<table>
<thead>
<tr>
<th>Title</th>
<th>Complexified Penner's coordinates and its applications (Analysis and Topology of Discrete Groups and Hyperbolic Spaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakanishi, Toshihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2009), 1660: 128-138</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140944</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Complexified Penner’s coordinates and its applications

Toshihiro Nakanishi (Shimane University) *

1 Penner’s λ-lengths

1.1 A coordinate-system for Teichmüller space

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk, a model of hyperbolic plane and

$$SU(1, 1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} : a, b \in \mathbb{C}, |a|^2 - |b|^2 = 1 \right\}.$$

Then $PSU(1, 1)$ is the group of orientation preserving hyperbolic motions of \mathbb{D}.

Let $G = G_{g,n}$ be the punctured surface group of type (g, n), where $2g - 2 + n > 0$:

$$G = \langle a_1, b_1, ..., a_g, b_g, d_1, ..., d_n : (\prod_{k=1}^{g} a_k b_k a_k^{-1} b_k^{-1}) d_1 \cdots d_n = 1 \rangle.$$

A point of the Teichmüller space $\mathcal{T} = \mathcal{T}_{g,n}$ is a class of faithful Fuchsian representations of G into $PSU(1, 1)$ which have finite covolume. We denote points in \mathcal{T} by marked groups Γ_m, where Γ is a Fuchsian group and $m : G \rightarrow \Gamma$ is an isomorphism.

Elements $D_1, ..., D_n$ in $\Gamma_m \in \mathcal{T}$ corresponding to $d_1, ..., d_n$ are parabolic. Choose a horocycle H_k invariant under D_k such that action of D_k on H_k is the translation of length one. Then the identification of Γ_m with $(\Gamma_m, H_1, ..., H_n)$ gives the following statement.

$\mathcal{T}_{g,n}$ is naturally embedded in the decorated Teichmüller space $\tilde{\mathcal{T}}_{g,n}$.

Therefore, by restricting them to this embedded subspace, Penner’s λ-length coordinates for $\tilde{\mathcal{T}}_{g,n}$ give also global coordinates for the Teichmüller space $\mathcal{T}_{g,n}$.

* A joint work with M. Näätänen. The author is grateful to Professor Robert Penner for helpful discussions. He thanks Professor Michihiko Fujii for organizing a series of workshops on hyperbolic geometry and its related topics.
1.2 Distance between horocycles

Let \(p \) be a point of the unit circle. A horcycle \(h \) at \(p \) is a Euclidean circle in \(\mathbb{D} \) tangent at \(p \) to the unit circle. The point \(p \) is called the base point of \(h \).

Let \(h_1 \) and \(h_2 \) be horocycles based at different points \(p_1 \) and \(p_2 \) and \(\gamma \) the hyperbolic line between \(p_1 \) and \(p_2 \). Define

\[
\lambda = e^{\delta/2},
\]

where \(\delta \) is the signed length of the portion of the geodesic \(\gamma \) intercepted between the two horocycles \(h_1 \) and \(h_2 \). \(\delta > 0 \) if \(h_1 \) and \(h_2 \) are disjoint and \(\delta < 0 \) otherwise. In this way we can assign a positive number \(\lambda \) to the pair \((h_1, h_2)\).

1.3 \(\lambda \)-length of an ideal arc

Let \(S \) be the oriented closed surface of genus \(g \), \(P = \{p_1, \ldots, p_n\} \) a set of \(n \) points. An ideal arc \(c \) of \((S, P)\) is a path joining two points \(p_i \) and \(p_j \) in \(S - P \). The ideal arc \(c \) is simple if \(c \cap (S - P) \) is a simple arc.

Let \(\Gamma_m \in \mathcal{T}_{g,n} \), then there exists an orientation preserving homeomorphism

\[
f : S - P \rightarrow \mathbb{D}/\Gamma
\]

inducing \(m \). Let \(\gamma \) be the geodesic representative in the homotopy class of \(f(c) \) for the Poincaré metric of the punctured surface \(\mathbb{D}/\Gamma \). By the identification of \(\Gamma_m \) with \((\Gamma_m, H_1, \ldots, H_n) \), the horocycles at the endpoints of \(\gamma \) defines the \(\lambda \)-length \(\lambda(c, \Gamma_m) \).

