0000000000
016650 20090 127-138 127

ALGEBRAIC RELATIONS AND ASYMPTOTIC FORMULAS FOR
FIBONACCI RECIPROCAL SUMS

CARSTEN ELSNER, SHUN SHIMOMURA, AND IEKATA SHIOKAWA

1. INTRODUCTION

Let a, § € C satisfy || <1 and af = —1. We put

(1) v,=L =P (mxo),
P
(2) Voe=a"+ 3" (n >0).

fa+ 8 =a € Z, then {U,}n>0 (respectively, {V,}n>0) is a sequence of generalized
Fibonacci numbers (respectively, Lucas numbers), which satisfies

Xn+2 = a'Xn—i—I + Xn (’I’L > O)

with initial values (X, X;) = (0,1) (respectively, (Xo,X1) = (2,a)). Indeed, if § =
(1 — v/5)/2, we have the Fibonacci and Lucas numbers: U, = Fp,V, = L, (n > 0). If
B =1-+/2, then {U,}n>0 is a sequence of the Pell numbers defined by iy =0, P = 1,
P,io =2P, 1 + P, (n > 0) (cf. [9]). Duverney, Ke. Nishioka, Ku. Nishioka, and the last
named author [2] (see also [1]) proved the transcendence of the numbers

=1 =1 =1 =1
;5?, ;T/,? ;Uﬁn»l’ ;an (s=1,2,3,...)

by using Nesterenko’s theorem on the Ramanujan functions P(q), @(q), and R(q) (see
Section 5). '

In this article, we discuss algebraic independence and algebraic relations for recipro-
cal sums of generalized Fibonacci numbers (respectively, Lucas numbers). Moreover we
present asymptotic formulas of them as 3 tends to a critical value.

2. ALGEBRAIC RELATIONS FOR RECIPROCAL SUMS

In what follows s always denotes a nonnegative integer. Set oo(s) = 1, and for s >
2 let oi(s), ..., 0s-1(8) be the elementary symmetric functions of the s — 1 numbers
~1, —22 ..., —(s — 1)? defined by

oi(s) = (—=1)° Z rf.ooor? (1<i<s—1).
1<ri1<...<r;<s—1
The coefficients of the following expansions

1 oo o0
cosec’s = — + _S_ a;x¥, sec’w = E bz
T
—

=0
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are given by
(C172 - 1)29By ,_ (1PTN2i = )R - DBy,
(2))! I (2))!
(j > 1), where B, = 1/6, By = —1/30, Bs = 1/42, ... are the Bernoulli numbers.
For the sequences defined by (1) and (2), and for s > 1, set

a;—1=

1 = 1
D25 (a ’6) ZSZU%’ qJ2S::ZV2s"
n=1
3 -1 n+1 . 1 n+1
25 =(a=h) ZSZ(U)% ’ Vo, 1 = Z(st

n=1

For these sums, we have the following ([3]):

Theorem 2.1. Suppose that a, 3 € Q. Then the numbers @2, $4, Pg are algebraically
independent, and for any integer s > 4 the number ®,, is written as

Dy, = (_23_}1_)_' (os—x(s)us -2 (__';'2%‘?2%—]‘—1(8)(% = (=1)%%; — aj))

=1
with
1 9 5
ps =2 (s odd), = §(4<I>2 + 20, —18®, + w —~ Z) (s even),
4/ 13 ) 77
- - = ——(24®, — 1){ 1125 — 219, —
o= (320 50 —w+ 5, e = 63( 2= 1)( 2 — 5w+ 75,

3 =2
i = . . ¥ —i— 23 )

4, 25 25
b = g(mcbz — 138, — 5w + Z), b = (24<I>2 - 1)(16@2 — 130, — 5w+ 5 )

(I —1—7 (2(24‘1)2 — 1)y — 32%‘%—1’—1) (7 23),
=1

J(2j -1

where w = (56%¢ + 5/4)/ (4P, + 1).
Remark 2.1. If s > 4, then (1 + 43,)5/2A( By, — r,By) € Q[P2, Dg|, and the total degree of
this does not exceed s + [s/2], where r; € Q (rs = 0 if and only if s is odd). Some of the

algebraic relations are given by the following table:

x=<1>2 y=<1>4 Z=q>6

1
s=4| g = —y+ ——(1280z° — 3456z + 576z* + 8960x32
8= 70Y7 1890(az + 1) (
— 44423 + 2016022z — 8122 + 1512z 7 + 1568022 — 422)
s=5|Pp= ——1-——2 (5121:7 — 70425 + 16225 — 1600z*z — 30z*
297(4z + 1)

+2560232 — 1523 + 450222 + 4760222 + 75zz + 70022 + 15z)
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Theorem 2.2. Suppose that a, 3 € Q. Then the numbers @3, O3, Of are algebraically
independent, and for any integer s > 4 the number &3, 1s written as

S (as_xs)us f S ECI, () (s + (1w~ aj))

