Title: On spacelike curve in nullcone 3-space (Applications of singularity theory to differential equations and differential geometry)

Author(s): Kong, L.L.; Pei, D.H.

Citation: 数理解析研究所講究録 (2009), 1664: 68-70

Issue Date: 2009-09

URL: http://hdl.handle.net/2433/141034

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
On spacelike curve in nullcone 3-space

L.L. Kong and D.H. Pei

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

1 Basic notions

The nullcone is one kind of pseudo-sphere of Minkowski space. Our aim in this article is to develop the study for spacelike curve in nullcone 3-space by Bruce and Giblin’s singularity theory. In order to study the spacelike curve of nullcone 3-space, we need to develop differential geometry of spacelike curve in nullcone 3-space similarly as it was done for curves in Euclidean space [2].

Let $\mathbb{R}^4 = \{(x_1, x_2, x_3, x_4) | x_1, x_2, x_3, x_4 \in \mathbb{R}\}$ be a 4-dimensional vector space. For any two vectors $x = (x_1, x_2, x_3, x_4)$ and $y = (y_1, y_2, y_3, y_4)$ in \mathbb{R}^4, the pseudo-scalar product of x and y is defined by $\langle x, y \rangle = -x_1y_1 + \sum_{i=2}^{4}x_iy_i$. $(\mathbb{R}^4, \langle \cdot, \cdot \rangle)$ is called a Minkowski 4-space and denoted by \mathbb{R}_1^4. A vector x in $\mathbb{R}_1^4 \setminus \{0\}$ is called \textit{spacelike}, \textit{lightlike} or \textit{timelike} if $\langle x, x \rangle$ is positive, zero or negative respectively. The norm of a vector $x \in \mathbb{R}_1^4$ is defined by $\|x\| = \sqrt{\langle x, x \rangle}$. For any $x, y \in \mathbb{R}_1^4$, we say x \textit{pseudo-perpendicular} to y if $\langle x, y \rangle = 0$. For a vector $v \in \mathbb{R}_1^4$ and a real number c, we define a hyperplane with pseudo normal v by $HP(v, c) = \{x \in \mathbb{R}_1^4 | \langle x, v \rangle = c\}$. $HP(v, c)$ is called a \textit{timelike hyperplane}, a \textit{spacelike hyperplane} or a \textit{lightlike hyperplane} if v is timelike, spacelike or lightlike respectively. Now, define the \textit{nullcone 3-space} by $NC^3 = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}_1^4 | x_1 \neq 0, \langle x, x \rangle = 0\}$, the \textit{de Sitter 3-space} by $S_1^3 = \{x \in \mathbb{R}_1^4 | \langle x, x \rangle = 1\}$ and the \textit{hyperbolic 3-space} by $H_1^3 = \{x \in \mathbb{R}_1^4 | \langle x, x \rangle = -1\}$. If $x = (x_1, x_2, x_3, x_4)$ is a lightlike vector, then $x_1 \neq 0$. Therefore $\bar{x} = (1, \frac{x_2}{x_1}, \frac{x_3}{x_1}, \frac{x_4}{x_1}) \in S_1^2 = \{x \in \mathbb{R}_1^4 | \langle x, x \rangle = 0, x_1 = 1\}$. S_1^2 is called the \textit{nullcone unit 2-sphere}.

For any $x_1, x_2, x_3 \in \mathbb{R}_1^4$, we define a vector $x_1 \wedge x_2 \wedge x_3$ by

$$x_1 \wedge x_2 \wedge x_3 = \begin{vmatrix} -e_1 & e_2 & e_3 & e_4 \\ x_1^1 & x_2^1 & x_3^1 & x_4^1 \\ x_2^2 & x_2^2 & x_3^2 & x_4^2 \\ x_3^3 & x_3^3 & x_3^3 & x_4^3 \\ x_4^4 & x_4^4 & x_4^4 & x_4^4 \end{vmatrix},$$

where e_1, e_2, e_3, e_4 are the canonical basis of \mathbb{R}_1^4 and $x_i = (x_{i1}^1, x_{i1}^2, x_{i1}^3, x_{i1}^4)$. It is easy to check that $\langle x, x_1 \wedge x_2 \wedge x_3 \rangle = \det(x_1, x_2, x_3)$, so that $x_1 \wedge x_2 \wedge x_3$ is pseudo orthogonal to $x_i (i = 1, 2, 3)$.

