On spacelike curve in nullcone 3-space (Applications of singularity theory to differential equations and differential geometry)

Author(s)
Kong, L.L.; Pei, D.H.

Citation
数理解析研究所講究録 (2009), 1664: 68-70

Issue Date
2009-09

URL
http://hdl.handle.net/2433/141034

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On spacelike curve in nullcone 3-space

L.L. Kong and D.H. Pei

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

1 Basic notions

The nullcone is one kind of pseudo-sphere of Minkowski space. Our aim in this article is to develop the study for spacelike curve in nullcone 3-space by Bruce and Giblin’s singularity theory. In order to study the spacelike curve of nullcone 3-space, we need to develop differential geometry of spacelike curve in nullcone 3-space similarly as it was done for curves in Euclidean space [2].

Let $\mathbb{R}^4 = \{(x_1, x_2, x_3, x_4)|x_1, x_2, x_3, x_4 \in \mathbb{R}\}$ be a 4-dimensional vector space. For any two vectors $x = (x_1, x_2, x_3, x_4)$ and $y = (y_1, y_2, y_3, y_4)$ in \mathbb{R}^4, the pseudo-scalar product of x and y is defined by $\langle x, y \rangle = -x_1y_1 + \sum_{i=2}^{4}x_iy_i$. $(\mathbb{R}^4, \langle \cdot, \cdot \rangle)$ is called a Minkowski 4-space and denoted by \mathbb{R}^4_1. A vector x in $\mathbb{R}^4_1 \setminus \{0\}$ is called spacelike, lightlike or timelike if $\langle x, x \rangle$ is positive, zero or negative respectively. The norm of a vector $x \in \mathbb{R}^4_1$ is defined by $\|x\| = \sqrt{\langle x, x \rangle}$. For any $x, y \in \mathbb{R}^4_1$, we say x pseudo-perpendicular to y if $\langle x, y \rangle = 0$. For a vector $v \in \mathbb{R}^4_1$ and a real number c, we define a hyperplane with pseudo normal v by $HP(v, c) = \{x \in \mathbb{R}^4_1|\langle x, v \rangle = c\}$. $HP(v, c)$ is called a timelike hyperplane, a spacelike hyperplane or a lightlike hyperplane if v is timelike, spacelike or lightlike respectively. Now, define the nullcone 3-space by $NC^3 = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4_1 | x_1 \neq 0, \langle x, x \rangle = 0 \}$, the de Sitter 3-space by $S^3_1 = \{x \in \mathbb{R}^4_1 | \langle x, x \rangle = 1 \}$ and the hyperbolic 3-space by $H^3_1 = \{x \in \mathbb{R}^4_1 | \langle x, x \rangle = -1 \}$. If $x = (x_1, x_2, x_3, x_4)$ is a lightlike vector, then $x_1 \neq 0$. Therefore $\tilde{x} = \left(1, \frac{x_2}{x_1}, \frac{x_3}{x_1}, \frac{x_4}{x_1}\right) \in S^2_+ = \{x \in \mathbb{R}^4_1 | \langle x, x \rangle = 0, x_1 = 1 \}$. S^2_+ is called the nullcone unit 2-sphere.

For any $x_1, x_2, x_3 \in \mathbb{R}^4_1$, we define a vector $x_1 \wedge x_2 \wedge x_3$ by

$$x_1 \wedge x_2 \wedge x_3 = \begin{vmatrix} -e_1, & e_2, & e_3, & e_4 \\ x_1^1, & x_2^1, & x_3^1, & x_4^1 \\ x_2^2, & x_2^3, & x_2^4, & x_4^2 \\ x_3^3, & x_3^4, & x_3^2, & x_4^3 \end{vmatrix},$$

where e_1, e_2, e_3, e_4 are the canonical basis of \mathbb{R}^4_1 and $x_i = (x_i^1, x_i^2, x_i^3, x_i^4)$. It is easy to check that $\langle x_1 \wedge x_2 \wedge x_3 \rangle = \det(x_1, x_2, x_3)$, so that $x_1 \wedge x_2 \wedge x_3$ is pseudo orthogonal to $x_i (i = 1, 2, 3)$.

