Singularities ofnullsphere Gauss map for spacelike
surface in nullcone 3-space

D.H. Pei and L.L. Kong

1 Introduction

The nullcone in Minkowski 4-space is one kind of Minkowski pseudo-sphere, which is similar with the
sphere in Euclidean 4-space. In [6], Izumiya has studied the details of spacelike hypersurface in
the nullcone by Legendrian dualities. Our aim in this article is to study spacelike surfaces in nullcone 3-space
by the method similar to that in [5].

We shall assume throughout the whole article that all maps and manifolds are C^∞ unless the contrary
is explicitly stated.

Let $\mathbb{R}^4 = \{(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\}$ be a 4-dimensional vector space. For any two vectors
x = (x_1, x_2, x_3, x_4) and y = (y_1, y_2, y_3, y_4) in \mathbb{R}^4, the pseudo-scalar product of x and y is defined by
$(x, y) = -x_1y_1 + \sum_{i=2}^{4}x_iy_i$ $(\mathbb{R}^4, \langle \rangle)$ is called a Minkowski 4-space and written by \mathbb{R}^4_1. A vector x in
$\mathbb{R}^4_1 \setminus \{0\}$ is called spacelike, lightlike or timelike if (x, x) is positive, zero or negative respectively.
The norm of a vector $x \in \mathbb{R}^4_1$ is defined by $||x|| = \sqrt{\langle x, x \rangle}$. For any $x, y \in \mathbb{R}^4_1$, we say x pseudo-perpendicular
to y if $(x, y) = 0$. For a vector $v \in \mathbb{R}^4_1$ and a real number c, a hyperplane with pseudo normal v is defined by
$HP(v, c) = \{x \in \mathbb{R}^4_1 \mid \langle x, v \rangle = c\}$. $HP(v, c)$ is called a timelike hyperplane, a spacelike hyperplane or a
lightlike hyperplane if v is timelike, spacelike or lightlike respectively. Now, hyperbolic 3-space is defined by
$H^3_1 = \{x \in \mathbb{R}^4_1 \mid \langle x, x \rangle = -1\}$, de Sitter 3-space is defined by $S^3_1 = \{x \in \mathbb{R}^4_1 \mid \langle x, x \rangle = 1\}$ and
the nullcone 3-space is defined by $NC^3_1 = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4_1 \mid x_1 \neq 0, (x, x) = 0\}$. The 3-dimension
nullcone with vertex λ in \mathbb{R}^4_1 is defined by $NC^3_\lambda = \{x \in \mathbb{R}^4_1 \mid \langle x - \lambda, x - \lambda \rangle = 0\}$. If $x = (x_1, x_2, x_3, x_4)$ is a
lightlike vector, then $x_1 \neq 0$. Therefore we have $\tilde{x} = \left(1, \frac{x_2}{x_1}, \frac{x_3}{x_1}, \frac{x_4}{x_1}\right) \in S^2_+ = \{x \in \mathbb{R}^4_1 \mid \langle x, x \rangle = 0, x_1 = 1\}$.
S^2_+ is called the nullcone unit 2-sphere.

For any $x_1, x_2, x_3 \in \mathbb{R}^4_1$, we define a vector $x_1 \wedge x_2 \wedge x_3$ by

\[
x_1 \wedge x_2 \wedge x_3 = \begin{vmatrix}
-e_1 & e_2 & e_3 & e_4 \\
x_1^1 & x_2^1 & x_3^1 & x_4^1 \\
x_2^1 & x_3^1 & x_1^1 & x_4^1 \\
x_3^1 & x_1^1 & x_2^1 & x_4^1 \\
x_4^1 & x_1^1 & x_2^1 & x_3^1
\end{vmatrix},
\]

where e_1, e_2, e_3, e_4 is the canonical basis of \mathbb{R}^4_1 and $x_i = (x_1^i, x_2^i, x_3^i, x_4^i)$. It can easily check that
$(x, x_1 \wedge x_2 \wedge x_3) = \det(x_1, x_1, x_2, x_3)$, so that $x_1 \wedge x_2 \wedge x_3$ is pseudo orthogonal to any $x_i (i = 1, 2, 3)$.

