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Paramodular form on GSp(2,A)

TAKEO OKAZAKI*

Abstract
We give constructions of automorphic forms on GSp(2, A) which are fixed by paramodular groups.

Introduction.

Let A be the adele of Q. Let II(G) be the set of equivalence classes of admissible representations of G
(G may local or global). The 6-lift from GO(2,2,A) to GSp(2,A) provides Siegel modular form whose
spinor L-function (of degree 4) is of the following type A) or B),

A). a product L(s,01)L(s,03) for 0; € [I(GL(2,A)). 01,02 have a common central character.

B). L(s,0) for 0 € I(GL(2,L,)). L is a real quadratic field, and o has a central character which factor
through the norm map L* — QX,

We can identify GL(2,Q) x GL(2,Q) or GL(2, L) with GO(2,2,Q), roughly. By Howe and Piatetski-
Shapiro (3], it is known these 6-lift is non-vanishing and generic, in almost all cases (remark there is a
non-generic case, see Theorem 5). However, nobody gave how to construct them and what congruence
sugbroups fixes the §-lifts, as far as we know. So, in this article, we shall give the method to construct
them. To state our results, we racall some notation and define some groups. For an arbitrary commutative
ring A, GSp(n, A) is the group of g € GL(2n, A) such that for some \(g) € A%

n T4in n ""In
y[(}" Oi ]‘g=a\(g)[(}" 0, ]

where g denotes the transpose of g. In the case of n = 2, typical unipotent elements of the maximal
parabolic subgroup of Sp(2) are written as

(1)

OO
OO M
-
-O ® #

—t

We fix the standard additive character ¢ on Q\A. For 7, € II(GSp(2,Q,)) and c;,c2 € Q, let
W(te,,c5: w) C Ty be the space of functions satisifying

W(ug) = ¥(crt + c28)W (g)
for u € U(Qy).
(Gamma zero type congruence group)

M(n,Z) M(nZ)

e (W) = [ NM(n,Z) M(n,Z)

] N GSp(n, Z).

Local I'{™(NZ,) is defined, similarly (and other groups are also).
(Paramodular group (of degree 2)) Paramodular group K(N) of conductor N (i.e., of the polarization
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(1, N)) is defined by

Z Z N-Z z
NZ Z2 2z Z
Nz Nz z Nz |N6G5r2,Q).
NZ Z 2z Zz

(Semi-paramodular group) Semi-paramodular group K (N, N’) of level (N,,N’) by

Z I Nz Z

NZ z 2z z
NN'Z Nz z Nz |NG5(2,Q).
NZ Z 2z z

K(N) =

K(N,N') =

For n, € 63, we say a function f on GSp(2,Q,) is n.-semistable on K(NZ,,N'Z,), if f satisfies
f(29) = nu(2)f(g9), and f(gu) =n,(d1)f(g)
for g € GSp(2,Q,), z € Z2(GSp(2,Qv)) ~ QX, and

*

a, € K(NZ,,N'Z,).

*

* % # »

* £ * *
*

* ¥ * »

Then, we shall describe for the case A).

Theorem 1 — Let 0,,02 € II(GL(2,A)) be satisfying the follwings.
o 03 € II(GL(2,A)) is cuspidal.
® 01,02 have a common central unitary character 1.

o At every v both of 010,030 have Whitakker models associated to 1 (we denote by W(oiv,%v) the
space of such Whitakker models).

Take automorphic forms f, € oY, fa € 03 so that Wy = ®,W1, € W(oY,¥) (o) is the contragradient of
01) and W3 = @,W3, € W(03,v)

* *

Wielo) =Wlo| 1 1 D=, |1 | erfuiz,)

Waplg) < Waplo [ 7 | ) =melaWmte). [ 2 1| er®mz,)

Then, ‘
1) the 0-lift F = 63(f, ® fa,) (defined in (5)) has a global Whittaker function Wg™! = @,Wg,* such
as Wzl (1) # 0. Wi, is n;'-semistable on

K(c(o1p)c(02p), ¢(mp))
Jor the conductors c(0yyp), c(np). At archimedean place, if W; has weight x;, then the highest weight of F
is