Let \(\Delta = \{c_1, c_2, \ldots, c_q\}, q = 6g - 6 + 3n \), be an ideal triangulation of \((S, P)\). Then

Theorem 1 (Penner [1])

\[
\lambda_\Delta = \prod_{i=1}^{q} \lambda(c_i) : \mathcal{T}_{g,n} \rightarrow (\mathbb{R}_+)^q
\]

is an embedding.
The image of λ_Δ is a real algebraic variety determined by n polynomials. A component of $S - \cup_{j=1}^{q}c_{j}$ is called a triangle in Δ. The image of λ_Δ is a real algebraic variety determined by zero loci of n algebraic equations $D_1, ..., D_n$, where D_k is easily obtained by triangles abutting on the kth puncture p_k.

\[D_k(\lambda_1, ..., \lambda_q) = \sum_{i=1}^{N} \frac{\lambda(e_i)}{\lambda(a_i)\lambda(b_i)} - 1. \]

1.4 The Ptolemy identity

Let $\Delta = \{c_1, c_2, ..., c_q\}$ be an ideal triangulation of (S, P). Let $e \in \Delta$ and T_1 and T_2 be triangles being on the different sides of e. It is possible that $T_1 = T_2$. Lift $T_1 \cup e \cup T_2$ to a quadrangle $Q = \tilde{T}_1 \cup \tilde{e} \cup \tilde{T}_2$ in D. Then \tilde{e} is a diagonal of Q. Let \tilde{f} be the other diagonal and project \tilde{f} to an ideal arc f in $T_1 \cup e \cup T_2$. Then

\[\Delta' = (\Delta - \{e\}) \cup \{f\} \]

is another ideal triangulation of (S, P). We say that Δ' arises from Δ by the elementary move on e.

\[130 \]
Let \((\tilde{a}, \tilde{b}, \tilde{c})\) be the sides of \(\tilde{T}_1\) and \((\tilde{c}, \tilde{d}, \tilde{e})\) be the sides of \(\tilde{T}_2\). Suppose that \(\tilde{a}\) and \(\tilde{c}\) are opposite sides of \(Q\). Let \(a, b, c, d \in \Delta \cap \Delta'\) be the projections of \(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}\). The following theorems are proved in Penner’s paper:

Theorem 2 (the Ptolemy identity, Penner [1])

The \(\lambda\)-lengths function satisfy the identity

\[
\lambda(a)\lambda(c) + \lambda(b)\lambda(d) = \lambda(e)\lambda(f)
\]

This theorem describes the coordinate-change between \(\lambda_\Delta(T)\) and \(\lambda_\Delta'(T)\):

\[
\lambda_\Delta' \circ \lambda_\Delta^{-1}(\cdots, \lambda(a), \lambda(b), \lambda(c), \lambda(d), \lambda(e), \cdots) = (\cdots, \lambda(a), \lambda(b), \lambda(c), \lambda(d), \frac{\lambda(a)\lambda(c) + \lambda(b)\lambda(d)}{\lambda(e)}, \cdots)
\]

Theorem 3 (Penner [1]) *For arbitrary ideal triangulations \(\Delta\) and \(\Delta'\) of \((S, P)\), there exists a finite sequence of ideal triangulations*

\[
\Delta = \Delta_0, \Delta_1, \cdots, \Delta_m = \Delta',
\]

where each \(\Delta_i\) arises from \(\Delta_{i-1}\) by an elementary move.
Using this theorem it can be shown that coordinate change between λ-length coordinates associated with two ideal triangulations is a bi-rational map:

Theorem 4 If Δ and Δ' are ideal triangulations of F, then the coordinate change

\[
T \xrightarrow{\lambda_{\Delta}} \lambda_{\Delta}(T) \subset (\mathbb{R}_{+})^q
\]

extends to a rational transformation of \mathbb{R}^q

Let $\mathcal{MC} = \mathcal{MC}_{g,n}$ denote the mapping class group of (S, P). Each $\varphi \in \mathcal{MC}$ acts on the Teichmüller space T. The theorem above yields

Theorem 5 The correspondence

\[
\phi \mapsto \phi_* = \lambda_{\varphi^{-1}(\Delta)} \circ \lambda_{\Delta}^{-1}
\]

gives an isomorphism of \mathcal{MC} to a group of rational transformations.

2 $SL(2, \mathbb{C})$-representation space of a punctured surface group

Let $\mathcal{R} = \mathcal{R}_{g,n}$ be the space of classes of faithful representations $[m]$ of the punctured surface group G into $SL(2, \mathbb{C})$ such that $m(d_i)$ is parabolic with $\text{tr} m(d_i) = -2$ for $i = 1, 2, ..., n$. The Teichmüller space $T_{g,n}$ is a subspace of $\mathcal{R}_{g,n}$.