Let $\gamma : I \to NC^3$; $\gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t), \gamma_4(t))$ be a smooth regular curve in NC^3 (i.e., $\dot{\gamma}(t) \neq 0$ for any $t \in I$), where I is an open interval. The curve γ is called a spacelike curve if $\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle$ is positive for any $t \in I$. The arc-length of a spacelike curve γ, measured from $\gamma(t_0), t_0 \in I$ is $s(t) = \int_{t_0}^{t} \|\dot{\gamma}(t)\| dt$. Then a parameter s is determined such that $\|\dot{\gamma}(s)\| = 1$, where $\gamma'(s) = d\gamma/ds(s)$. We say that a spacelike curve γ is parameterized by arc-length if it satisfies that $\|\dot{\gamma}(s)\| = 1$. Throughout the reminder in this article, s will denote the arc-length parameter. Let $f(s) = \gamma'(s)$, we call $f(s)$ an unit tangent vector of γ at s. The signature of x is defined to be

$$\delta(x) = \text{sign}(x) = \begin{cases} 1 & x: \text{spacelike}; \\ 0 & x: \text{lightlike}; \\ -1 & x: \text{timelike}. \end{cases}$$

2000 Mathematics Subject classification. 53B30, 58K05, 57R70.

Key Words and Phrases. spacelike curve, nullsphere Gauss map, nullsphere height function

Work partially supported by NSF of China No.10871035 and NCET of China No.05-0319.

E-mail: peidh340@nenu.edu.cn
For any nonlightlike curve $\gamma : I \to NC^3$, which is parameterized by arc-length and satisfies $k_1(s) \neq 0$. We can construct a pseudo-orthogonal frame \{${t(s), n_1(s), n_2(s), n_3(s)}$\} of \mathbb{R}^4_1 along γ which satisfies the following Frenet-Serret type formulae:

$$\begin{align*}
 t(s) &= \gamma'(s); \\
 t'(s) &= k_1(s)n_1(s); \\
 n_1'(s) &= -\delta_1k_1(s)t(s) + k_2(s)n_2(s); \\
 n_2'(s) &= \delta_3k_2(s)n_1(s) + k_3(s)n_3(s); \\
 n_3'(s) &= \delta_1k_3(s)n_2(s),
\end{align*}$$

where $n_1 = \frac{\gamma''}{||\gamma''||}$, $n_i = n_{i-1}^{\pm 1} + \delta_1 \delta_3 \delta_{i-1} k_{i-2}^{\pm 1} n_{i-1}^{\pm 1}$, $\delta_0 = \delta(t)$ and $\delta_1 = \delta(n_i)$ ($i = 1, 2, 3$).

Let $n_2(s)$ be a timelike vector. Then $n_2(j \neq 2)$ is a spacelike vector.

Define maps

$$NG_{2,j} : I \to S^2_+$$

by $NG_{2,j}(s) = n_j \pm n_2(s)(j = 1, 3)$. Also define a map

$$\eta : S^2_+ \to S^2_+,$$

by $\eta(n_1 \pm n_2(s)) = n_2 \pm n_3(s)$, $\eta(n_2 \pm n_3(s)) = n_1 \pm n_2(s)$ and η is identity on the other elements of S^2_+. Each one of $NG_{2,j}(j = 1, 3)$ is called the nullsphere Gauss map of γ.

2 Nullsphere height functions on spacelike curve in NC^3

Now the function

$$H_1 : I \times S^2_+ \to \mathbb{R}$$

is defined by $H_1(s, v) = \langle \gamma(s), v \rangle$ and the function

$$H_2 : I \times S^2_+ \to \mathbb{R}$$

is defined by $H_2(s, v) = \langle \gamma(s), \eta(v) \rangle$, H_1 and H_2 are called the nullsphere height function on the spacelike curve γ. For any fixed $v_0 \in S^2_+$, we denote that $h_{1,v_0}(s) = H_1(s, v_0)$ and $h_{2,v_0}(s) = H_2(s, v_0)$, then we have the following theorem.

Theorem 2.1. Let $\gamma : I \to NC^3$ be an unit speed space curve with $k_1(s) \neq 0$. Then we have the following assertions:

1. $h_{1,v_0}'(s_0) = 0$ (resp. $h_{2,v_0}'(s_0) = 0$) if and only if there exist λ_1 and λ_2 such that $\nu = \tilde{n}(s_0)$ (resp. $\eta(\nu) = \tilde{n}(s_0)$), $n(s_0) = (\lambda_1 n_1 \pm \sqrt{\lambda_1^2 + \lambda_2^2} n_2 + \lambda_2 n_3)(s_0) \in NC^3$.
2. $h_{1,v_0}''(s_0) = 0$ (resp. $h_{2,v_0}''(s_0) = 0$) if and only if $\nu = n_3 \pm n_2(s_0)$ (resp. $\eta(\nu) = n_1 \pm n_2(s_0)$).
3. $h_{1,v_0}''(s_0) = h_{1,v_0}'''(s_0) = 0$ (resp. $h_{2,v_0}''(s_0) = h_{2,v_0}'''(s_0) = 0$) if and only if $\nu = n_3 \pm n_2(s_0)$ (resp. $\eta(\nu) = n_1 \pm n_2(s_0)$) and $k_2(s_0) = 0$.
4. $h_{1,v_0}''(s_0) = \cdots = h_{1,v_0}^{(4)}(s_0) = 0$ (resp. $h_{2,v_0}''(s_0) = \cdots = h_{2,v_0}^{(4)}(s_0) = 0$) if and only if $\nu = n_3 \pm n_2(s_0)$ (resp. $\eta(\nu) = n_1 \pm n_2(s_0)$) and $k_2(s_0) = k_2(s_0) = 0$.