We fix an orientation and timelike orientation of \mathbb{R}^4_1 (i.e., a 4-volume form dV, and future time-like
vector field, have been chosen). Let $X : U \rightarrow NC^3_1$ be an embedding, where U is an open subset of \mathbb{R}^2.
Denote $M = X(U)$ and identify M with U by the embedding X. We say X a spacelike surface if X_{u_1} and
X_{u_2} are spacelike vectors. Therefore, the tangent space $T_p M$ of M is a spacelike subspace (i.e., consists of
spacelike vectors) for any point $p \in M$. In this case, the pseudo-normal space $N_p M$ is a timelike plane (i.e.,
Lorentz plane. Denote by $N(M)$ the pseudo-normal bundle over M. Since this is a trivial bundle, we can arbitrarily choose a future directed unit timelike normal section $n^T(u) \in N_pM \cap H^3_1$, where $p = X(u)$. Therefore we can define a spacelike unit normal section $n^S(u)$ by

$$n^S(u) = \frac{n^T(u) \wedge X_{u_1}(u) \wedge X_{u_2}(u)}{||n^T(u) \wedge X_{u_1}(u) \wedge X_{u_2}(u)||} \in S^1,$$

and we have $(n^T, n^S) = 0$. Although we could also choose $-n^S(u)$ as a spacelike unit normal section with the above properties, we fix the direction $n^S(u)$ throughout this article. (n^T, n^S) is called a future directed normal frame along $M = X(U)$. Clearly, the vector $n^T \pm n^S(u)$ is lightlike. Since $\{X_{u_1}, X_{u_2}\}$ is a basis of T_pM, the system $\{X_{u_1}, X_{u_2}, n^T, n^S\}$ provides a basis for $T_p\mathbb{R}^4$.

$X \in N_pM$, N_pM is a Lorentzian plane and $X(U)$ is a regular surface, so $\tilde{X}(u) = n^T + n^S(u)$ for any $u \in U$ or $\tilde{X}(u) = n^T - n^S(u)$ for any $u \in U$.

Here, we only consider the case of $\tilde{X}(u) = n^T - n^S(u)$ for $u \in U$. The case of $\tilde{X}(u) = n^T + n^S(u)$ can be discussed similarly. Define two maps of $M = X(U)$ as

$$NG_M^\pm : U \rightarrow S^2, \quad NG_M^\pm(u) = n^T \pm n^S(u),$$

each one of these maps is called nullsphere Gauss map. Under the identification of M with U through X, we have the linear mapping $d\pi(p)(n^T \pm n^S) : T_pM \rightarrow T_p\mathbb{R}^4 = T_pM \oplus N_pM$. Consider the orthogonal projections $\pi^T : T_pM \oplus N_pM \rightarrow T_pM$ and $\pi^S : T_pM \oplus N_pM \rightarrow N_pM$. Define $d\pi(p)(n^T \pm n^S)^t = \pi^T \circ d\pi(p)(n^T \pm n^S)$ and $d\pi(p)(n^T \pm n^S)^n = \pi^S \circ d\pi(p)(n^T \pm n^S)$. The linear transformations $S^\pm_M(n^T, n^S) = -d\pi(p)(n^T \pm n^S)^t$ and $d\pi(p)(n^T \pm n^S)^n$ are respectively called the (n^T, n^S)-shape operator and the normal connection with respect to (n^T, n^S) of $M = X(U)$ at $p = X(u)$.

The eigenvalues of $S^\pm_M(n^T, n^S)$ denoted by $\{\kappa^\pm(n^T, n^S)(p)\}(i = 1, 2)$ are called the (n^T, n^S)-nullsphere principal curvature with respect to (n^T, n^S) at p. Then the nullsphere Gauss-Kronecker curvature with respect to (n^T, n^S) at $p = X(u)$ is defined as

$$K^\pm_M(n^T, n^S)(p) = \det S^\pm_M(n^T, n^S).$$

We say that a point $p = X(u)$ is a (n^T, n^S)-umbilic point if all the principal curvatures coincide at p and thus $S^\pm_M(n^T, n^S) = \kappa^\pm(n^T, n^S)I_{T_pM}$ for some function κ^\pm. We say that $M = X(U)$ is totally (n^T, n^S)-umbilic if all points on M are (n^T, n^S)-umbilic.

