<table>
<thead>
<tr>
<th>Title</th>
<th>On C_2-confiniteness of \mathbb{Z}_2-orbifold models of vertex operator algebras (Finite Groups, Vertex Operator Algebras and Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Abe, Toshiyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1656: 7-12</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140879</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On C_{2}-cofiniteness of \mathbb{Z}_{2}-orbifold models of vertex operator algebras\(^1\)

Toshiyuki Abe\(^2\) (Ehime university)

1 Introduction

The notion of C_{2}-cofiniteness of vertex algebras has recently become very important in the representation theory of vertex operator algebra. The C_{2}-cofiniteness property is a finite codimensionality of a particular subspace of vertex operator algebra and follows a lot of other finiteness properties (see [M] for example).

The final aim of the work is to show that the following conjecture “any orbifold model of a simple, C_{2}-cofinite vertex operator algebra is C_{2}-cofinite”. For this purpose, as a first step, we experimentally consider the case of commutative vertex algebras. In commutative case, it seems not to be natural to assume that a vertex algebras is simple. Then we have an example of C_{2}-cofinite commutative vertex algebra whose \mathbb{Z}_{2}-orbifold model is not C_{2}-cofinite. We give a criterion for the C_{2}-cofiniteness of \mathbb{Z}_{2}-orbifold models of C_{2}-cofinite, finitely generated commutative vertex algebra.

2 Vertex algebras and some notions

A vertex algebra is a triple $(V, Y(\cdot , z), 1)$ of a vector space over \mathbb{C}, a linear map $Y(\cdot , z) : V \mapsto \text{End} V[[z, z^{-1}]]$ and a distinguished vector 1 called a vacuum vector, where End $V[[z, z^{-1}]]$ is a formal integral power series of z with End V as coefficients. For $a \in V$, we write $Y(a, z) = \sum_{m \in \mathbb{Z}} a_{(m)} z^{-n-1}$ where the coefficients $a_{(m)} \in \text{End} V$.

For any $a, b \in V$, we may regards the map $V \times V \ni (a, b) \mapsto a_{(m)} b \in V$ with $a, b \in V$ and $m \in \mathbb{Z}$ as a bilinear multiplication on V. Then the following is satisfied:

(1) For any $a, b \in V$, $a_{(n)} b = 0$ for sufficiently large integer n.

(2) (Borcherds identity) For any $a, b \in V$,

$$\sum_{i=0}^{\infty} \binom{q}{i} (a_{(p+i)} b)_{(q+r-i)} c$$

$$= \sum_{i=0}^{\infty} (-1)^i \binom{p}{i} (a_{(p+q-i)} b_{(r+i)} c - (-1)^p b_{(p+r-i)} a_{(q+i)} c).$$

\(^1\) 6 Jan. 2009, "Groups, Vertex operator algebras and Combinatorics" at RIMS

\(^2\) Part of the work has been done during the stay in The Erwin Schrödinger International Institute for Mathematical Physics
We canonically have a linear map $D : V \ni a \mapsto a_{(-2)}1 \in V$. The linear map D satisfies the following identities:

\begin{align}
(Da)_{(m)} &= -ma_{(m-1)} \quad \text{for } a \in V, m \in \mathbb{Z}, \\
D(a_{(m)}b) &= (Da)_{(m)}b + a_{(m)}D(b) \quad \text{for } a, b \in V, m \in \mathbb{Z}.
\end{align}

The second identity means that D is a derivation of V.

A vertex algebra V is said to be commutative if $a_{(n)}b = 0$ for any $n \in \mathbb{Z}_{\geq 0}$. In this case, we have $[a_{(m)}, b_{(n)}] = 0$ in $\text{End} V$ for any $a, b \in V$ and $m, n \in \mathbb{Z}$.

Let S be a finite set of V. If V is spanned by a set of the form

$$\{a_{(-n_1)}^1 \cdots a_{(-n_r)}^r 1 | a^i \in S, n_i \in \mathbb{Z}_{>0}\}$$

then it is called that V is strongly generated by S (see [Ar] for more properties). By (2.2), we have

$$a_{(-m-1)} = \frac{1}{m!} (D^m a)_{(-1)}$$

for $a \in V$ and $m \in \mathbb{Z}_{\geq 0}$. Therefore V is strongly generated by S if and only if V is generated by S when V is regarded as a noncommutative, nonassociative differential algebra with -1-product as multiplication and with derivation D.

We consider a subspace $C_2(V)$ defined by

$$C_2(V) = \text{span}\{ a_{(-2)}b | a, b \in V \}.$$

A vertex algebra V is called C_2-cofinite if $V/C_2(V)$ is finite dimensional. We set

$$C_2(U, W) = \text{span}\{ a_{(-2)}b | a \in U, b \in W \}$$

for a subset U, W of V.

