In fact, Nm(p) acts on VEF! with the kernel < p >. We believe that
Aut(VF®) = Njs(p)/ < p > but we can only prove the following.

Proposition 2.2 (cf. [HLY]). Let X be the subalgebra of VF® generated by
the weight 2 subspace. Then Aut(X) =~ Nm(pu)/{pu) = Fiaq.

General cases.

In general, there is no correspondence between 5A4,3C, 4B, - - -

elements with subVOA. Nevertheless, there is a correspondence bewteen the
dihedral algebras U, x and dihedral groups generated by two 2A-involutions.

Now let e, f be ¢ = 1/2 Virasoro vectors such that the subVOA generated
by e, f is isomorphic to U,x. Denote by D = (7., 7f) the dihedral group
generated by 7., 7r. The centralizers and normalizers of the dihedral groups

as follows.
Table 1: Centralizers and Normalizers of dihedral subgroups in M
Conjugacy classes My (D) Cm(D) Simple groups Outer
of 7.7 1 involved automorphism
T 1 7T

2A (22.2E¢(2)) : S5 | 22.%E4(2) 2E6(2) Ss
3A Sz X Figg Fias Figs 1
4A (2124 McL).2 | 2122 . McL MecL 2
5A (D10 x Ha).2 Ha Ha 2
6A 3.(2 x 2.Fi).2 |  2.Fix Fling 2
4B 2.(22.F,(2)2 | 2.Fu(2) Fi(2) 2
2B (21+24.Co,) 22+22 Coy Cos 1
3C Sy x Th Th Th 1

Let VC'(nX) = Comy+(U(nX)) be the commutant subalgebra of U(nX)
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in V.. Set I,x = {e¢ € VC'nX)|eis a simple C' = 1/2 Virsoro vector }
Let X, x be the vertex operator subalgebra generated by I,x.

Denote by G(nX) the subgroup of Aut(VC¥nX)) generated by {r.|e €
Ix} and G(nX) the subgroup of Aut(V") generated by {7.|e € I,,x}. Then
there is a natural group homomorphism

¢ :G(nX) — G(nX)
g g’A.ut(_VC;‘ (nX)

by restriction. The followings can be proved by a case by case checking.

Theorem 2.3. The homomorphism ¢ is injective and we have
G(nX) ~ Cu(D)/Z(D).

Theorem 2.4. Let X, x be the subalgebra generated by I. Then we also have
Aut(X,x) % Nm(D)/D.

Finally we shall end this article with the following few questions.

1. Are the Griess algebras of VC¥(nX) and X,x equal?

If the Griess algebra of VC¥(nX) can be decomposed as 1+ irred as a
module of Ny(D)/D, then it is trivial. However, it isn’t always the case. For
example, the Griess algebra of VC¥(5A) is a sum of 3 irreducible modules of
Ha?

2. Is VC%(nX) generated by weight 2 space?
Some cases (e.g. 1A, 2B,4A) may be easy to prove but probably difficult
for 5A and 3A, 3C.

3. Is Aut(VC*(nX)) = Ny (D)/D?
If the answers for both 1 and 2 are yes, then the answer is also yes here.
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