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ON SIEGEL-EISENSTEIN SERIES OF DEGREE 2 FOR LOW
WEIGHTS

#EFE— (KEIICHI GUNJI)
TELEREIERNHET L #—
DEPARTMENT OF MATHEMATICS, CHIBA INSTITUTE OF TECHNOLOGY

1. INTRODUCTION
First we recall the case of elliptic modular forms. Let
I'(N) = {y € SL(2,Z) | v = 1, mod N}

be the principal congruence subgroup of SL(2,Z) of level N, and M (L(N)), Se(I'(N)
the space of modular forms and cusp forms respectively, of weight k with respect to
I'(N). Then if k > 2 we can calculate dim Sj(I'(N )) by using the Riemann-Roch
theorem. However dim S, (I"(NN)) is not yet known for general N.

On the othere hand, the complement space of Si(I'(V)) in M (I'(N)) is easier to
handle even in low weight cases. Asuume N > 3, we set

E(I(N)) = M(I'(N))/Se(I'(N)).
It is well-known that & is generated by Eisenstein series. Put
(1.1) Efon(2) = M (cz+d)~*
@ 0)er(N)oo\I'(N)

with I'(N)eo = {(&4) € I'(N)}, which converges if k¥ > 3 and Ef.ny(2) € My(T(N)).

If £k > 3 we have

MUT(N) = STV & (Bt goler | 7 € s222)) |
' c
and dim &(I'(N)) equals to the number of cusps of T(N)\$ i.e.
dim E(I(N)) = %N? [Ma-»2, &>3).
pIN

More precisely let {1, ..., 7} be a representative set of I'(V I\SL(2,Z)/SL(2,Z), then
{EF w7} form a basis of E(I'(N)).

In the case of low weights i.e. k = 1,2, the right-hand side of (1.1) does not converge.
To avoid this problem, Hecke ([He]) considered the following modified Eisenstein series:

(1.2) Efn(z8) = > (cz+d) ez +d|™%,
T(N)oo\I'(N)
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with z € §) and s € C. Then the right-hand side converges for 2Re(s) + k > 2. The
important fact is that, for fixed z, this series has a meromorphic continuation to whole
s-plane. Put B, y)(z) = Efy(2,0) then Eyliy(2) = E(z) for all ¥ € I'(N).
Consider the case of weight 2. Then E}, y,(2) is not holomorphic in 2. However
EtwleY — Exny € My(I(N)), Vv € SL(2,Z),
and {EZ |77 — Ef vy lk71  }iz2 form a basis of £,(I'(N)), i.e.
dim &(I'(N)) = {number of the cusps} — 1.

If k =1, we have Ep yy(2) € Mi(I'(N)). In this case {EFnlk7:}: has many linear
relations and we have

dim &, (I'(N)) = %{number of cusps}.

In this report, we study the analogue theory of Eisenstein series for Siegel modular
forms.

2. NOTATION AND SETTING

Notation
e Hy,={Z2 € M(C)|Z =2 Im(Z) > 0}.

0 1
® I'"=8p(9,Z) = {vy € GL(29,Z) | *rJgy = Jg}, Jg = (—1 (;])
9

e For v € I'Y, g by g matrices A,,..., D, are defined by v = (’éw g~r>
v Yy

o IY(N)={yeI?|Cy=0mod N}.

e I'(N) = {y € I'" | ¥ = 15, mod N}.

We define the space of Siegel modular forms of weight k with respect to I'9(N) by

hol

M (I*(N)) ={f: 9 — C| fley = f, Vy € IY(N)}

with flv(Z) = det(CyZ + D)% f(7(Z)), v(Z) = (A,Z + B,)(C1Z+ D). Ifg=1
we also require the holomorphic condition at each cusp.
For a Dirichlet character ¢ modulo N, we set

Mi(I5(N), %) = {f € Me(I'*(N)) | fley = w(det D) f, ¥y € T§(N)}.

Now we define the Siegel-Eisenstein series. For I' C Sp(g,Z), put I', = {y € I |
C,y = 0}. Let ¢ be a Dirichlet character with ¢(—1) = (—1)*. Then we define

(21) E%,(Z,5) = > w(det D,) det(CyZ + D,) *|det(C,Z + D,)|~2.

YEIF (N)oo\I§ (N)
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The right-hand side converges absolutely and uniformly on $j, for 2Re(s) + k > g + 1.
In particular if k > g + 2, Ef ,(Z) := E}, ,(Z,0) € Mi(I'§(N), ).