An automorphism of a vertex algebra $(V, Y(\cdot, z), 1)$ is a linear isomorphism g satisfying $g(a_{(m)}b) = g(a)_{(m)}g(b)$ for $a, b \in V$ and $g(1) = 1$. For a finite automorphism group G, $V^G = \{ a \in V | g(a) = a \}$ has naturally a vertex algebra structure. This vertex algebra is called an orbifold model of V.

3 Commutative vertex algebras

Borcherds introduced a notion of a vertex algebra in [B]. In this paper he showed that a commutative vertex algebra is nothing but a unital commutative associative algebra with a derivation. We recall the correspondence in this section.

Let A be a commutative associative algebra with unit 1, and D its arbitrary derivation. We denote the triple by $(A, D, 1)$ and call it a unital differential commutative algebra.

For a unital differential commutative algebra $(A, D, 1)$, we set $1 = 1$ and define $Y(a, z) = \sum_{i=0}^{\infty} \rho(D^i a) \frac{z^i}{i!}$ for $a \in A$, where ρ is the (left) regular representation of A. Then $(A, Y(\cdot, z), 1)$ becomes a vertex algebra. Since $a_{(m)} = 0$ for
\(m \in \mathbb{Z}_{\geq 0} \), \(A \) is commutative, and we also have \(a_{(-m)} = \rho(D^{m-1}a)/(m - 1)! \) for \(m \in \mathbb{Z}_{>0} \). On the other hand, for a commutative vertex algebra \(A(Y(\cdot, z), 1) \), \(A \) has a unital commutative associative algebra structure with multiplication \(ab = a_{(-1)}b \) and unit \(1 \). Then as mentioned above, \(D \in \text{End} A \) defined by \(D(a) = a_{(-2)}1 \) for \(a \in A \) is a derivation. Thus we have a unital differential commutative algebra \((A, D, 1) \).

Let \((A, D, 1) \) be a unital differential commutative algebra. A \(D \)-invariant ideal \(I \) of \(A \) is an ideal of \(A \) as commutative algebra satisfying \(D(I) \subset I \). For any ideal \(I \) of \(A \), we have \(D \)-invariant ideal \(\sum_{i=0}^{\infty} D^i(I) \). We see that an ideal \(I \) of \(A \) as commutative algebra is \(D \)-invariant if and only if an ideal of \(A \) as a vertex algebra. For \(a_1, \ldots, a_r \in A \), we set \((a_1, a_2, \ldots, a_r; D) \) a \(D \)-invariant ideal generated by \(a_1, \ldots, a_r \).

If \(A \) is a commutative vertex algebra, then \(C_2(A) \) is a \(D \)-invariant ideal generated by \(D(V) \). In fact for any subspace \(U \subset A \), \(C_2(U, A) \) is a \(D \)-invariant ideal of \(A \) generated by \(D(U) \).

4 Polynomial ring

Let \(\Lambda = \{1, \ldots, k\} \) and set
\[
A = \mathbb{C}[x_j^{(i)} \mid i \in \Lambda, j \in \mathbb{Z}_{>0}]
\]
(4.1)
be the ring of all polynomials in formal variable \(x_j^{(i)} \) with \(i \in \Lambda \) and \(j \in \mathbb{Z}_{>0} \).

Let \(D \) be a derivation mapping \(x_j^{(i)} \) to \(x_j^{(i)} \) for any \(i \in \Lambda, j \in \mathbb{Z}_{>0} \). Then \(A \) is a unital differential commutative algebra. As a vertex algebra it is strongly generated by \(S = \{x_1^{(i)} \mid i \in \Lambda\} \), and we have
\[
C_2(A) = \left(x_j^{(i)} \mid i \in \Lambda, j \geq 2 \right).
\]
Hence \(A/C_2(A) \cong \mathbb{C}[S] \).

We define an automorphism \(g \) of \(A \) by \(g(x_j^{(i)}) = -x_j^{(i)} \) for \(i \in \Lambda, j \in \mathbb{Z}_{>0} \). Set \(A^\pm = \{a \in A \mid g(a) = \pm a\} \) respectively. Next we consider the subset \(C_2(A^+, A) \). We can first show that the following lemma:

Lemma 4.1. \(x_{j_1}^{(i_1)} \cdots x_{j_r}^{(i_r)} \in C_2(A^+, A) \) if \(r \geq 3 \), \(i_p = i_q \) for some \(1 \leq p \neq q \leq r \) and \(j_1 \geq 2 \) for some \(1 \leq s \leq r \).

