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2 Definition of the Eisenstein series

Let i=+/—1, s=0+it € C and H be the upper half plane. The non-
holomorphic Eisenstein series for SL(Z) with weight 0 is

E(z,5) =YY |cz+d|™. (1)
{c,d}

Here z = x+iy € H, and the summation is taken over (*}), a complete system of
representation of { (§ 1) € SL2(Z) } \SL>(Z). The Fourier expansion is as follows:

$(25)E(z,s) =E(2s)y* +vmE(2s — 1)%?},1-4

oo 2
+ ﬁ’%\/y' Y ns‘écl_h(n)Ks_x (2mny) cos(27nx), @
n=1 2

where Ky (1) is the modified Bessel function and o;(n) is the sum of s-th powers
of positive divisors of n. We call the first two terms of (2) are the constant term of
E(z,s).

*Supported by Grant-in-Aid for Scientific Research (C).



3 y-aspect of the Eisenstein series

It is well-known that the constant term represents the y-aspect of E(z,s) as
y — oo. Because the Bessel function in (2) decays exponentially. Therefore there
exist positive constants A; and A, depending only on s such that (except on the

poles)
|E(z,5)] £ A1yRe®) 4 A5yl -Rels) (y — o). 3)

The invariance of E(z,s) under the action of SL,(Z) gives the asymptotic behavior
when y — 0. For every y > 0, except on the poles,

Al(y—Re(s) +yRe(s)) (Re(s) > %)
|E(z,s)| £ {Az(y_HRc(") + yl—Re(s)) (Re(s) < %)

The t-aspect of E(z,s) is not simple. The non-constant terms in (2) are not
negligible when ¢ — oo,

Empirically, the behavior of E(z,s) respect to Im(s) = ¢ is similar to the be-
havior of {(s)2,

“)

E(z,5) <?= {(s)%

Problem.

Investigate the asymptotic behavior E (z,s) with respect to Im(s) = ¢.

4 Definition of the Airy Function

The modified Bessel function Ky (7) (v, 7 € C) is defined by the integral
Ky (7) = 17uv—1exp L+ dy) du
Y 2) 2 u ’

which satisfies the modified Bessel equation:
d2w+1dw_ 1+V2 w=0
dt?  tdt 2 )"
For 7 € R, the Airy function is defined by

T (1, 1o (2.3
Al('t) /COS (§u +Tu> du = —\/TjtTZK§ (“ ) ’

0
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which satisfies the differential equation

d?w c
—s = TW.
dz?

The representation of Ai(7) for 7 € C (|argt| < %) is
2,3) =
exp (~7) : 1\
i(f)= —~— 7 -1 —u? | u"Zdu.
Ai(7) oy b/exp( T u) cos <3u ) u 2du

In which fractional powers take their principal values.

The modified Bessel function Kj;(7) decays exponentially for large 7. The
asymptotic expansion of K; () for the cases 7/t £ 1 or T —t = o(1'/3) are obtain-
able by using saddle-point method.

However, in the transitional regions, namely 7/z is nearly equal to 1 while
|7 —t| is large, the investigation becomes much more involved. As an another ap-
proach, the theory of asymptotic solutions of differential equations are employed,
where the Airy function plays a fundamental role (cf. [4], 7.4.3, [14]).

5 Main Theorem and Corollaries

Theorem 1 Let z=x+iy € H andt > 289.Assume that y < $3-8 Jor any positive
constant 6, and N 2 0 is any integer satisfying t — (4log t)tzit'} < 2mwyN < t. Define

t+ {2 — (2my)?}2
2wy

‘ 1
%r,, =tlog {* — (27ny)?}?.

3
Then for every € > 0,

lvi L N 1 1 2
1y — 4V2r7tly7 —it . 2 21~ T |
E(z,3t+it) =% ng,ln “ i (n) {1* — (27ny)?} " * cos(2mnx) T Ai(—17 )
Fyitit 4 yi-itei® 4 0 (y-%t—% (logt)1+€ +y~3 (logr)3+¢ log(t/y)) :

Here €% = =24 £ (2it)I'(it)/§ (2it)T(it). The implied O-constant depends at most
on € and 4.

Corollary 1 Suppose t —t3+% < 2yM < t. For every € > 0,
1, .\ _ 4vaniyt M 2 _ 211 co5(2 2, _=m
E(z,5+it) = fT_LYH-h‘t Y n~* o (n) {t (27ny) } cos(27mnx)cos(5%, — F)
n=1

+ yrHit g yh-itgio L o (y—%t—%(logt)%+8 +y~tti(logr)$+e log(t/y)) .