Theorem 2.2. Let $\gamma(s)$ be a spacelike curve in nullcone 3-space. Then:

1. If $v_0 = \gamma(s_0)$, then $h_{1,v_0}''(s_0)$ never equal to zero.
2. If $\eta(v_0) = \gamma(s_0)$, then $h_{2,v_0}''(s_0)$ never equal to zero.

Proposition 2.3. If $\gamma(s)$ is an unit speed spacelike curve, H_1 and H_2 are nullsphere height functions, $B_{H_1} = \{v \in S^2_+ \mid h_{1,v}''(s) = h_{1,v}'''(s) = 0\}$ and $B_{H_2} = \{v \in S^2_+ \mid h_{2,v}''(s) = h_{2,v}'''(s) = 0\}$, then the following conditions are equivalent:

1. $h_{1,v}'''(s_0) = 0$ for $v_0 = (n_3 \pm n_2)(s_0)$ (resp. $h_{2,v}'''(s_0) = 0$ for $v_0 = (n_2 \pm n_2)(s_0)$);
2. s_0 is a singularity of nullsphere Gauss map $NG_{2,3}^{\pm}(v_0) = NG_{2,1}^{\pm}(v_0) = 0$ on γ.
3. $k_2(s_0) = 0$.

Consider now the particular case of a curve $\gamma \subset NC^3$. Given a vector $v \in S^2_+(\text{resp. } S^2_-, H^3_\pm)$ and a number c, denote by $S(v, c)$ the null hyperhorosphere (resp. null hypersphere, null equidistant hyperplane) determined by the intersection of the hyperplane $HP(v, c)$ with NC^3.

Proposition 2.4. Suppose that $\overline{\gamma}(s) = NG_{2,j}^{\pm}(s)$. If $NG_{2,j}^{\pm}$ is constant, then $\gamma(s)$ is a straight line.

Proof. Since $\overline{\gamma}(s) = NG_{2,j}^{\pm}(s)$, $\gamma(s) = \gamma_1(s)NG_{2,j}^{\pm}(s)$. $NG_{2,j}^{\pm}(s)$ is constant, so $\gamma(s)$ is a straight line. \square

For an unit speed spacelike curve $\gamma : I \rightarrow NC^3$, we now define extended nullsphere height functions $\overline{H}_1 : I \times NC^3 \rightarrow \mathbb{R}$ by $\overline{H}_1(s, v) = H_1(s, \overline{v}) - v_1 = \langle \gamma(s), \overline{v} \rangle - v_1$ and $\overline{H}_2 : I \times NC^3 \rightarrow \mathbb{R}$ by $\overline{H}_2(s, v) = H_2(s, \overline{v}) - v_1 = \langle \gamma(s), \eta(v) \rangle - v_1$, where H_1 and H_2 are the nullsphere height function on γ. For any fixed $v_0 \in NC^3$, we denote $\overline{h}_{1,v_0}(s) = \overline{H}_1(s, v_0)$ and $\overline{h}_{2,v_0}(s) = \overline{H}_2(s, v_0)$.

Let $F : NC^3 \rightarrow \mathbb{R}$ be a submersion and $\gamma : I \rightarrow NC^3$ be a spacelike curve. We say that γ and $F^{-1}(0)$ have k-point contact at t_0 if $g(t) = F \circ \gamma(t)$ satisfies $g(t_0) = g'(t_0) = \cdots = g^{(k-1)}(t_0) = 0$, $g^{(k)}(t_0) \neq 0$. Then we have the following corollary.

Corollary 2.5. Let $\gamma : I \rightarrow NC^3$ be an unit speed spacelike curve with $k_1(s) \neq 0$. Then γ and the null hyperhorosphere $S(v_0^\pm, c_0^\pm)$ have 4-point contact at s_0 if and only if $k_2(s) = 0$ and $k'_2(s) \neq 0$, where $v_0^\pm = n_3 \pm n_2(s_0)$, $c_0^\pm = \langle \gamma(s_0), v_0^\pm \rangle$.

This work is only a preparation for further studying, in the following, we will give the classification of singularities of nullsphere Gausss map and discuss some geometrical properties of spacelike curve from singularity theory viewpoint.

References

Lingling Kong, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

e-mail: kong1111@nenu.edu.cn

Donghe Pei, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

e-mail: peidh340@nenu.edu.cn