We deduce now the nullcone Weingarten formula. Since X_{u_1} and X_{u_2} are spacelike vectors, we have a Riemannian metric (the first fundamental form) on M defined by $ds^2 = \sum_{i=1}^2 g_{ij}du_idu_j$, where $g_{ij}(u) = (X_{u_i}, X_{u_j})$ for any $u \in U$. We also have a nullcone second fundamental invariant with respect to the normal vector field (n^T, n^S) defined by $h^\pm_M(n^T, n^S)(u) = -(n^T \pm n^S)_{u_1}(u), X_{u_1}(u))$ for any $u \in U$.

Proposition 1.1. Under the above notations, we have the following nullcone Weingarten formula with respect to (n^T, n^S):

(a) $(n^T \pm n^S)_{u_1} = \sum_{i=1}^2 h^i_{u_1}(n^T \pm n^S)(n^T \pm n^S)_{u_1} - \sum_{i=1}^2 h^i_{u_2}(n^T \pm n^S)X_{u_2};$

(b) $\pi^t \circ (n^T \pm n^S)_{u_2} = - \sum_{i=1}^2 h^i_{u_1}(n^T \pm n^S)X_{u_2}.$

Here, $h^i_{u_1}(n^T, n^S) = h^i_{u_1}(n^T, n^S)g^{ij}$, $g^{ij} = (g_{ij})^{-1}$ and $n^i = (n^1, n^2, n^3, n^4)(i = T, S)$

As a corollary of the above proposition, we have an explicit expression of the nullsphere Gauss-Kronecker curvature by Riemannian metric and the nullcone second fundamental invariant.

Corollary 2.1. Under the same notations as in the above proposition, the nullsphere Gauss-Kronecker curvature is given by

$$K^\pm_M(n^T, n^S)(u) = \frac{\det(h^i_{u_1}(n^T, n^S)(u))}{\det(g_{ij})}.$$
If $K_{n}^{\pm}(n^{T}, n^{S})(u_{0}) = 0$, the point $p_{0} = X(u_{0})$ is called a (n^{T}, n^{S})-nullcone parabolic point of $X : U \to NC^{3}$. And we say that a point p_{0} is a (n^{T}, n^{S})-nullcone flat point if it is a (n^{T}, n^{S})-nullcone umbilical point and $K_{n}^{\pm}(n^{T}, n^{S})(u_{0}) = 0$.

Theorem 1.3. $K_{n}^{-}(n^{T}, n^{S})(u) \neq 0$.

2 Nullsphere height function

The nullsphere height function family on $M = X(U)$ is defined by

$$H : U \times S_{n}^{4} \to \mathbb{R}, \quad H(u, v) = \langle X(u), v \rangle.$$

The Hessian matrix of the nullsphere height function $h_{v_{0}} = H(u, v_{0})$ at u_{0} is denoted by $\text{Hess}(h_{v_{0}})(u_{0})$.

Proposition 2.1. Let H be a nullsphere height function on M. Then

(1) $\partial h_{v_{0}} / \partial u_{i}(u_{0}) = 0(i = 1, 2)$ if and only if $v_{0} = n^{T} \pm n^{S}(u_{0})$.

(2) $\partial h_{v_{0}} / \partial u_{i}(u_{0}) = \det \text{Hess}(h_{v_{0}}(u_{0})) = 0(i = 1, 2)$ if and only if $v_{0} = n^{T} \pm n^{S}(u_{0})$ and $K_{n}^{-}(n^{T}, n^{S})(u_{0}) = 0$.