Our purpose is to give a coordinate-system for $\mathcal{R}_{g,n}$ whose restriction to $T_{g,n}$ coincides with Penner's λ-lengths coordinate-system.

2.1 Parabolic elements of $SL(2, \mathbb{C})$

Define

$\mathcal{P} = \{P \in SL(2, \mathbb{C}) : P$ is parabolic with $\text{tr} P = -2\}$.

If P_1 and $P_2 \in \mathcal{P}$ do not commute, then the square root of $-P_1 P_2$ in $SL(2, \mathbb{C})$

\[
Q = \pm \frac{1}{\sqrt{2 - \text{tr} P_1 P_2}} (I - P_1 P_2),
\]

is unique up to sign and satisfies

\[
P_2 = Q^{-1} P_1 Q.
\]

For the rest of this paper, the diagram

\[
P_1 \xrightarrow{Q} P_2
\]
will mean that $Q^2 = -P_1P_2$.

Cycles of parabolic elements

Let $P_1, \ldots, P_n, P_{n+1} = P_1 \in \mathcal{P}$. Suppose that no consecutive elements P_i and P_{i+1} commute. Let Q_i be a square root of $-P_iP_{i+1}$, ($i = 1, 2, \ldots, n$). Then, since $P_{i+1} = Q_i^{-1}P_iQ_i$, $Q_1Q_2 \cdots Q_n$ commutes with P_1,

$$\text{tr}Q_1Q_2 \cdots Q_n = +2 \text{ or } -2.$$ \hfill (7)

Definition

(Q_1, Q_2, \ldots, Q_n) is a $(+)$-system or a $(-)$-system according to if $\text{tr}Q_1Q_2 \cdots Q_n = +2$ or -2.

2.2 A trace identity of Ptolemy type

Let P_1, P_2, P_3 and P_4. Suppose that P_i and P_j do not commute unless $i = j$. Choose $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_5', Q_6' \in SL(2, \mathbb{C})$ so that

$$Q_1^2 = -P_1P_2, \quad Q_2^2 = -P_2P_3, \quad Q_3 = -P_3P_4,$$
$$Q_4^2 = -P_4P_1, \quad Q_5^2 = -P_5P_1, \quad Q_6 = -P_2P_4,$$
$$(Q_5')^2 = -P_1P_3, \quad (Q_6')^2 = -P_4P_2,$$

where

$$Q_5' = P_1Q_5P_1^{-1}, \quad Q_6' = P_4Q_6P_4^{-1}.$$

Theorem

If (Q_1, Q_2, Q_5), (Q_5', Q_3, Q_4) and (Q_1, Q_6, Q_4) are $(-)$-systems, then

$$\text{tr}Q_5\text{tr}Q_6 = \text{tr}Q_1\text{tr}Q_3 + \text{tr}Q_2\text{tr}Q_4$$ \hfill (8)
3 Complexified λ-length

3.1 Definition of λ-length

A point of \mathcal{R} is represented by a marked group Γ_{m}. Let $\mathcal{P}_{+}(\Gamma)$ be the set of parabolic elements in $[m(d_{1})] \cup \cdots \cup [m(d_{n})]$, where $[m(d_{i})]$ is the conjugacy class of $m(d_{i})$.

Let c be an ideal arc in (S, P). Then for each $\Gamma_{m} \in \mathcal{R}$, c defines two parabolic elements P_{1}, P_{2} of $\mathcal{P}_{+}(\Gamma)$, see the following figure. We define the λ-length of c with respect to Γ_{m} by

$$\lambda(c, \Gamma_{m}) = \text{tr}Q,$$

where Q is a square root of $-P_{1}P_{2}$. The λ-length is defined up to sign.

3.2 λ-length coordinates for $\mathcal{R}_{g,n}$

Let $\Delta = (c_{1}, c_{2}, \ldots, c_{q})$ be an ideal triangulation of (S, P). Let T be a triangle in Δ. T inherits the orientation of the surface S. Label the sides of T by a, b, c in order. Then those sides determine matrices Q_{a}, Q_{b}, Q_{c} whose traces give λ-lengths of a, b and c for Γ_{m}.

Lemma 1 It is possible to choose branches of λ-length functions $\lambda(c_{1})$, $\lambda(c_{2})$, ..., $\lambda(c_{q})$ so that (Q_{a}, Q_{b}, Q_{c}) is a $(-)$-system for each triangle T in Δ.

With the choice of branches of λ-lengths as depicted in the lemma, we obtain

Theorem 7 For each ideal triangulation Δ,

$$\lambda_{\Delta} = \prod_{i=1}^{q} \lambda(c_{i}) : \mathcal{R}_{g,n} \rightarrow (\mathbb{C}^{*})^{q}$$

is an embedding. The image is contained in an algebraic variety.