(m + K83 —|Kk1 — Ka|

2 2 )

(Remark that K1 + K3 is even, since 01,032 have the common central character.)
2) If both of Wy, are newforms, then

Zn(s, W}.';l) = L(s, 0Yp)L(s,03)

where Zn(s, Wr,!) is Novodvorsky’s zeta integral.
3) F is cuspidal unless o, is not cuspidal or 0y = 03. If 0, is not cuspidal, then the degenarate Whitakker
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function W is not zero. If oy = oq, then the degenamte Whitakker function Wg’l is not zero.
4-3) If 01p, 025 are principal representation m(p1, mppy ') (12, Mpps 1),
Wy € nppz 'ut X papit % p.

Here o3, x4 1, is the Borel parabolically induced representation (see [10] for the deﬁmtwn )
4-i) Letv:Qp >z -+ la:lp Suppose 0,p is a principal series reperesentation xn (v, n'v=2), where x is
a character such as x*n' = 1, ,and x7 means the x-twist of © for = € I(GL(2)). Then,

W}?‘p—l, € x’lu““ag,, % xv%,

the Siegel parabolically induced representation.
4)-iii) Suppose o1p is o special reperesentation xo(v'/3,v=1/2). Then,
"l W € G *x o35, v~ V%)

which is a generic constituent of v/3x~1x % v=1/3x (ezplained below).
4-iv) If 01p = 0ap,
W}-’p—l, Wg’pl € 1gL(1) X O2p,

the Klingen parabolically induced representation.

Remark 2 In the case of np = 1, if we take newforms Wyp, Wa,, then Wg,, is the newform, i.e., the
paramodular vector for K(N1N3Z,) (c.f. [9]).
Remark 8 Ezcept the cases §-i),ii), i), W};"l belongs to supercuspidal representations.

As explained later, we need the Whitakker models for the nonvanishing of global W ~!. However, in the
case

= x(det) € II(GL(2,A))

also, we have the nonvanishing of W}f. We recall the local Saito-Kurokawa representation due to Schmidt
[11].

Proposition 4 (local Saito-Kurokawa representations.(Schmidt [11])) — Let n be a local, ir-
reducible, admissible, infinite-dimensional representation of PGL(2). Let v be a character of GL(1).
Assume © # w(v3/3,1~8/2), Then,

V25 q v~1V37 = QY 3%, v~V 37) + G 3x, v~V 37),

G/ x,v=1/27) is the unique irreducible subrepresentation, which is generic. Q(Vl/’rr v=Y27) is the
unique srreducible guotient, which is not generic.

They call Q(v*/2x, »~1/2¢) local Saito-Kurokawa representation. Remark the elements of G(v/?x, v—1/27)
are given by 4-iii) in Theorem 1.

Theorem 5 — Let 0; = x(detz and o3 € NI(GL(2,A)) be as in Theorem 1, (consequently n = )8 .)
Then, the Whitakker function Wg™' of F = 03(x(det) ® fa, ) is vanishing. But the degenerate W w3
not vanishing, and

W’ € QX agp, v/ ?x).
Next, we shall describe for the case B), i.e., from Hilbert modular forms over real quadratic field L.
Theorem 8 — We fiz addtiive character on L\L, by

YL :=voTry/q.

Take irreducible unitary cuspidal representations o € II(GL(2,L,)) so that



30

e the central character w of o is written as 1o Ni o by some character 1) of Q%\AX:
w =1noNpnq.

o At every place w of L, o, has Whitakker models associated to V¥r.,.
Take an automorphic form f € v whose Whitakker function W = ®,W,, € W(aV,¥L) satisfies

Weeo) =Wala| I % |) =05 Walo)
Jor any

z ol [0l ) r®(eony | %

x * 1]°0 ¥ 1
where 8;, s the discriminant. Then,
1) the 8-lift F = 63(nf, ) (defined in (9)) has a global Whittaker function Wy = ®.,W}{;‘ ! such as
WE™H(1) #0. Wiy is 7, ! -semistable on

K (Neale@)sh).cm)).

