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This article aims to extend the fundamental Cremer theorem from the
iteration theory of one complex variable to the setting of higher-dimensional
dynamics over more general valued fields, not necessarily C. This article is
an announcement of the preprint [Oku2].

Projective spaces over valued fields. Let K be a commutative alge-
braically closed field which is complete and nondiscrete with respect to a
non-trivial absolute value (or valuation) |- |. This | - | is said to be non-
Archimedean if Vz,Vw € K, |z — w| < max{|z|,|w|}. Otherwise, | -] is
said to be Archimedean and K is then topologically isomorphic to C (with
Hermitian norm). We extend |- | to K¢ (¢ € N) as the maximum norm
|Z| = |Z|¢ = maxj=1, . ¢|zj| for Z = (z1,...,2). Let w : K"*'\{O} — P*(K)
be the canonical projection and set £(n) € N so that A? K"+ = K4™) The
chordal distance [-,:] on P*(K) is defined as

1Z AW o)
1 Z|ns1|Wlnsr”

where Z € 771(2), W € =} (w) (cf. [KS]). For z € P*(K) and r > 0, we
consider the ball

[z, w] :=

B(zo,7) := {z € P*(K); [2,20] < T}
Nonlinearity of morphisms. Let f : P*"(K) — P*(K) be a (finite) mor-

phism, i.e., there is a homogeneous polynomial map F : K" — K"+ over
K, which is called a lift of f, such that F~1(O) = {O} and satisfies

moF = fom.
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The degree d = deg f is that of F' as homogeneous polynomial map. As in
the case of K = C, the Fatou set F(f) is the largest open set at each point
of which the family {f*;k € N} is equicontinuous.

The Julia set J(f) is defined by P*(K)\ F(f). In non-Archimedean case,
J(f) may be empty even if d > 2. One of the main results is

Theorem 1 (nonlinearity of morphisms). Let f : P*(K) — P*(K) be a
morphism of degree d > 1. If there are a ball B(zp,7) C P*(K) and a
morphism g : P*(K) — P*(K) such that

hmmf——,;log sup [f*,g] = —o0,
k—o00 d B(zo 7‘)

then either f is linear or J(f) =

We give a few applications of Theorem 1.
Analytic linearization over a field K. Consider the K-algebra

O = K{X1,...,Xe} ={f = ZCIXI hmsuplcfll/m—- ry! < oo}

|I}—c0

of all germs of analytic functions at the origin O € K*. Here I = (iy,...,%) €
Z%, is a multi-index, X7 --- X} is denoted by X! and we put |I| := i; +

- + i,. For germ of analytlc map ¢ = (f1,..., fa) € (On)", we identify the
linear part of ¢ — ¢(O) at O with

Ay = ( g’ (0)) e M(n, K) = End(K™).
1,_7 yeooy T

We also denote the operator norm on M(n, K) by |- |.

A germ ¢ = (f1,..., fn) € (Op)" fixing O is (analytically) linearizable if
there is H € (O,)" fixing O such that Ay = I, (unit matrix) and H satisfies
the Schroder (or Poincére) equation

¢poH=HoA,.

From Siegel and Sternberg ([Sie], [Ste]) and its non-Archimedean version
by Herman-Yoccoz [HY], ¢ is linearizable if A, is diagonalizable and its

eigenvalues Aj,..., \, satisfy the Diophantine condition: there exist C > 0
and (B > 0 such that for every I € Z%, (multi-index) with |I]| > 1,
C
|(A1a'-' A ) "'"1| =

MG
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On the other hand, consider an inverse of a coordinate chart
c:K">(z1,...,2p) = (1:27:---: 2,) € PK).

When a morphism f : P*(K) — P*(K) fixes a point 2o € P*(K), assuming
that zop = 0(O) without loss of generality, we say f to be linearizable at 2
if the germ ¢; € (O,)" of the analytic map oo foo : P (O,r) — K" is
linearizable. The following is regarded as a higher dimensional version of the
Cremer condition [Cre, p. 157].

Theorem 2 (nonresonance). Let f : P*(K) — P*(K) be a morphism of
degree d > 2 which fixes zy € P*(K), and suppose that J(f) # 0. If f is
linearizable at zo and |Ag,| < 1, then

hmmf—log!(Aqsf)k—-I | > —o0.

If in addition Ay, is diagonalizable, then its eigenvalues Ay, ..., A satisfy

hmlnf-(;zlog max IAF — 1] > —o0.
Singular domain over the field C. Let f : P* = P*(C) — P" be a
morphism, which is now holomorphic, of degree d > 2.

Each component D of F(f), which is called a Fatou component of f,
is Stein and Kobayashi hyperbolic [Uedl]. In particular, D is holomor-
phically separable and the biholomorphic automorphisms Aut(D) is a Lie
group. When there is a sequence (f*) C {f*} which converges to Idp lo-
cally uniformly on D, we have fP(D) = D for some p € N and moreover
f?|D € Aut(D). Following Fatou [Fat, §28], we call such D a singular do-
main (un domaine singulier) of f. A singular domain is also called a Siegel
domain or rotation domain. When n = 1, a singular domain D is either a
Siegel disk or an Herman ring. When n > 2, a partial analogue is known: let
G be the closed subgroup generated by f?|D in Aut(D), and Gy the compo-
nent of G containing Idp. Then there is a Lie group isomorphism Gy — T*®
for some s € [1,n], which maps fI|D for some g € N to (eZm1 ... e%mas)
for some ay,...,a, € R\ Q (see [FS1], [Ued2], [Mih]). In the maximal case
of s = n, we say the singular domain D to be of maximal type.

A singular domain D of maximal type is exactly a generalization of
one-dimensional Siegel disks and Herman rings: setting \; := e*™ (j =
1,...,n), we have by [BBD, Theorem 1] a biholomorphic homeomorphism ®
from a Reinhardt domain U C C" to D such that the Schroder equation

FU®(wy,...,wp)) = ®(Nwi,..., A\qw,) onU
holds.
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Theorem 3 (a priori bound). Let f : P* — P" be a holomorphic map of
degree d > 2. If a singular domain D of f is of mazimal type, then under
the same notation as in the above, D satisfies

hm a}xlog max |)\;° -1 =0.

In the case of n = 1, every singular domain of f is of maximal type. In
this case, Theorem 3 is essentially proved in [FS2, p. 169] by pluripotential
theory, and in [Okul, Main Theorem 3] by a Nevanlinna theoretical argu-
ment. Both proofs contain some one-dimensional arguments which are not
easily extended to higher dimensions. Our proof of Theorem 3 is based on a
proof of Theorem 1, which dispenses with pluripotential theory.

Finally, we give a vanishing result on the Valiron deficiency

k N _}_/ 1 /\'n.

(cf. [DOJ). Here wrg denotes the Fubini-Study Kahler form on P™.

Theorem 4 (a vanishing theorem). Let f : P* — P™ be a holomorphic map
of degree > 2. If every singular domain of f is of mazimal type, then

Sv (Iden, (f¥)) = 0.

We expect that the assertion of Theorem 4 still remains true with no
maximality assumption on singular domains.
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