Remark. In the case of elliptic modular forms in Introduction, we consider the Eisen-
stein series with respect to the principal congruence subgroup I'(N). However since

E?g(N)(Z,S) = Z det(C,Z + D,)~*|det(C,Z + D,)|™%
YEI9I(N)oo\I'9(N)
2 k : , .
~ #(N) w(—l)z_:(—l)k EY ,(Z,s), (¢ is Euler’s function,)

it suffices to consider the Eisenstein series with respect to Iy (N) with Dirichlet charac-
ters.

Let Cy(f) be the constant term of the Fourier expansion of f € My(I'%(N)), Ly(I'9(N)) =
{f € M(I'*(N)) | Co(fley) =0, Yy € I'Y}. We put

E(I¥(N)) = M(I'*(N))/Le(I'(N)),
Ex(IF(N), %) = Me(IS(N), %)/ Li(I*(N)) N Mi(IF(N), 4).
Then it is easy to see that

Proposition 2.1. Let {7,} be a representative set of '(N)\I'?/I'S.. Then {E}ig(N)lk'y;l},\
form a basis of £,(I'(N)). In particular for g =2, N = p an odd prime and k > 4, we
have
: 2 1 4
dim &(I*(p)) = -2—(p - 1).

3. PROBLEMS

In the rest of this report, we consider the low weight case. First we recall the following
famous fact by Langlands [La]:

Theorem 3.1. EI'SW(Z, s) has a meromorphic continuation to whole s-plane.

Now there are following natural three questions:
Q1 For each Z € $,, EY, ,(Z,s) is regular at s = 07
Q2 E},(Z,0) is holomorphic in Z?
Q3 Calculate the dimension of E,(I"9(N)) (or E(IE(N),)).

These questions are first raised and solved by G. Shimura in [Sh2] except for Q3.
Instead of that, he considered the algebraicity of the Fourier coefficients of E,‘i,,¢(Z )s
which is an important number theoretical question. However the result of [Sh2] is
not sufficient to answer our Q3, because Shimura considered there only the Fourier
expansion of Ef; ,|xJy(Z, s), thus we can get no information for other cusps. Hence we

have to study the behavior of Ej’ﬁ,ﬂp at other cusps, in particular the Fourier expansion
of EX ,(Z,s).
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4. FOURIER EXPANSIONS OF EISENSTEIN SERIES

Let us forcus our problem to the case of g = 2 and N = p an odd prime number. Let
Sym?(Z)* be the dual lattice of Sym?(Z) with respect to trace form. Then

Symg(Z) = {h = (h”) | hi € Z, thj €EZ (2 7é ])}

Put e(X) = e*™™X) for a square matrix X, A[B] := 'BAB. We set Ay = {*(q1, ) €
Z? | (¢1,q2) = 1}. Then the Fourier expansion of E¥ , is give by (cf. [Ma, pp. 301-302])

EE,(Z,5)=1+Y. Y S, mk+20)&(Y[(E),mik +s,5) e(m( % qxgz)x)

q192 4q3
meZ (8 )ena/ (1)

(4.1) + D S(¥,hk+25)6(Y, hik + 5, 5) e(hX).
heSym?(Z)*

We shall explain the notation. The function ¢, is called the hypergeometric function
defined by

&, (Y, s, B) = / det(X + 1Y)~ det(X — i¥)Pe(—hX) dX,
Sym9(R)

with A € Sym?(R), Sym?(R) > Y > 0 and o, 8 € C. This function is studied deeply

by Shimura in [Sh1]. Roughly speaking, &,(Y, h, o, 8) is decomposed into the I-factor

part and the entire function part on o and 3. The explicit formula is as follows. For
sgnh = (p,q,7),

.g(B—a)k _* g + 1 -1 -

fg(Yy h;o, B) = #h-g g F(a+ 8- )Fg q( ) Ly p(B) !

(4.2) )
x det(Y)‘i——a—ﬂd+(hY)a-“—+’d (hY )P~ +5w(2rY; b, a, B).

Here di(X) 1s the product of all positive (or negative) eigenvalues of X, T',(s) =
amm=D/A T T (s — 4/2) and w(Y, k; a, 8) is an entire function on a and §.