At archimedean place, if W has a (multiple) weight (x1,x2) (remark that Kk, K3 is even, by the condition
for the central character), then the highest weight of F is

K1+ Ky ~|Ky — K3l
2 2 :

2) If W,, is the newform, then

1,-1y _ [ L(8,09,)L(s,05,) ifp is decomposed to 1P,
Zn(s, Wg, )"{ L(s,a?i T otherwise

3) Let x1 be the quadratic character of Q assoiciated to L/Q. F is cuspidal, unless
o is a base change lift of o1, € II(GL(2,A)) and 9 = wo, JaxXL-

In this case, the degenarate Whitakker function Wg'l is not zero.
4) When p is decomposed, things are similar to Theorem 1. We mention about the case p is ramified or

innert.
4-i) Suppose and op = n(p,wpp"?). Take py so that p? = u. Then,
Wit € npx X Xz % 1.
4-iii) If o is a local base change of 01, € TI(GL(2)), then Wg, is not vanishing and

1,-1 1
WF‘p Y F’P GXL >d0’1p.

Remark 7 The additive character 1. has conductor 87.. Hence the Whitakker function W,, is semi-
invaeriant on

Ow 6710,
or,c(0w) Ow

Take a deinite quaternion algebra D(Q) defiined over Q so that
D, = (D(Q) ® L), splits at every finite place of L.
When ¢ is holomorphic and

] N GL(Z, Ly).

K122, and K3 > 2,

there always exists 0/~ € II(D(L}))) with L(s,0”L) = L(s,0). The main theorem of Roberts [8] is that,
if 0., is tempered at every place w, the Yoshida lift ©3(n,07%) (to be explained later) is not vanishing.
However Blasius [1] showed the condition in this case. Hence we have:
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Corollary 8 — Let o € II(GL(2, L4)) be in the previous theorem. Assume further that o is holomorphic
of multiple weight (x1, x2) with x; > 2, and is not a base change lift. Take a definite quaternion algebra
D(Q) definied over Q so that

D, splits at v where L,/Q, is not ramified. (2)
Then the Yoshida lift ©3(n,07%) has a (global) semi-paramodular vector, too.

Remark 9 The Yoshida lift ©2(n,0”'L) is always holomophic. Hence it doesnot have global Whitakker
functions, although it has local ones at every finite place if we take D(Q) such as (2).

If the central character w of o is trivial, ©3(1, o), (and its complex conjugate), ©2(1, 0/L) (and its complex
conjugate) provide paramodular vectors. In particular, if

K1,=4,k3 = 2 and vice versa,

these paramodular vectors are diffential form of h%!,h}? and A%, h%3 of the Siegel threefold asociated
to the paramodular group.

1 6-lift.

First, we recall the 6-lift from GO(2m) to GSp(n). Let (X, (,)) be a 2m dimensional quadratic space
over Q. Let dx be the discriminant of X. We denote by GO(X) the group of Q linear automorphisims
h of X such that (h(z), h(y)) = A(z,y) with a certain A = A(h) € Q* for any z,y € X. Define the sign
map sgn(h) := det(h)A(h) ™% on GO(X). We set

O(X) = {h € GO(X) | A(h) = 1}, GSO(X) = ker(sgn), SO(X) = GSO(X) N O(X).

Take 89 € O(X)\SO(X). By the action sk := sohsg on GSO(X), we have the isomorphism GSO(X) x
{1, 80} >~ GO(X) that takes (h,d) to hd. Let

R = {(9,h) € GSp(n) x GO(X) | A(g) = A(h)}.
The Weil representation r,, of Sp(n) x O(X) related to %, is the unitary representation on L?(X) given
by :

Tv([ g ’a(')’l } ,1)<p(a:) = xx(deta)|deta|™2p(za),

ru([‘g' II:.]’I)(P(’:)
n([2 o] )e@ = e,

ro(Lb)p(z) = @(h~t2).