Let $\gamma : I \rightarrow NC^3$; $\gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t), \gamma_4(t))$, a smooth regular curve in NC^3 (i.e., $\gamma(t) \neq 0$ for any $t \in I$), where I is an open interval. The curve γ is called a \textit{spacelike curve} if $\langle \gamma'(t), \gamma'(t) \rangle$ is positive for any $t \in I$. The \textit{arc-length} of a spacelike curve γ, measured from $\gamma(t_0)$, $t_0 \in I$ is $s(t) = \int_{t_0}^{t} \|\gamma'(t)\| \, dt$. Then a parameter s is determined such that $\|\gamma'(s)\| = 1$, where $\gamma'(s) = d\gamma/ds(s)$. We say that a spacelike curve γ is \textit{parameterized by arc-length} if it satisfies that $\|\gamma'(s)\| = 1$. Throughout the reminder in this article, s will denote the arc-length parameter. Let $t(s) = \gamma'(s)$. We call $t(s)$ an \textit{unit tangent vector} of γ at s. The \textit{signature} of x is defined to be

$$\delta(x) = \text{sign}(x) = \begin{cases} 1 & : \text{spacelike}; \\ 0 & : \text{lightlike}; \\ -1 & : \text{timelike}. \end{cases}$$
For any nonlightlike curve $\gamma : I \rightarrow NC^3$, which is parameterized by arc-length and satisfies $k_1(s) \neq 0$.

We can construct a pseudo-orthogonal frame $\{t(s), n_1(s), n_2(s), n_3(s)\}$ of \mathbb{R}^3_1 along γ which satisfies the following Frenet-Serret type formulæ:

$$
\begin{align*}
\mathbf{t}(s) &= \gamma'(s); \\
\mathbf{t}'(s) &= k_1(s)n_1(s); \\
n_1'(s) &= -\delta_1k_1(s)t(s) + k_2(s)n_2(s); \\
n_2'(s) &= \delta_3k_3(s)n_1(s) + k_3(s)n_3(s); \\
n_3'(s) &= \delta_1k_3(s)n_2(s),
\end{align*}
$$

where $n_1 = \gamma''/||\gamma''||$, $n_i = n_{i-1} + \delta_{s,k_i} ... \delta_{s,k_{i-1}}n_{i-2} - \delta_0$, $\delta_0 = \delta(t)$ and $\delta_i = \delta(n_i)$ ($i = 1, 2, 3$).

Let $n_2(s)$ be a timelike vector. Then $n_2(j \neq 2)$ is a spacelike vector.

Define maps

$$NG_{2,j} : I \rightarrow S_{+}^2$$

by $NG_{2,j}(s) = n_j \pm n_2(s) (j = 1, 3)$. Also define a map

$$\eta : S_{+}^2 \rightarrow S_{+}^2,$$

by $\eta(n_1 \pm n_2(s)) = n_2 \pm n_3(s)$, $\eta(n_2 \pm n_3(s)) = n_1 \pm n_2(s)$ and η is identity on the other elements of S_{+}^2. Each one of $NG_{2,j}(j = 1, 3)$ is called the nullsphere Gauss map of γ.

2 Nullsphere height functions on spacelike curve in NC^3

Now the function

$$H_1 : I \times S_{+}^2 \rightarrow \mathbb{R}$$

is defined by $H_1(s, v) = \langle \gamma(s), v \rangle$ and the function

$$H_2 : I \times S_{+}^2 \rightarrow \mathbb{R}$$

is defined by $H_2(s, v) = \langle \gamma(s), \eta(v) \rangle$, H_1 and H_2 are called the nullsphere height function on the spacelike curve γ. For any fixed $v_0 \in S_{+}^2$, we denote that $h_{1,v_0}(s) = H_1(s, v_0)$ and $h_{2,v_0}(s) = H_2(s, v_0)$, then we have the following theorem.

Theorem 2.1. Let $\gamma : I \rightarrow NC^3$ be an unit speed spacelike curve with $k_1(s) \neq 0$. Then we have the following assertions:

1. $h_{1,v_0'}(s_0) = 0$ (resp. $h_{2,v_0'}(s_0) = 0$) if and only if there exist λ_1 and λ_2 such that $v = \tilde{n}(s_0)$ (resp. $\eta(v) = \tilde{n}(s_0)$), $n(s_0) = (\lambda_1n_1 \pm \sqrt{\lambda_1^2 + \lambda_2^2}n_2 + \lambda_3n_3)(s_0) \in NC^3$.

2. $h_{1,v_0''}(s_0) = h_{1,v_0}''(s_0) = 0$ (resp. $h_{2,v_0''}(s_0) = h_{2,v_0}''(s_0) = 0$) if and only if $v = n_3 \pm n_2(s_0)$ (resp. $v = n_1 \pm n_2(s_0)$).

3. $h_{1,v_0'}(s_0) = h_{1,v_0''}(s_0) = h_{1,v_0}'(s_0) = 0$ (resp. $h_{2,v_0'}(s_0) = h_{2,v_0}''(s_0) = h_{2,v_0}'(s_0) = 0$) if and only if $v = n_3 \pm n_2(s_0)$ (resp. $v = n_1 \pm n_2(s_0)$) and $k_2(s_0) = 0$.

4. $h_{1,v_0}(s_0) = \cdots = h_{1,v_0}^{(4)}(s_0) = 0$ (resp. $h_{2,v_0}(s_0) = \cdots = h_{2,v_0}^{(4)}(s_0) = 0$) if and only if $v = n_3 \pm n_2(s_0)$ (resp. $v = n_1 \pm n_2(s_0)$) and $k_2(s_0) = k_2'(s_0) = 0$.