Next we explain Sg(, h, s), which is called the (generalized) Siegel series. For any
T € Sym?(Q) we can write

V1/<51
T=U |%4 U,VESL(Q,Z), _(Vi,(?,-)zl, 51,>0
Vg/ g

by the elementary divisor theorem. Put 6(T) =[] 6;, v(T) = [[v: = det(T)é6(T). Now
we define

(4.3) Sy(w, h,s) = > PY((T))6(T)*e(hT),
TeSym9(Q) mod 1
p|6:(T) Vi
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which has the Euler product expression
Sg(w7 h, 3) = H Sg(lb, h, 3)
q: primes
with
> Y(&(T))s(T)*e(hT) q# p;

5@ b T€Sym?(Q)q mod 1
o(t:hy8) = > wT)IT) e(hT) q=p,
TeSym?(Q)p mod 1
pl6:(T),Vi
here Sym?(Q), = U, 31; SymY(Z). It converges if Re(s) > g, in particular Sy(, h, )
does not have a pole if Re(s) > g as explained above.

Remark. In the Fourier expansion of E:,w’ we substitute in the function £ & = k + s
and § = s, and study the behavior at s = 0. In the case of k > g + 1, the function &,
has zero if h # 0 thanks to the term I',_,(s). On the other hand the function Sy does
not have a pole at s = k > g+ 1, thus only A > 0 contributes to the Fourier coefficients,
and in this case w(27Y, h; @, 0) = 2*e(—2mhY).

If ¢ # p, the local Siegel series Sg(¢, h, s) is already studied by many mathematicians
for example Kaufhold, Siegel, Kitaoka, and finally Katsurada gives the explicit formula
in [Kat]. We quote Kaufhold’s result of degree 2.

Theorem 4.1 (Kaufhold).

[ L(s — 2,9)L(2s — 3, 4?) 0.
L(s,9)L(2s — 2,9?) =
L(zs - 3) ¢2) L
I;ISg(w,h,S) = J L(37¢)L(28_2’¢2)EFQ rank h = 1,
q7Fp
L(S - 17 th) _
I, 0)L@s - 2,07) quGq rank b = 2.

Here L(s,1) denotes the Dirichlet L-function, x is the quadratic character associated
with Q(v/— det 2h)/Q and F, and G, are polynomials in q=° depending on h, such that
Fy =Gy =1 for all but finite q.

Remark. In [Sh2] Shimura was interested in the holomorphy or the algebraicity of the
Fourier coefficients. Then it suffices to consider twisted Eisenstein series E¥ |xJy(Z, 8),
whose Fourier coefficients are given by

p2k+20) Z <H S3(¥, h, k+ 23)) 52(%}’, h,k + s, s) e(h—;(—).

heSym?2(Z)* \g#p
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In this case Kaufhold’s results are enough to investigate the Fourier coefficients. Qur
aim is to give the explicit Fourier coefficients of E;,“M(Z, s), thus we need to calculate

Sp(w’ h7 S)'

5. RESULTS

In this section we give an explicit formula for S5(i, h,s). There are three cases
according to the rank of h. It suffices to consider the case for diagonal A; indeed there
are natural bijection Sym?(Q), mod 1 ~ Sym?*(Q,) mod Zp, thus

S5, h,s) = > P(v(T))6(T) *e(hT),
TESymzfv?‘sp;) mod Zyp

and for any h € Sym?*(Q) there exists M € SLy(Z,) such that h[M)] is diagonal.

Lemma 5.1.

0 Y2 # 1,

-1 1-2s
Fw.0.5)= -0 BT a1z,

p3—2s(1 +pl—s)
(1 —p?*)(1 = p3~%)
Lemma 5.2. Assume that v is a non-trivial character. Then for h = diag(t,0) with
ord,t =m,

Y =1.

0 Y #E L
SQ(wv h,,S) = b - v
a(p~®) + -1—_(% P2 =1.
Here a(p™®) and b(p~*) are polynomial in p~* defined by
. -1 m+1 e
a(p™*) = p(-1)E= S p-2ok,
pT =

b(p™*) = w(=1)(p — 1)pE-2Im et

Lemma 5.3. Let G(¢) be the Gaussian sum of ¥, x, = (;) The value €, is defined by
G(Xp) = &py/P. If h = p™ diag(a, p*B), (p,aB) = 1 then S5(¢, h,s) = Sy + S, with

rzr=1p(3—2s)k—1 — Ef,p if =%, and t = 0,
5 = ] TP (- Dl f v =x, andt 21,
Vxp(aB)G(YXp)Ep /P if  # xp and t = 0,
|0 fY#xp andt > 1.
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(

0 ift=0

t—2
E:p—(2m+2)s+3m+1{(p _ 1) Zn?_-l p(3-2s)n _ p(3——2s)t/2} wa = Xp, t>2 s even,
~(2m+2)s+3m+1
EpP

X {22 () + gp(p — 1) ,F, pO-20m) Y =Xy, t is odd,
p—(2m+2+t)s+3m+(3t+3)/25p,;Xp(ag)(;(w)g(qﬁxp) if Y # xp, t > 2 is even,
| p A 2HDs+3m+(3641)/ 24 (0,8) G () ? if ¥ # Xp, t is odd.