Here xx (*) is defined by the Hilbert symbol {x, (-l)mdx},;. ~ is the Weil constant depending only on
the anisotropic component of X, n and ¢. The fourier transformation ¢V of ¢ is defined by

0@ = [ @ u)eedy

V(5tr(z, 2)e(a),

where dz is a self dual Haar measure. The Weil representation r, is extended to R(k,) by

r@Bes@ =W (s 1y | 1)etn o)

Occasionally, in order to indicate the dependence of r on n, we will write r*. For ¢ =[], ¢» € S(X(A)™)
and (g,h) € R(A), we set a @-series

0(g,hip) = Y. r(g,h)e(z),
zEX (k)"
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which converges absolutely and is left R(k) invariant. This §-series gives the following 6-lifts.

onlfe)(a) = [ 6(g, hahi 9)f (hah)dhs, 3)
O(X,k)\O(X,A)
where f is a cuspform on GO(X, A), and (h, g) € R(A). For a cuspidal T € [I(GO(X, A)), we denote by
©,(7) the subspace of automorphic forms generated by 0,(f, ) for f € T and ¢ € S(X(A)").
Now, suppose X(Q) is a four dimensional space (m = 2) and d € (Q*)3. Then X is isometric to
a quaternion algebra (B(Q), (,)) defined over Q with (z,y) = §tr(zy*). Here 1 indicates the canonical
involution and tr(y) = y + y*. The norm of y will be denoted by n(y). Put

H(Q) = B(Q)* x B(Q)*, H'(Q) = {(41,5) € HQ) | n(bx) = n(b2)}. (4)

The action p of H on B defined by
p(by, by)z = by zby

induces an isomorphism GSO(B) ~ H/Q* and SO(B) ~ H!/Q*, where Q* is embedded into H
diagonally. If 01,03 € II(B(A)*) have a common central character 1), then 0; B o3 can be regarded as
an element in TI(GSO(B, A)) with central character 7. If the induced representation IndGooce 1,71 Koz
is irreducible, we denote it also by 0y ® g3 € II(GO(X,A)). Otherwise, the induced representation is
divided into two constituents (01 ®o3)* and (01 ®o3)~. This can happen only when 0; = 03. However,
since O3((0y ® 03)™) is always vanishing, we will treat only (0; ® 03)* and denote it also by oy ® o5.
When B(Q) is a definite quaternion algebra 83(0; ®o3) is the “Yoshida lift of the first type” (c.f. [14]).

Next, suppose X (Q) is four dimensional and dx ¢ (Q*)2. In this case, L := Q(v/dx) is a quadratic
field. X(Q) is isometric to

{be B(L)|5=0'} or {be B(L)|b=-b"}

for a quaternion algebra B(L) = B(Q) ® L. Here b’s coefficients in L are the algebraic conjugate over Q
of those of b. Put

H'(Q)=Q* x B(L)*, H(Q)={(t,b) € H'(Q) | n(b) = *}.

The action p’ of H' on X defined by
Pt b)x =t"b'zb

induces an isomorphism GSO(X) ~ H'/Q* and SO(X) ~ H" /Q*, where Q* is embedded into H"* by
t = (t,t). If r € II(B(AL)*) has a central character 7 o N q, then we can regard (1, 7) as an element
in II{GSO(X, A)) with central character 7. If its induced representation to GO(X, A) is irreducible,
we denote it also by (n,7) € II(GO(X, A)). Otherwise, the induced representation is divided into two
constituents (n,7)* and (n,7)~. This can happen only when 7 € II(B(AL)*) is a base change lift of
some o € [I(B(A)*). However, since ©3((n, 7)) is always vanishing, we only treat (n,7)* and denote it
also by (7,0). When dx > 0 and B(Q) is a definite quaternon algebra, ©3((n, 7)) is the “Yoshida lift of
the second type”.

2 Schwartz function.

First, let us treat the case A). Take W; = ®,Wy, € W(eY,¢¥) and W3 = ®,Wa, € W(03,9) as in
Theorem 1. Corresponding them, we define Schwartz function ¢, € S(M3(Q,)?) as follows.

