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On spacelike curve in nullcone 3-space

L.L. Kong and D.H. Pei

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

1 Basic notions

The nullcone is one kind of pseudo-sphere of Minkowski space. Qur aim in this article is to develop the
study for spacelike curve in nullcone 3-space by Bruce and Giblin’s singularity theory. In order to study
the spacelike curve of nulicone 3-space, we need to develop differential geometry of spacelike curve in
nullcone 3-space similarly as it was done for curves in Euclidean space [2].

Let R* = {(z1, 22,3, %4)|21,22, 23,24 € R} be a 4-dimensional vector space. For any two vectors
x= (%1,&2,3,74) and y= (y1,¥y2,y3,y4) in R*, the pseudo-scalar product of x and y is defined by
(X,y) = —z191 + Sip Tii- (R, (,)) is called a Minkowski 4-space and denoted by R%. A vector x in
R$ \ {0} is called spacelike, lightlike or timelike if (x,x) is positive, zero or negative respectively. The
norm of a vector x € R} is defined by ||x|| = 1/|(x,x)|. For any x,y € R%, we say x pseudo-perpendicular
toy if (x,y) = 0. For a vector v € R} and a real number c, we define a hyperplane with pseudo normal v
by HP(v,c) = {x € R} | (x,v) =c}. HP(v,c¢) is called a timelike hyperplane, a spacelike hyperplane or
a lightlike hyperplane if v is timelike, spacelike or lightlike respectively. Now, define the nulicone 3-space
by NC3 = {x = (z1,2,73,24) € R{ | 21 # 0,(x,x) = 0}, the de Sitter 3-space by S3 = {x € R? |
(x,x) = 1} and the hyperbolic 3-space by H} = {x € R | (x,x) = —1}. If x = (x;,Z2,%3,24) is a
lightlike vector, then z; # 0. Therefore X = (1, 2 2, -;if) €82 ={xeR}|(x,x) =0,z; =1}. % is
called the nulicone unit 2-sphere.

For any x;,x2,x3 € R}, we define a vector x; A xz A x3 by

—€1, €2, €3, €4
zi, 2%, 23, of
z3, a3, T3, 5
z3, =3, 23, =}

X1 AX2 AX3 =

where e;,e3,€e3,e4 are the canonical basis of R} and x; = (z},z?,z3,2%). It is easy to check that
(x,%1 A X2 A x3) = det(x, X1, X2, X3), so that x; A x2 A x3 is pseudo orthogonal to x;(i = 1,2, 3).

Let v: I — NC3; v(t) = (71(t),v2(t), ¥3(t), 74(t)) be a smooth regular curve in NC? (i.e.,%(t) # O for
any t € I), where I is an open interval. The curve v is called a spacelike curve if (¥(t),%(t)) is positive
for any t € I. The arc-length of a spacelike curve v, measured from (%), to € I is s(t) = f:o 17 ()]} dt.
Then a parameter s is determined such that ||¥/(s)|| = 1, where v/(s) = dv/ds(s). We say that a spacelike
curve v is parameterized by arc-length if it satisfies that ||¥'(s)|| = 1. Throughout the reminder in this
article, s will denote the arc-length parameter. Let t(s) = 4/(s). we call t(s) an unit tangent vector of
~ at 8. The signature of x is defined to be

1 x : spacelike;
4(x) =sign(x) =<0  x: lightlike;
—1 x:timelike .
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For any nonlightlike curve v : I — NC3, which is parameterized by arc-length and satisfies k1 (s) # 0.
We can construct a pseudo-orthogonal frame {¢(s), n;(s), n2(s), na(s)} of Rf along v which satisfies the
following Frenet-Serret type formulae:

t(s) = ~(s)

t'(s) = Fki(s)ni(s);

ni(s) = =0d1ki(s)t(s) + k2(s)n2(s);
ny(s) = dzka(s)ni(s) + ka(s)na(s);
n3(s) = &1ka(s)na(s),

where ny = Tﬂ;ﬂ = %:L, n;, = n;'1+6061g06;:1k"—1ni‘2, 50 == 5(15) and 5,‘ = 5('11«,) (’L = 1,2,3).
Let ny(s) be a timelike vector. Then n;(j # 2) is a spacelike vector.

Define maps
NGz, :I'— 83

by NGj ;(s) = n, £ ny(s)(j = 1,3). Also define a map
7: Sf_ — S_z’_,

by n(nmg(s)) = ng + nz(s), n(nm:;(s)) = nT:\i:/ng(s) and 7 is identity on the other elements of
5% . Each one of NG ,(j = 1,3) is called the nulisphere Gauss map of .