Proof. We may assume that \(i_1 = i_2 \). First we note that for \(a, b \in A^- \), \(D(a)b + aD(b) = D(ab) \in D(A^+) \). Thus for any \(c \in A \), \(D(a)bc \equiv -aD(b)c \) modulo \(C_2(A^+, A) \). Hence we see that \(j_s \) with \(2 \leq s \leq r \) can be reduced to 1 by adding \(j_{s-1} \) to \(j_1 \) and multiplying \((-1)^{j_{s-1}}\). For example, we have the congruence relations \(x_3 x_2 x_5 u \equiv -x_4 x_1 x_5 u \equiv x_5 x_1 x_4 u \equiv \cdots \equiv -x_8 x_1 x_1 u \). Therefore, \(x_{j_1}^{(i_1)} \cdots x_{j_r}^{(i_r)} \) is congruent to a nonzero scalar multiple of the monomials \(x_p^{(i_1)} x_1^{(i_2)} \cdots x_1^{(i_r)} \), where \(p = \sum j_{s-r} + 1 \) or \(x_p^{(i_1)} x_2^{(i_2)} \cdots x_1^{(i_r)} \), where \(p = \sum j_{s-r} \).
On the other hand for $m, n \in \mathbb{Z}_{>0}$, if $m - n$ is odd then
\[
x^{(i_{1})}_{m}x^{(i_{1})}_{n} \equiv \pm \frac{1}{2} D \left(\left(x^{(i_{1})}_{m+n-1} \right)^{2} \right) \equiv 0 \mod C_{2}(A^{+}).
\]
Hence both of $x^{(i_{1})}_{p}x^{(i_{1})}_{1}\cdots x^{(i_{r})}_{1}$ and $x^{(i_{1})}_{p}x^{(i_{1})}_{2}\cdots x^{(i_{r})}_{1}$ are in $C_{2}(A^{+}, A)$.

In the proof we show that $x^{(i)}_{m}x^{(i)}_{n} \in C_{2}(A^{+})$ if $m - n$ is odd. We also see that if $m - n$ is even then $x^{(i)}_{m}x^{(i)}_{n}$ is congruent to a nonzero multiple of the square of $x^{(i)}_{p}$ with $p = (m + n)/2$. Actually, we have
\[
A/C_{2}(A^{+}, A) \cong \cdots \bigoplus_{i_{1}<\cdots<i_{t}\leq k}^{k} \mathbb{C}x^{(i_{1})}_{1}\cdots x^{(i_{r})}_{1} \quad (4.2)
\]
as vector spaces.

In the proof we show that $x^{(i)}_{m}x^{(i)}_{n} \in C_{2}(A^{+})$ if $m - n$ is odd. We also see that if $m - n$ is even then $x^{(i)}_{m}x^{(i)}_{n}$ is congruent to a nonzero multiple of the square of $x^{(i)}_{p}$ with $p = (m + n)/2$. Actually, we have
\[
A/C_{2}(A^{+}, A) \cong \cdots \bigoplus_{i_{1}<\cdots<i_{t}\leq k}^{k} \mathbb{C}x^{(i_{1})}_{1}\cdots x^{(i_{r})}_{1} \quad (4.2)
\]
as vector spaces. We see that both A and A^{+} are not C_{2}-cofinite.

To construct a C_{2}-cofinite commutative vertex algebra strongly generated by a finite set, we take a D-invariant ideal I of A and consider the quotient algebra $V = A/I$. Since $C_{2}(V) = (C_{2}(A) + I)/I$, $V/C_{2}(V) = A/(C_{2}(A) + I)$ which is isomorphic to the quotient of $A/C_{2}(A)$ by $(I + C_{2}(A))/C_{2}(A)$. Therefore V is C_{2}-cofinite if and only if $(I + C_{2}(A))/C_{2}(A)$ is finite codimensional in the polynomial ring $\mathbb{C}[S]$.

We assume that $g(I) = I$, that is, $I = I^{+} \oplus I^{-}$ with $I^{\pm} = I \cap A^{\pm}$ respectively. Then g acts on V as an automorphism. We set V^{\pm} the ± 1-eigenspace for g respectively. We shall see in the next section that in general V^{+} is not C_{2}-cofinite if V is C_{2}-cofinite.

5 A condition for the C_{2}-cofiniteness of V^{+}

Let I be a D-invariant ideal of the polynomial ring A. Suppose that $V = A/I$ is C_{2}-cofinite. In this section we seek a sufficient and necessary condition for I such that V^{+} is C_{2}-cofinite. Before doing this, we give an example that V^{+} is not C_{2}-cofinite. We consider the case $\Lambda = \{1\}$ and omit the upper index (1) form the generators $x^{(1)}_{j}$ for simplicity.