(3) p_{0} is a nullcone flat point if and only if $\text{rank Hess}(h_{v_{0}}(u_{0})) = 0$.

Corollary 2.2. For a point $p_{0} = X(u_{0}) \in M$, the following conditions are equivalent:

(1) The point $p_{0} \in M$ is a (n^{T}, n^{S})-nullcone parabolic point.

(2) The point $p_{0} \in M$ is a singular point of the nullsphere Gauss map NG_{M}^{+}.

(3) $K_{n}^{-}(n^{T}, n^{S})(u_{0}) = 0$.

(4) $\det \text{Hess}(h_{v_{0}})(u_{0}) = 0$ for $v_{0} = n^{T} \pm n^{S}(u_{0})$.

Corollary 2.3. NG_{M}^{-} is a regular nullsphere Gauss map.

Consider now the particular case of a surface $M \subset NC^{3}$. Given a vector $v \in S_{n}^{4}$ (resp. S_{n}^{1}, H_{n}^{2}) and a number c, denoted by $S(v, c)$ the null hyperhorosphere (resp. null equidistant hyperplane, null hypersphere) determined by the intersection of the hyperplane $HP(v, c)$ with NC^{3}.

Proposition 2.4. Let M be a spacelike surface in NC^{3}. If NG_{M}^{-} is constant, then M degenerate to a straight line.

We now define a family of functions

$$\tilde{H} : U \times NC^{3} \to \mathbb{R}, \quad \tilde{H}(u, v) = \langle X(u), \overline{v} \rangle - v_{1},$$

where $v = (v_{1}, v_{2}, v_{3}, v_{4})$. \tilde{H} is called the extended nullsphere height function of $M = X(U)$. The Hessian matrix of the extended nullsphere height function $\tilde{h}_{v_{0}} = \tilde{H}(u, v_{0})$ at u_{0} is denoted by $\text{Hess}(\tilde{h}_{v_{0}})(u_{0})$.

Proposition 2.5. Let M be a spacelike surface in NC^{3}. \tilde{H} is the extended nullsphere height function of M. For $v_{0} \in NC^{3}$, we have the following:

(1) $\tilde{h}_{v_{0}}(p_{0}) = \frac{\partial \tilde{h}_{v_{0}}}{\partial u_{i}}(p_{0}) = 0$ if and only if $\tilde{v}_{0} = n^{T} \pm n^{S}(u_{0})$ and $v_{1} = \langle X(u_{0}), n^{T} \pm n^{S}(u_{0}) \rangle$.

(2) $\tilde{h}_{v_{0}}(p_{0}) = \frac{\partial \tilde{h}_{v_{0}}}{\partial u_{i}}(p_{0}) = \det \text{Hess}(\tilde{h}_{v_{0}})(p_{0}) = 0$ if and only if $\tilde{v}_{0} = n^{T} \pm n^{S}(u_{0})$, $v_{1} = \langle X(u_{0}), n^{T} \pm n^{S}(u_{0}) \rangle$ and $K_{n}^{-}(n^{T}, n^{S})(p_{0}) = 0$.

The assertions of proposition 2.5 means that the discriminant set of the extended nullsphere height function \tilde{H} is given by $D_{\tilde{H}} = \{ v \mid v = (X(u), n^{T} \pm n^{S}(u)) (n^{T} \pm n^{S}(u)) \}$. Therefore we now define a pair of singular surfaces in NC^{3} by $NP_{M}^{+}(u) = (X(u), n^{T} \pm n^{S}(u)) (n^{T} \pm n^{S}(u))$, each one of NP_{M}^{+} is called the nullcone pedal surface of $X(U) = M$. A singularity of the nullcone pedal surface exactly corresponds to a singularity of the nullsphere Gauss map.

Corollary 2.6. NP_{M}^{-} is a zero map.

This work is only a preparation for further studying, in the following, we will discuss some geometrical properties of spacelike curve from singularity theory viewpoint.
References

Donghe Pei, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China e-mail: peidh340@nenu.edu.cn

Lingling Kong, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China e-mail: kongllll1@nenu.edu.cn