Gathering the above lemmas, we can give the explicit formula for the Fourier expan-
sion of EX (Z,s).

Remark. Y. Mizuno [Miz] gave the Fourier expansion of E¥ ,(Z) for k > 4 in another
way (Koecher-Maass lift of the Jacobi Eisenstein series).

Outline of the proof. Our first strategy is to rewrite the element of T & Sym?*(Q), by
symmetric co-prime pair. For C, D € M,(Z), we say C and D are symmetric if C''D =
D*C and co-prime if there exist X,Y € My(Z) such that CX + DY = 1,. Let
Mgy = {(C, D) € My5,(Z) | C, D are symmetric and co-prime, det C # 0}.
Then we have the one to one correspondence between GLy(Z)\ M4 and Sym?(Q) by
(C,D) = C-'D, and
§(C7'D) =|detC|, v(C~'D)= +detD.
We set
MG ={(C,D) € My |detC = p*, C = 0 mod p},
and
MG = {(C,D) € My,(Z) | det C = p*, C = 0mod p, C'D = D'C}.
In Mvg we only require the symmetric condition. The important fact is:
For symmetric pair (C, D) with det C # 0, we have C = MC',D=MD'
%
(*) with (C", D) € M,.
Now we can write
S5, h,s)= > > 4(det D)(det C)~*e(hC~1D),

C DmodC
(C,D)ESL(?,Z)\M’Z’

= > > (det D)(det C)~*e(hC ' D).
C DmodC
(C,D)eSL(2,Z)\ME
The second equation follows from (*), for if (C, D) are not co-prime we can write C =
MC'and D = M D'; however det M must be divisible by p, ¥(det D) = y(det MD') = 0.
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Now we study the set {(C,Dmod C) | (C,D) € SL(2,Z)\M5}. Let T(k,1) =
diag(p*,p**!). Then by the elementary divisor theorem, C runs thorough the set
SL(2,Z)\SL(2,Z)T (k,!)SL(2,Z) with k > 1,1 > 0. If | = 0 a representative set is
T'(k,0) only, while if [ > 1, it is given by

{T(k,l)V ‘ V= ((1) "1") , u€ Z/p’Z} U {T(k,l)V I V= (fii (1)) , UE Z/p’—lz} ,

For such C = T'(k,!)V, D mod C runs through the set

a b\

We shall prove Lemma 5.2 only. Othere cases follows from the similar calculation.
Let h = diag(t,0), t = p™t’ with (¢,p) = 1 and k' = diag(#',0). Then

Hh) =3 Y i T vlad - ¥)e (p#m (‘; d,f_,) <h'[v-11>).

k=1 l=0 a,beZ/p*Z
deZ/pc+'zZ

a,be Z/p*Z, d € Z/pk+lZ} )

Let us decompose the summation with respect to ! and V.

")

( change a — pa; + a, b — pby + b, d = pd; + d)

S 5 (i) 5 o)

k=1 ay,b1,d; €Z/p*—1 a,b,deZ/p

In this case V' = 1. The summation is

Zp"”” Z Y(ad — b?)e (

=1 a,b,deZ/p*

(the first summation remains only k < m + 1)

iy t'a
— Z p—2ks+3k—-3 Z z/)(ad _ b2)e (pk-m) .
k=1

a,bdeZ/p

For the summation of a,b and d, if a = 0 then
Zw(_ - { w2 $ 1’
(=Dp(p—1) +*=1,
while if a # 0 we can change the valuable d — d + a~1b% and

Z ¥(ad)e ( ):0.

a#0,b,d




Hence ! = 0 part is
0 VP #E 1
w( 1)(p _ 1) -2 Zm+1 (1—2s)k 7»02 =1.