2 Nullsphere height functions on spacelike curve in NC3

Now the function
Hy:IxS% >R

is defined by H;(s,v) = (y(s),v) and the function
Hy:Ix 8% —R

is defined by Ha(s,v) = (v(s),n(v)), H1 and H; are called the nullsphere height function on the spacelike
curve ~. For any fixed vg € S2, we denote that hi ., (s) = H1(s,v0) and hg.,(s) = Ha(s,vo), then we
have the following theorem.

Theorem 2.1. Let v : I — NC?3 be an unit speed spacelike curve with ki(s) # 0. Then we have the
following assertions:

(1) h1,u (50) = O(resp. hz.,'(s0) = 0) if and only if there exist Ay and Ay such that v = 7i(sg) (resp.
n(v) = 1(s0)), n(s0) = (Mny £ /AZ + X2ngy + Aana)(se) € NC3.

(2) hl,voIEg_)/= h1” (s0) = O(resp. haw,’(50) = haw,”(s0) = 0) if and only if v = nz £ na(so)
(resp. v = ny £ na(so)).

(3) hl,vof(/'s_()\/)= h],vO”(So) = hl,@_lil_(/SO) = O(Tesp. h2,vo,(30) = hz’UON(SQ) = hz’vo’”(SQ) = 0) ’&f and
only if v = n3 £ na(so)(resp. v = ny £ na2(so)) and ka(so) = 0.

(4) hiwy (S0) = -+ = hﬁ)}o(so) = 0(resp. hoy,'(S0) = -+ = hé‘go(so) = 0) if and only if
v= nmg(so)(resp. v= nmz(so)) and k2(sg) = kb(so) = 0.

Theorem 2.2. Let v(s) be a spacelike curve in nullcone 3-space. Then:
(1)If vo = A(s0), then hi.,"(s0) never equal to zero.
(2)If n(vo) = F(s0), then ha," (s0) never equal to zero.

Proposition 2.3. If y(s) is an unit speed spacelike curve, H, and H> are nullsphere height functions,
By, = {v € 82 | h1,,/(s) = h1,,”"(s) = 0} and By, = {v € 52 | ha,,/(s) = ha,,"(s) = 0}, then the
following conditions are equivalent:

(1) A1, (s0) = O for vo = (ng Emz)(s0)(resp. ha,u,™(s0) = 0 for vo = (n1 £nz)(s0));

(2) so is a singularity of nullsphere Gauss map NGia(resp. Nfo,l) on ~;

(3) kz(SQ) =0.
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Consider now the particular case of a curve v C NC3. Given a vector v € S2(resp. S, H) and a
number c, denote by S(v, ¢) the null hyperhorosphere(resp. null hypersphere, null equidistant hyperplane)
determined by the intersection of the hyperplane H P(v,c) with NC3.

Proposition 2.4. Suppose that ¥(s) = NGI;,t’j(s). If Nth‘j is constant, then v(s) is a straight line.
Proof. Since J(s) = NG%',J- (8), v(s) = ’yl(s)NG.fj(s). Nij(s) is constant, so v(s) is a straight line. O

For _an unit speed spacelike curve v : I — NC®, we now define eztended nullsphere height func-
tions Hy : I x NC3 — R by Hi(s,v) = Hy(s,d) — vy = (v (s),D) —v; and Hy : I x NC® — R by
H,(s, v) = Ha(s, D) — v1 = (y(s), n('v)) — v;, where H; and H; are the nullsphere height function on ~.
For any fixed vy € NC3, we denote h; o (8) = H (s,v0) and hq w(8) = H2(3 vg).

Let F: NC? — R be a submersion and v : I — NC3 be a spacelike curve. We say that v and F~1(0)
have k-point contact at to if g(t) = F o y(t) satisfies g(to) = g'(to) = --- = g~ (to) = 0, g¥ (t0) # 0.
Then we have the following corollary.

Corollary 2.5. Let v : I — NC3 be an unit speed spacelike curve with ki(s) # 0. Then v and the

null hyperhorosphere S(vy,cE) have 4-point contact at so if and only if ka(8) = 0 and ky(s) # 0, where

vg = ng £ na(so), ¢ = (v(s0), v).

This work is only a preparation for further studying, in the following, we will give the classification
of singularities of nullsphere Gausss map and discuss some geometrical properties of spacelike curve from
singularity theory viewpoint.
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