1 .
Corollary 2 Let z = x+iy € H. Assume that co <y < t3™1 for some positive
constants cqg and c1. Then for every € > 0,

E(z,5+it) =0 (y"% t%“) as t— oo,

Remark. Corollary 2 is a convexity bound for the Eisenstein series which in-
cludes the y-factor.

6 z-aspect of the Eisenstein series

Knowr: fact 1. A convexity bound is known (see [16] (p. 258)), which is a
consequence of the Phragmén-Lindel6f convexity principle;

E(z,} +it) = 0,(t2+¢),

Known fact 2. The spectral theory of automorphic forms gives the following
estimate:

T
1
Y i@+ —/IE(z, i) 2dt = 0 (T +Ty).
0<;<T 2750

Here {u;} is an orthonormal system of cusp forms for SL,(Z) with Au; = 3+
t2)u;. (See for example [6], (13.1).)
A convexity bound for the Riemann zeta-function is

$(4+ir) = O(t3+e).

Further, the sub-convexity bound, the classical result for the Riemann zeta-
function due to Hardy-Littlewood is

§(+ir) = O(t6+¢).

The mean value theorem of the Riemann zeta-function on the critical line is
T
/M(% +it)|?dt = Tlog T + (error).
0

These facts for the Riemann zeta-function support the following conjecture.

The Lindel6f hypothesis For any positive €,
L3 +ir) = O(%).

(This is true if the Riemann hypothesis is true.)
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From the standpoint of the similarity between E(z,s) and {(s)?, we set up the
following

Conjecture. Assume y 2 ¢ for a positive constant cg. For any positive
€,
1
E(z,5+it) = O(t® + y2) as t— oo,

Here the y-factor comes from the constant term.

7 Jutila’s formula

Theorem (Jutila 1984) Let ¢ = 127, 8 be a positive number, t® < N < t/12x,

and
N' =t/2n+N/2— (N*/4+Nt/27m)*.
Define
f(#,n) = 2tarcsinh/7tn/2t + (n2n? + 27nt) % + 1 /4.
Then,

CG+)[ =24 £ (~1ydent (3+ ) Feos(70,m)

Nl
+2 Y d(n)n~icos (tlog(t/2nn) —t — X) + O (N%t—%(logr)z +10gt) .
n=1

Remark 1. Jutila’s formula is a differentiated version of Atkinson’s formula. In
the proofs of these formulas, Voronoi’s summation formula and the saddle-point
method are used as the main instruments.
Remark 2. There are some differences between Theorem 1 and the formulas on
the square of the Riemann zeta-function. Atkinson type formulas usually have
two summations, whereas Theorem 1 and Corollary 1 consist of one summation
Y 1<n<n- This difference is explained by each approximate functional equations;
1 ) 4 :
F___ZIEE(;)I) i d(n)n*~! + O(N’i"" logt),

n=1

$2(s) = f;d(n)n-’ + 21
n=1
where 06 £ 1,NN' = (t/2r)2, N2 1,N' 2 1.
For the case of E(z,s), the Fourier expansion (2) itself may be regarded as one
self dual (approximate) functional equation except the constant term. Originally
Voronoi’s summation formula consists of one summation.



8 Other asymptotic expansions

Define the holomorphic Eisenstein series for SL(Z) as
Ey(z) = Z (m+nz)™".
(m,n)eZ2\(0,0)

Theerem 2 (K. Matsumoto [9]) Assume O < |arg(z)| < & and Re(s) > —N + 1
for any positive integer N, then for
2> 1,
Ey(z) = (1+€™){(s) + O(|z| ReON),
For
lZl<1,

Es(z) = (1427)(1+ ™)L (s) + (75 — e7is) Cs-f_—l 1 (1 + e"”+e“""’> ¢(s)

t @ =™ () € 0L RZ + 0
1<k<N=1,k:0dd
Define the non-holomorphic Eisenstein series of weight k attached to SL,(Z) as

1 & _ -

E(zs)=75 Y, (cz+d)¥lez+d|™, (5)
d=—c0 ,
c&c,d):l

and define Ramanujan’s ®-function

o0

Dy, 5, (e(2)) = Z l‘;‘l;ze(llbz) = 2 O, —s, (1) 1%2e(12).
h,b=1 =1

Theorem 3 (M. Katsurada [8]) For any z € H and any integer N > 0 the follow-

ing formula holds in —N < Re(s) < 1+N exceptat s = 1.