3.3 Rational representation of the mapping class group

As in the case of T, the Ptolemy identity (8) yields

Theorem 8 The mapping class group \mathcal{MC} acts on \mathcal{R} as a group of rational transformations.
4 Invariant holomorphic two-form

Let T_1, \ldots, T_p, $p = 4g - 2$, be triangles in an ideal triangulation of a once-punctured surface. Let the sequence of sides a_i, b_i, c_i of T_i agree with the positive orientation of T_i, then the 2-form

$$\sum_{i=1}^{p} (d\log \lambda(a_i) \wedge d\lambda(b_i) + d\log \lambda(b_i) \wedge d\log \lambda(c_i) + d\log \lambda(c_i) \wedge d\log \lambda(a_i))$$ (10)

is invariant under the mapping class group \mathcal{MC}. The proof is similar to the one of the corresponding result in [2].

5 A characterization of the rational map induced by a mapping class

5.1 Example: Once punctured torus

The Teichmüller space $T_{1,1}$ of once punctured tori is represented as the subspace of $(\mathbb{R}_+)^3$ defined by

$$x^2 + y^2 + z^2 = xyz,$$ (11)

where x, y, z are λ-length functions related to an (essentially unique) triangulation of the once punctured torus (or x, y, z are trace functions $\text{tr}_A, \text{tr}_B, \text{tr}_{AB}$, with $\{A, B\}$ the canonical generator-system of $G_{1,1}$.)

The mapping class group $\mathcal{MC}_{1,1}$ has generators

$$\sigma(x, y, z) = (x, z, \frac{x^2 + z^2}{y}) \quad \text{and} \quad \tau(x, y, z) = (\frac{x^2 + y^2}{z}, y, x),$$

with relations

$$\tau \circ \sigma)^3 = 1, \quad (\sigma \circ \tau \circ \sigma)^2 = 1.$$

Since $\mathcal{MC}_{1,1}$ acts on $T_{1,1}$, the group of rational transformations generated by σ and τ preserves the equation (11) and $(x, y, z) = (3, 3, 3)$ gives integer solutions of (11).

Theorem 9 (Markoff) All positive integer solutions of (11) are in the orbit of $(3, 3, 3)$ under the action of $\mathcal{MC}_{1,1}$.

The viewpoint of understanding the Markoff transformations as mapping classes acting on $T_{1,1}$ is given in Penner's paper [1].

With λ-length coordinates, the Teichmüller space $T_{g,n}$ is determined by n algebraic equations and the group of rational transformations induced by the mapping class group $\mathcal{MC}_{g,n}$ keep this space. So we can pursue analogies of the above result.
5.2 Example: twice punctured torus

Let Δ be the ideal triangulation of the twice punctured torus as depicted in the following figure.

![Twice punctured torus](image)

Consider the λ-lengths

$$\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e$$

associated with Δ. Then it holds that $\lambda_e = \lambda_f$. The Teichmüller space $\mathcal{T}_{1,2}$ (or the space $\mathcal{R}_{1,2}$) is represented by the λ-lengths as the space

$$\frac{\lambda_e}{\lambda_a \lambda_b} + \frac{\lambda_a}{\lambda_b \lambda_e} + \frac{\lambda_b}{\lambda_a \lambda_e} + \frac{\lambda_c}{\lambda_d \lambda_e} + \frac{\lambda_d}{\lambda_c \lambda_e} = 1$$

or

$$\lambda_c \lambda_d (\lambda_a^2 + \lambda_b^2 + \lambda_e^2) + \lambda_a \lambda_b (\lambda_c^2 + \lambda_d^2 + \lambda_e^2) = \lambda_a \lambda_b \lambda_c \lambda_d \lambda_e. \quad (12)$$

The mapping class group $\mathcal{MC}_{1,2}$ (as a group of rational transformations) has generators

$$\omega_{1*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) = (\lambda_d, \lambda_b, \lambda_c, \frac{\lambda_a^2 + \lambda_b^2}{\lambda_c}, \lambda_e)$$

$$\omega_{2*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) = (\lambda_d, \lambda_a, \lambda_b, \lambda_c, \frac{\lambda_a \lambda_c + \lambda_b \lambda_c}{\lambda_e})$$

$$\omega_{3*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) = (\lambda_a, \frac{\lambda_b^2 + \lambda_e^2}{\lambda_c}, \lambda_b, \lambda_d, \lambda_e),$$

with relations

$$\omega_{2*}^2 \omega_{1*} \omega_{2*} = \omega_{3*} \quad \omega_{1*} \omega_{3*} = \omega_{3*} \omega_{1*}$$

$$(\omega_{1*}\omega_{2*})^3 = 1, \quad (\omega_{3*}\omega_{2*})^3 = 1$$

The point $p = (6, 6, 6, 6, 6)$ gives integer solutions of (12). An analogous result to the Markoff equation holds:

Theorem 10 The orbit $\{\varphi_*(6, 6, 6, 6, 6) : \varphi \in \mathcal{MC}_{1,2}\}$, gives integer solutions of (12), but not all of its integer solutions.
5.3 Diophantine equations

We consider a once punctured surface.

Lemma 2 Let \((\lambda_1, \lambda_2, \ldots, \lambda_q)\) be the \(\lambda\)-length coordinate-system for \(\mathcal{R}_{g,1}\) associated to an ideal triangulation \((c_1, c_2, \ldots, c_q)\), where \(q = 6g - 3\). Then the \(\lambda\)-length of a simple ideal arc \(c\) is expressed by a rational function of the form

\[
P(\lambda_1, \lambda_2, \ldots, \lambda_q) \quad \frac{1}{\lambda_1^{m_1} \lambda_2^{m_2} \cdots \lambda_q^{m_q}}
\]

where \(P(\lambda_1, \lambda_2, \ldots, \lambda_q)\) is a homogeneous polynomial of degree

\[d = 1 + m_1 + m_2 + \cdots + m_q,
\]

with positive integer coefficients and \(m_i\) is the geometric intersection number of \(c\) and \(c_i\) in \(S - P\) for \(i = 1, 2, \ldots, q\).

For \(\varphi \in \mathcal{MC}_{g,1}\) let \(\varphi_*\) denote the rational transformation induced by \(\varphi\). Then entries of \(\varphi_*(\lambda_1, \lambda_2, \ldots, \lambda_q)\) are of the form as in (13). This fact leads us to the following observation.

Let \(D(\lambda_1, \ldots, \lambda_q) = 0\) be the algebraic equation which determines \(\mathcal{T}_{g,1}\) in the \(\lambda\)-length coordinates. Then the rational transformation \(\varphi_*\) induced by \(\varphi \in \mathcal{MC}_{g,1}\) preserves \(D(\lambda_1, \ldots, \lambda_q)\). Moreover, if

\[(\lambda, \lambda, \ldots, \lambda)\]

gives integer solutions of (14), then so does \(\varphi_*(\lambda, \lambda, \ldots, \lambda)\).

We remark that it is not true in general that all integer solutions are in the orbit of \((\lambda, \lambda, \ldots, \lambda)\) under \(\mathcal{MC}\).

6 3-manifolds which fiber over the circle

Let \(\varphi \in \mathcal{MC}_{g,n}\). Let \(M\) be a manifold which fibers over the circle and whose monodromy is \(\varphi\). If \(\varphi_*\) denotes the action of \(\varphi\) on the fundamental group \(G = G_{g,n}\) of the surface \(S\) of type \((g, n)\), then the fundamental group of \(M\) has the presentation

\[
\tilde{G} = \langle G, t : \varphi_*(g) = tgt^{-1} \text{ for all } g \in G \rangle
\]

If \(m : \tilde{G} \rightarrow SL(2, \mathbb{C})\) is a faithful representation of \(\tilde{G}\), then for all \(g \in G\)

\[
(\varphi_* \circ m)(g) = m(t)m(g)m(t)^{-1}.
\]

Hence the class \([m]\) is a fixed point of \(\varphi_*\) for its action on \(\mathcal{R}_{g,n}\).
The \(\lambda \)-length coordinates of \(\mathcal{R}_{g,n} \) represent \(\varphi_* \) as a rational function. Hence the fixed point \([m]\) corresponds to a solution of the algebraic equation

\[
\varphi_*(\lambda_1, \ldots, \lambda_q) = (\lambda_1, \ldots, \lambda_q).
\] (16)

If \(\varphi \) is reducible, then one of the solutions of (16) gives a faithful and discrete representation \(m \) of \(G \). We can find the Möbius transformation \(m(t) \) easily, because \(m(t) \) sends the fixed point of \(m(g) \) to that of \(m(\varphi_*(g)) \) for each parabolic element \(g \in G \). In this way hyperbolization of \(M_\varphi \) can be done. However, to carry this hyperbolization program into effect, we need efficient discreteness criteria.

References