(At archimedean place oo) We choose two polynomials of M3(R)

Py(z) = i(dz — as) ~ (bz + cz), Pa(z) =i(an +d:) + (c2 — dz),

- az bz
=% x ]
These polynomials have the properties

where we write
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cosf® siné

for ug = | —sin@ cosg |* 1€t 81,82 be indeterminants. Define poo, € S(M3(R)?) ® Cls1, 52] by
Poo(Z1,22) = exp(—7 tr(R[z1,z3])) P1(8121 + 8222)"
| Pa(s2z1 - s122)?  if k1 < Ka,
Pq(sazy — 8122)°  otherwise,
where @ = SIS and g = m’-}ﬂﬂ Here symmetic matrix R € M,(Q) is chosen so that R[z;] =

a2, + b2, +c2, +d2, and z; is regarded as a line vector (so Rlz1,z3] = *(R[z1,23]) € M(2,R)). Ris an
Hermite’s minimal majorant of the symmetric matirix Q corresponding to the quadratic form in M(2),
ie, RQ'R=Q.

(At finite place p) Let ¢; = ¢(03p) be the conductor of 0;p and ¢ = c;¢c3. Let § be the conductor of the
common central character 7. In the case of f = 0, define

¢p(21, 23) = the characteristic function of ( [ €2 Z,, ] e M(2, Z,))

In the case of f > 0, we define

. A
Po(1,72) = { wn). Henae[ T F |orme,,
0, otherwise.
Then (3) is written as
62(f1L B f2,0)(9) = ,/A‘ Z (r(g, h)o)(z1,22) L B fa(hk')dh. ()

*HYQ\H(A) 4, &373(Q)

‘Whittaker function of 6(f, ® f3, p): We select a pair of elements

co] P[]

Put
Zo(Q) = {h=(h1,h2) € H(Q)| p(h)e—1 = e-1,p(h)a-1 = a1} (6)
= {([* T].[* T]reeq} ”
The global Whittaker function

wi(e):= [ o i) Fug)d
U(N\U
of F = 0(g; f B fa) is calculated as
Ji r(g, B)p(e—1, a_1)Wi (A1) Wa(ha)dh. - ®
Zo(A)\H1(A)
‘We can calculate each local factors of (8)

L(g) = f ro(1, A)@u(e—1, @1)Wio(h1)Wau (ha)dh.
Zo(Qu)\H(Qv) :

at arbitary g. In particular, I, (1) # 0. Hence Wp™! # 0. By calculating WE(g) = L(9), 2)
is obtained. The noncuspidality 3) of ©3(0, ® o3) is obtained by che the d enerated Whittaker
function WF or Wg. is not zero. 4) is also obtained by calculating Wy, (g), WF,, (9), F’,}(g).
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Next, we treat the case B). Write L = Q(¢) by ¢ € O = O, where €2 € Z is squarefree. For the
character 7 and Hilbert modular form f in Theorem 6, we put

Fo((#,R)) := 9~ () £ (h).
Let c be the generator of Gal(L/Q). Let

X(Q) = {zeM(l)|c(z')=—z}

b
- {[‘: _;:]w,,c,eo}. |
and set the quadratic form (z,y) = tr(zy*) in X(Q). Then, we define Schwartz functions, corresponding
to the above 7 and W in Theorem 6, as follows.
(At 00): With the same polynoimial P;, P; as in the case A), define

2
Poo(Z1,23) = exp ( - WZ(GZ‘ + (a:‘ )2 + bg‘ + C:‘))P1(811'1 + 8322)*

fm]

< | Peloazi—a122)° if k1 < 1y,
Pj(s2zy — 8122)° otherwise,

where a = %132 and g = [f17%2l Here (a2, + (ag,)? + b2, + 2,) is corresponding to a minimal majorant
of the quadratic form ( , ).
( Atp=P2?, c(up) =0 case ): Se set, for y € Xp

Op w1ZX
(vby), ifye| 7 P,
sog(u)={ xep(Pby) Hy [pz, g ]
. otherwise. '
Take the summation

W) =epw) + r},([i - ],l)¢2(y),

i€Z/pL
which is not identically zero. Let ¢ = ordg(c(op)). When, 7, is trivial, define

wp(@1,72) =¢}.(p“C" [ ¢ 1 ]zx [ (=) 1 ])99,‘,(:2)-

When 0y is not trivial, define
©p(Y) = mp(p'cy)vl(v)
for y € X, and

ep(T1,22) = (p“c“

[ € . ]-’h[ (e°)~* . ])‘P%(-’Bz)‘

w?,(x) = ch(Xp N M3(0p); z) € S(Xp),
ch denotes the characteristic function. Define

@p(®1,22) = (! [ . ] o [ " ] #p(23)
with ¢ = ¢(op).