1>1,V=(}%)| The summation is

(5.1) Zzp—(2k+l)a Z Z { 4 —(a — 2ub + _;_{_1)}

k=1 I=1 u€Z/p! a,beZ/p*
dGZ/pk'H

Then the summation with respect to a:

Zw(a( )_—. 3 oe (kt?nll)zw(a)e(

a€Z/p* a1€Z/pk-1 a€Z/p

remains only when k = m + 1 and equals to p™G(¢). Thus

(5 1) = G(¥) Zp~<2m+2+l Ny (d)e{ (—2ub + 3‘1-7,11)}

u€Z/pt beZ/pmt!
deZ/pmtiti

(looking at the summation for b, it remains only plu so we change u ~ pu)

= G(y) Zp—(2m+2+l )s+2m+1 Z Z w(d)e (gj__‘f) .

u€Z/pt~1 deZ/pm+1+
The famous formula for the Gaussian sum shows
Z . (ﬂ) _ {Xp(d)p(“z)/zG(Xp) l is even,
ey p-t pl-1)/2 l is odd.
Thus

(5.1) G('LD)G Xp Z —2(m+1+1)s+2m—+1 Z Xpw(d)

=1 dez/pm+2l+1

0 Y # Xp
w( 1)(p - 1) Zl lp 2(m+1+1)s+3m-+31+1 ?./1 = Xp-

The lower term is nothing but b(p~*)(1 — p3-2)—1

!>21,V=(";) Onecan show similarly that this part vanishes.

We conclude the proof of Lemma 5.2.

135
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6. DIMENSIONS OF THE SPACE OF EISENSTEIN SERIES

As an application of the previous section, we calculate the dimensions of the space of
Eisenstein series in low weight case, i.e. k = 1,2, 3. First it is already known in the case
k=1.

Theorem 6.1 (G.).

-;—(p2+1) p =3 mod 4,
0 p =1 mod 4.

dim & (I'*(p)) =

Hence it suffices to consider the case k = 2 or 3.

Remark. In the proof of Theorem 6.1, the author use the theta series to construct the
element of & (I"%(p)). In particular & (I'@(p), ) = 0 if ¥? & 1.

6.1. The case of weight 3. Let k£ = 3. By (4.2), Theorem 4.1, 5.1, 5.2 and 5.3 we can
prove the following result in another way, i.e. using the Fourier expansion (4.1).

Theorem 6.2 (Shimura). For any ¢¥(—1) = —1, ES5(2) = E} 5(2,0) € My(IF(p), ).
Moreover Co(E3,) = 1, Co(E3 4l3J2) = 0.

As far as the author knows, there were no assertion for Co(E3 ) before. Now the
main result of this subsection is as follows.

Theorem 6.3. Let p be an odd prime.
. 1
dim &(I*(p)) = 5(»" - 1).
First we shall show the following.

Theorem 6.4.
3 yY:=1,
2 YP?#1.

Outline of the proof of Theorem 6.4. The structure of the boundary of the Satake com-
pactification of I'2(p)\$, is as follows:

dim & (5 (p), ¥) = {

1 M
I, —

Ja
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Here
00 -1 0
01 0 0
M“1000
00 0 1

We explain the meaning of the figure. The lines I; and [ represent the modular curves
I3 (P)\9: and I3(p)" % (with IE(p)” = JIT(p)Jy) respectively. Both of modular
curves have 2 cusps co and 0. These modular curves intersect at both of the cusp 0,
which also corresponds to the 0-dimensional cusp M of I? (P)\$a.

The above figure shows dim £;(I'2(p), ¢) < 3.

Lemma 6.5 ([Gu, Lemma 3.7]). Let ¥? # 1. For any f € M (I'é(p),v), we have
Co(fleM) = 0.

Thus if 9? # 1, we have dim E(Ié(p),v) < 2. Put

Fou(Z):= Y ES,|sv(D), 7(T)=(_012 éf)

TeSym?(F. p)
Then F2 ,(Z) € M3(I$(3),%). We can calculate the value of E}, and F3,, at each cusp:

1 y=1
Co(ES 5157) = {0 y ]\if 7 Co(F2,l3v) = {
= y V2

Thus if ¢? # 1,
dim & (I (p), ¥) = 2.
Next we consider the case 92 = 1. We need to know the valu Co(E3 ,|sM), however if
one consider the Fourier expansion of E3 ;1M , then the “Siegel series” does not have the

Euler product expression. We use the following technique. Let ® be the Siegel-operator:
for z € 1, f € Mu(I3(p), ),

@(f)(=) = lim f ((0 OA)) € Mu(I3 (), %).