Theorem 2.2. Let $\gamma(s)$ be a spacelike curve in nullcone 3-space. Then:

1. If $v_0 \ni \gamma(s_0)$, then $h_{1,v_0}''(s_0)$ never equal to zero.

2. If $\eta(v_0) = \gamma(s_0)$, then $h_{2,v_0}''(s_0)$ never equal to zero.

Proposition 2.3. If $\gamma(s)$ is an unit speed spacelike curve, H_1 and H_2 are nullsphere height functions, $B_{H_1} = \{v \in S_{+}^2 \mid h_{1,v'}(s) = h_{1,v''}(s) = 0\}$ and $B_{H_2} = \{v \in S_{+}^2 \mid h_{2,v'}(s) = h_{2,v''}(s) = 0\}$, then the following conditions are equivalent:

1. $h_{1,v_0''}(s_0) = 0$ for $v_0 = (n_3 \pm n_2)(s_0)$ (resp. $h_{2,v_0''}(s_0) = 0$ for $v_0 = (n_1 \pm n_2)(s_0)$);

2. s_0 is a singularity of nullsphere Gauss map $NG_{2,3,1}^\pm$ (resp. $NG_{2,1}^\pm$) on γ;

3. $k_2(s_0) = 0$.
Consider now the particular case of a curve \(\gamma \subset NC^3 \). Given a vector \(\mathbf{v} \in S_2^0(\text{resp. } S_1^0, H_1^3) \) and a number \(c \), denote by \(S(\mathbf{v}, c) \) the null hyperhorosphere (resp. null hypersphere, null equidistant hyperplane) determined by the intersection of the hyperplane \(HP(\mathbf{v}, c) \) with \(NC^3 \).

Proposition 2.4. Suppose that \(\tilde{\gamma}(s) = NG_{2,j}^{\pm}(s) \). If \(NG_{2,j}^{\pm} \) is constant, then \(\gamma(s) \) is a straight line.

Proof. Since \(\tilde{\gamma}(s) = NG_{2,j}^{\pm}(s) \), \(\gamma(s) = \gamma_1(s)NG_{2,j}^{\pm}(s) \). \(NG_{2,j}^{\pm}(s) \) is constant, so \(\gamma(s) \) is a straight line. \(\square \)

For an unit speed spacelike curve \(\gamma : I \rightarrow NC^3 \), we now define extended nullsphere height functions \(\tilde{H}_1 : I \times NC^3 \rightarrow \mathbb{R} \) by \(\tilde{H}_1(s, \mathbf{v}) = H_1(s, \overline{\mathbf{v}}) - \mathbf{v}_1 = \langle \gamma(s), \overline{\mathbf{v}} \rangle - \mathbf{v}_1 \) and \(\tilde{H}_2 : I \times NC^3 \rightarrow \mathbb{R} \) by \(\tilde{H}_2(s, \mathbf{v}) = H_2(s, \overline{\mathbf{v}}) - \mathbf{v}_1 = \langle \gamma(s), \eta(\overline{\mathbf{v}}) \rangle - \mathbf{v}_1 \), where \(H_1 \) and \(H_2 \) are the nullsphere height function on \(\gamma \). For any fixed \(\mathbf{v}_0 \in NC^3 \), we denote \(\tilde{h}_{1,v_0}(s) = \tilde{H}_1(s, \mathbf{v}_0) \) and \(\tilde{h}_{2,v_0}(s) = \tilde{H}_2(s, \mathbf{v}_0) \).

Let \(F : NC^3 \rightarrow \mathbb{R} \) be a submersion and \(\gamma : I \rightarrow NC^3 \) be a spacelike curve. We say that \(\gamma \) and \(F^{-1}(0) \) have \(k \)-point contact at \(t_0 \) if \(g(t) = F \circ \gamma(t) \) satisfies \(g(t_0) = g'(t_0) = \cdots = g^{(k-1)}(t_0) = 0, \ g^{(k)}(t_0) \neq 0 \). Then we have the following corollary.

Corollary 2.5. Let \(\gamma : I \rightarrow NC^3 \) be an unit speed spacelike curve with \(k_1(s) \neq 0 \). Then \(\gamma \) and the null hyperhorosphere \(S(\mathbf{v}_0^\pm, c_0^\pm) \) have 4-point contact at \(s_0 \) if and only if \(k_2(s) = 0 \) and \(k_2'(s) \neq 0 \), where \(\mathbf{v}_0^\pm = n_3 \pm n_2(s_0), c_0^\pm = \langle \gamma(s_0), \mathbf{v}_0^\pm \rangle \).

This work is only a preparation for further studying, in the following, we will give the classification of singularities of nullsphere Gauss map and discuss some geometrical properties of spacelike curve from singularity theory viewpoint.

References

Lingling Kong, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China e-mail:kongl1111@nenu.edu.cn

Donghe Pei, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China e-mail:peidh340@nenu.edu.cn