Val(s—1/2){(2s—1) 1-25 | (2m)*

Eo(z,5) =1+ T(s)C(25) y ﬁm {Sn(s;2) +Rn(s32)}.
Here
N-1/_1\n —_
swing = L Oy et amy
with

qb;l 52 (e(z)) = Ps, 5, (e(2)) + Py 52 (e(—z))

The remainder term Ry(s;z) is estimated as

RN(S;Z) — O{(ltl + 1)2Ne—27l’yy—Re(s)—N} .
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Remark. Theorem 3 yields various known results on Ey(z, s), including its func-
tional properties and its asymptotic aspects as z — 0. Especially the Mellin-
Barnes integral transformation shows that the functional equation of Ey(z,s) re-
duces eventually into the simple property

¢51132 (e(z)) = q)sz,sl (e(z))
Theorem 4 (M. Katsurada, T. Noda (to appear))

I'(2s+k—1 2s+k—1 —Dg—
E(z,s) =1+ (—1)/22n Ikl SPst) (ay) 120k

—1)k/2 2m)2s+k
+ e (Sh+k/2(5, 25+ K:2) + Ry (5,25 + K:2)}

k/2 (9 gp)2s+k

+ e {Sn k2 (s + k. 25+ ks —2) + Ry_ij2(s +k, 25+ =2)}
holds in the region —N —k/2 < Re(s) < N —k/2+ 1 except at the complex zeros of
§(2s+k) and at the real poles of Ey(s;z). Here the remainder terms are estimated
as

Ry 1i/2(8:25 +k;2) = O{ (|| + 1)V Hke=2my—0—N=k/2}
and
Ry_t/2(s +k; 25+ k;~2) = O{(Jt] + 1) k= 2mry=0-N—k/2}

Remark 1. The asymptotic expansion of Ei(s;z) established by transferring
from the derived asymptotic expansion of Ey(s;z) (Theorem 3) to that of Ej(s;z)
through successive use of Maass’ weight change operators.

Remark 2. Theorem 4 also gives a new alternative proof of the Fourier expan-
sion of Ej(z,s), consequently gives new proofs of various results on Ey(z,s), for
example, functional equation, special values, the Kronecker limit formula, the
eigenfunction equation for the non-Euclidean Laplacian and so on.

9 Outline of the proof of the main theorem

Balogh [3] gave one uniform asymptotic expansion of the modified Bessel
function by using Airy functions. Balogh’s result is based on Olver’s works. The
following proposition (Olver [14], Chap.11, p. 425) is the uniform asymptotic
expansion of the modified Bessel function of imaginary order, which is crucial in
this report.

Proposition 1 (/3], Olver [14] p.425) For t € Rsg, m 2 0 and u € C with

|arg(u)| < m,
1

Kulow) = Frexp (—31) (755) * {aic-3g) £ 40
+t_§Ai’(—t§§)':g;£""§§l +ezm+1(t,.§)} :



The Airy function Ai(7) (7 € R) decays rapidly as 7 — oo, and decays slowly
(with oscillation) as T — —eo. More precisely, we have following

Proposition 2 (1) For t € C with |arg t| < &, we have

exp (—%r%) n—1 5 3y
Ai(t)=——_2 Vg (— 1'2) + (error).

271'% 1:21f ,;, 3
(1) For T € R, we have

Ai(-1) = ——
mITd =0
In (1) and (11), fractional powers of T take their principal values.

On the critical line s = % + it, we divide the summation of (2) into five seg-
ments:

C(142it)E(z, 4 +it) = So(z,t) + S1(2,2) + S2(2,1) + 83(2,2) + See(2,2).

Here

So(z,1) = §(1+2tt)y7+“+\/_§(2,t) o (i)”)y’f"".
2

For j=1,2,3,

Sj(Z,t)=47t%+itr(%+it)—l\/-)7 Y n*o_zu(n)Ku(27ny) cos(2mnx),
Nj_1§n<Nj

and

Se(z,1) = 47T (L +ir)"\ 5 Y n*o_zu(n)Ki(27ny) cos(27nx).

n=N3

Applying the estimations Proposition 1, Proposition 2 and
{(1+i)™" = O((log#)3 (loglog)3) (r22)

to Sj(z,t), we obtain the the proof of Theorem 1.
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