Siegel-operator is nothing but the restriction of the Siegel modular forms to the 1-
dimensional cusp of the Satake compactification. The above figure shows

Co(fleM) = Co(@(f)Ix1), VF € Mc(IE(p), ).
We can calculate the Fourier expansion of <I>(Eg,¢(Z )) using the result of previous section,
especially Lemma 5.2, and write ®(E},(Z)) by using elliptic Eisenstein series. Thus we
know the Fourier expansion of ®(E] ,)1J1, and finally get C, (E3,(2)) =0.
Now put
G:= Z E§,¢lsa(cl, d2) + Z Eg,¢|3ﬁ(d1), € M3(I3(p), %)

c1,d2€Z/p di€Z/p
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with
0 0 0 -1 00 -1 0
-1 0 O 0 01 0 O
= d =
alend) =1 1 o g4 |PPW=1 4 4 ol
0 0 -1 ¢ 00 0 1
then
1 y=M,
Co(G®|3v) = 7
0 ’)’=14,J2.

Thus E3,, F2, and G2, are linearly independent, which shows dim &(Ig(p),v) =
3. O
Theorem 6.3 follows from Theorem 6.4 and the theory of the representations of finite

groups. We can show that dim &;(I2(p),v) equals to the number of the irreducible
representation of Sp(2,F,), which appears £(I"?(p)). For the details see [Gu].

6.2. The case of weight 2.

Theorem 6.6 (Shimura). Assume ¢(-1) = 1. Ify® # 1, EZ (Z) = E?,(Z,0) €
My(T2(p),v). Moreover Co(E34(2)) =1, Co(E2 412 J2(Z)) = 0.

As is similar to the case of degree 3, we can show that if ¢¥? # 1,
dim &(I¢(p), ¥) = 2.

Let ? = 1. Unfortunately in this case E;;’,w(Z, 0) is not holomorphic in Z. However
using the result by Boecherere and Schmidt [BS], we can construct the Eisenstein series.
Put

E2,(Z,5) = CL(2+2s,9)L(2 + 4s,9?) det(Y)° E2 ,(Z, s),
with some normalizing constant C. Then by [BS, Proposition 5.2. b)]

E} ,(2) = E},(2,-1/2) € My(I3(p), ¥).

Let ¢ = 1. We use the following fact of the ellptic modular forms: dim & (I3 (p)) = 1
and a basis f take non-zero value at both cusps 0 and oo. Then the figure of the
boundary shows

dim & (15 (p)) = 1.
Finally consider the case ¥ = (5) = Xp, Which occures only when p = 1 mod 4, since

¥ is assumed to be even. We have three elements in £(I'2(p), x,): Eg,w’ f}?’w, 5’12,,1# like
weight 3 case. However

1 Y= 14a —p 7= 14,
CO(E;@D'YY) =40 ) v =M, Co(ﬁ:,w‘ﬂ) = (i v =M,
—F 7= J47 5 7= J4a
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and
C’o(éf,’,pbv) = 0 for all 4.

Thus we can get only 1 element in & (I2(p), x,).

To get other elements, we use the theory of theta series. There exist Q € My(Z) of
even positive definite with det Q = p. PutQ’ = pQ~!. Then the theta series is defined
by

1
Q — nd
°(2)= 3 e(zQIN2).

NeM; 4(Z)
We have §9(Z),69(Z) € My(I'¢(p), x,) and

1 Y=14 1 v =14,
1 1
Co@®) =45 7=M %)= = T=M,
1 ﬁ 110\/173
—_ v o= JQ, - v = Jg.
D D

Now we get 3 elements E? ;, 62 and 6°'. However since

1 1 1
1 1
det 0 7 rml = 0
_1 1 1
P p P

these are linearly dependent in & (I (p), x,), so we can only know
dim &(I¢(p),¥) = 2 or 3.

At present the authore can not determine which situation will occur. As a consequence
we have

Theorem 6.7.

2 W # 1,
dim &(IE(p),v) =< 1 Y =1,
2or3 y¥={(3).

Theorem 6.8. (1) If p = 3 mod 4, then

dim £,(I'*(p)) = S (p* + 1)(p* — p - 3).

N —

(2) If p=1mod 4, then

dim &(I*(p)) = %(1192 + 1)@ —p—3) or -;—(zo2 +1)(p* —p—4).
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