Example 5.1. Let $I = (x^{2}_{1} - x^{2}_{2}; D)$. Since $D(x^{2}_{1} - x^{2}_{2}) \in C_{2}(A^{+})$, we have
\[
I + C_{2}(A^{+}, A) = A(x^{2}_{1} - x^{2}_{2}) + C_{2}(A^{+}, A).
\]
By Lemma 4.1, we see that the quotient space of the right hand side in the above formula by $C_{2}(A^{+}, A)$ becomes
\[
(C(x^{2}_{1} - x^{2}_{2}) + \mathbb{C}x^{3}_{1} + C_{2}(A^{+}, A)) /C_{2}(A^{+}, A).
\]

The algebra structure of $A/C_{2}(A^{+}, A)$ can be seen easily. But we do not state here
On the other hand $V/C_2(V^+, V)$ is isomorphic to the quotient of $A/C_2(A^+, A)$ by $(I + C_2(A^+, A))/C_2(A^+, A)$. Thus we see that $V^+/C_2(V^+)$ contains the direct sum $\bigoplus_{r=2}^\infty \mathbb{C}(x_r)^2$ of infinitely many one dimensional vector spaces. Therefore $V^+/C_2(V^+)$ is infinite dimensional and V^+ is not C_2-cofinite. In this case we have no polynomial in I with the monomial x_1.

Example 5.2. We consider the case $I = (x_1 - x_2; D)$. In this case, it is easy to see that $V = A/I$ is isomorphic to $\mathbb{C}[x]$, where x corresponds to the image of x_1 in V, and D is given by $D = x \frac{d}{dx}$. Thus $C_2(V) = (x)$ and hence V is C_2-cofinite. We find that $C_2(V^+)$ is an ideal generated by x^2 in $\mathbb{C}[x^2]$. Thus V^+ is also C_2-cofinite. In this case $x_1 - x_2 \in I$ has the monomial x_1.

In the above two examples, x_1 is a generator of A as a vertex algebra, and the difference of them is that I contains a polynomial with a nonzero scalar multiple of the generator x_1 as one of monomials or not. We can generalize this to the case A is generated by more than one generator as a vertex algebra.

Theorem 5.3. Let A be as in (4.1), I a D-invariant ideal, and g an automorphism such that $g(x^{(i)}_j) = -x^{(i)}_j$ for $i \in \Lambda$, $j \in \mathbb{Z}_{\geq 0}$. For a positive integer r, let $A_{\geq r}$ be the ideal consisting of all polynomials whose degrees are greater than or equal to r. Suppose that $V = A/I$ is C_2-cofinite and that $g(I) = I$. Set $V^+ = \{u \in V|g(u) = u\}$ the \mathbb{Z}_2-orbifold model of V with respect to g. Then $V/C_2(V^+, V)$ is finite dimensional if and only if $(I + A_{\geq 1})/(I + A_{\geq 2})$ is finite dimensional.

We first note that

$$V/C_2(V^+, V) \cong (A/I)/((C_2(A^+, A) + I)/I) \cong A/(C_2(A^+, A) + I) \cong (A/C_2(A^+, A))/((C_2(A^+, A) + I)/C_2(A^+, A)).$$

By using Lemma 4.1 and the explicit description of $A/C_2(A^+, A)$ in (4.2), we can show the theorem. The main idea is that the condition $(I + A_{\geq 1})/(I + A_{\geq 2})$ of the ideal I implies that for large enough $p \in \mathbb{Z}$, degree one monomial $x_p^{(i)}$ is equivalent to a polynomial consisting of monomials whose degrees are greater than one modulo I. This fact shows that any monomials in which the sum of lower indices j of generators $x^{(i)}_j$ are sufficiently large are congruent to polynomials whose degrees are greater than $k + 1$ modulo I, where k is the cardinality of Λ. Such polynomials are in $C_2(A^+, A) + I$ by Lemma 4.1. This is the rough sketch of a proof.

6 Conclusion

In this report, we consider only \mathbb{Z}_2-orbifold models of finitely, strongly generated commutative vertex algebra and give a sufficient and necessary condition
for its C_2-cofiniteness under the assumption that based vertex algebra is C_2-cofinite. We expect that the theorem can be extend to the case any cyclic group whose order is not only two but arbitrary positive integer.

As for the noncommutative case, the idea using to prove Theorem 5.3 cannot be applied to show the same statement directly although give some new idea. One of the tool to avoid the noncommutativity is an abelianization of vertex algebra by means of Li's standard filtration (see [Li4] and [Ar]). This abelianization is very useful to show the C_2-cofiniteness of vertex algebra itself. But it does not still give enough property for proving C_2-cofiniteness of orbifold models. We need further study on information which a noncommutativity of a vertex algebra has to get hints for the problem.

References