( Atp=1P, c(isp) >0 case ): Let u°(y) = u(y) - ch(o5';y). We define

( At p =P inert in L, c(up) = 0 case ): Set

wh(2) = p°(cz)pp(2)
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and
ep(z1,22) = ph(@™* [ ¥ 1 ]xl [ P 1 ])‘P;(“’z)'
Put
GSp(Q)Y = {9 € GS;a(Q) | v(g) € NLjo(L*)}.
Define

oot e)e) = [ S (19, B)e) (@1, 73) fo (W' )dh. ®)

AX(H' ) (\(H') (A) o, ¢ pgy (k)

Here b’ = (1,hp) € H(A) is chosen so that v(g) = N, det(hy)™!, and we embed A* > t > (£2,¢) €
(H')Y(A). Since 8(nf, ) is left GSpa(Q)N-invariant, we can extend 8(n, ¢) to a function on GSp(Q\GSpa(A)
by insisting that it is left GSp;(Q)-invariant and zero outside of GSp2(Q)GSpa(A)V.

Remarks. When both of 01,02 € II(GL(2,A)) are holomorphic of weight 2 in the case A and when
o € II(GL(2,L,)) is holomorphic of weight (2,2) in the case B, the #-lifts can be the generic Siegel
modular forms corresponding some abelian surface, similar to the Yoshida lift. That is,

(A) Let fi1, fa € Sa(T'o(N;)) be elliptic cuspforms of weight 2 with level N;, N3. Then there exists
Fe Mg,o(K(NlNQ))

corresponding to the GSp(2)-valued Galois representation pys, ® py,.
(B) Let f € S(3,2)(Co(n)) be a Hilbert cuspform of multiple weight (2,2) of level n. Then there exists

F € Mao(K((N1jo(né2)))

corresponding to the GSp(2)-valued Galois representation Indg::g;g;pf.

(A) means that all jacobian varieties of elliptic modular curves of genus 2 are Siegel modular in the generic
sence, e.g., product of elliptic curves. (B) means all motives of Hilbert modular forms over a real quadratic
field of weight (2,2) are also Siegel modular, e.g, jacobian of Shimura curves obtained by indefinite
quaternion algebras, and abelian surface with complex multiplication of quartic CM-field. However,
according to Przebinda [7], the archimedan component of F belongs a P;-principal series reperesentation
(c.f p.904 of [6]), not a (limit of) discrete series representation.

If L is an imaginary quadratic field, we can also consider 6-lift to GSp(2) from certain classes in
II(GL(2, L)). In this case, we identify GL(2, L) with GO(3,1,Q). But, different from the real quadratic
case, the space 82(0) of the imeages of 8-lift is decomposed as follows.

BO2(0) = ©3(0)?"" of highest weight (N, 1)
+ ©2(0)?*" of highest weight (N, 0)
+ ©3(0)"* of highest weight (N, 2).

(More strictly, we have three ways to extend o to II(GO(3, 1, R)) for nontrivial 6-lift. see §3 and table in
p. 394 of [4]). Similar to Theorem 6, we have non-vanishing of ©9°" (o) for such classes o € II(GL(2, La),
i.e., we can always generic Siegel modular forms which are semistable on semi-paramodular groups.

But, different from the real quadratic case, this 6-lift may provides holomorphic Siegel modular forms.
We cannot say ©3%(o) # 0. See [4] for some nonvanishing conditions.

ACKNOWLEDGEMENT: We thanks to Professor T. Ibukiyama, T. Moriyama and H. Yoshida for
their helpful advice.
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