(25 — 1)! =
with
ps =05 (s odd), = 312(45 —1) (s even),
- —i(180<1>* — 102 + 5 — ll) - ~————§(180<I>* — 6€% + B¢ — 1—1)
P1= s 4 g) 7 T1s9 8
3 cha |
;= — . Z¢i<ﬂj—i~1 (7 = 3),

(G —2)(2) +3) <

4 s, 11 16 11
1/11——5(180<I>4+2€ +5§—-—8—), Yo = o (180<I>4+2£ +5§~§)

1 =
o ) i i > 3),
¥i= =S5 (8§¢J,1+3;¢1w1 1) (323
where § = £(P3, @3, ) is a number satisfying

8E3 + 562 + (14400} — 46)¢ — (252@; + 1260®; — 75608] — 11%7—) = 0.

Theorem 2.3. Suppose that o, § € Q. Then the numbers Vs, Uy, Vs are algebraically
independent, and for any integer s > 4 the number Wy, s written as

1 —-1)7(2
Wy = m (O's 1($)Ms +Z 22]-(»3]) Os~j— 1 S)(UJJ ( 1 (301 - bJ)))
with
s =¥y (s odd), = 4\}[!% + ¥y —6¥, (s even),

1 1
pr= 582+ 1)V +7+1), 2= 15 (8¥z + 1)(8%2 +n+ 1)(24¥2 + 7+ 3),

1 = |
p; = m ((24\112 +n4+3)pi—1+3 Z %%‘4—1) (7 =3),
i=1

1 1
= —58%: + )Y —n+1), =56V +1)(8T: —n+1)(24T2 —n+3),

1
i(2j - 1)

where n = n(Vq, ¥¢) is a number satisfying

-2
Y = — ((24‘1’2 —n+3)¢j-1+ 32 ¢i1/)j—i—1) (7 = 3),
i=1

3840¥¢ + 30

2= - 2 _ 487
(n+5) 19205 — 48W, + 6 + 30, 7 1
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Theorem 2.4. Suppose that «, 3 € Q. Then the numbers V5. V5. W are algebraically
independent, and for any integer s > 4 the number V3, is written as

. 1)7(27)! s
\Pgs:(—z—__l)—(as () + Z( sl oss) ( + (1) m—m))

with
ps = V3 (s odd), = %(9 —1) (s even),
1 1
o1 = —5(967; - 6> +20—3), ¢ = 129(96\11* — 6% +20 — 3)(96V; — 30% + 20 — 3),
1 . 2 Yj-1 < :
1
Wy = _5(96\1/;;+92+29—3), Yy = 129(96\I/4+92+29 3)(96V; + 36% + 20 — 3),
1 2 1,[1] 1 i -
Vi =~y oy | (96 +36° + 20 - 3= +3Z¢nﬁ] mie1] (G2 3),

where § = (U3, V3, V) is a number satisfying
62 — (1920; — 6)0 + 1920 — 64¥; — 7 = 0.

For algebraic independence of general sums we have the following ([7]):

Theorem 2.5. Let s, so, s3 be distinct positive integers. Then the numbers ®q,,, Pos,,
®,,, are algebraically independent over Q if and only if at least one of s1, sz, s3 is even.

The quantities £, 1, and 6 in Theorems 2.2, 2.3, and 2.4, respectively, are algebraic
functions of the corresponding sums for 1 < s < 3. In these theorems, we have to know
the branches of £, n, and 6 depending on the parameter a (or §). Sincea = a+ 3 € C,
we write 3 = (a/2)(1 — /1 + 4a=2), which satisfies #(a) = O(a™!) as a — oo. Then each
reciprocal sum is a function of a or 3. For example the branch of 7 is given below (for £
and 0 see [3]):

Theorem 2.6. Under the same suppositions as in Theorem 2.3, we have the following:
(i) The function n = n(a) is holomorphic for |a| > 5.431, and is expressible in the form

a) = =5+ v/ x(a)

x(a) = —19202 — 480, + 6 + (3840Ws + 30) /(82 + 1)

satisfying x(a) = 36 + O(a™2) as a — oo. Here the branch is taken so that \/x(o0) =
(ii) For a = 1 corresponding to the Lucas numbers,

n(1) = =5 — vx(1) (< -5),

and for any real number a > 2.4

a) =-5++/x(a) (> -5).

with
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3. RECIPROCAL SUMS OF ODD TERMS

In addition to the notation o;(s) defined in Section 2, let (s ) coey Ts(8) (s > 1) be
the elementary symmetric functions of the s numbers —1, ~32, ..., —(2s — 1)? given by

ni(s) = (=" > @2rn-1-2rn-1)?  (1<i<s),
1I<ry << <ss

and for s > 0 set 7p(s) = 1.
For p > 1 and for s > 1, consider the reciprocal sums of odd terms:

D DN S R
=la - ) 2s = s = s—1
8 — U1 el Ve — Vo i

where {U,}n>0 and {V,,}n>0 are the sequences given by (1) and (2), respectively. For
these sums we have the following ([4]):

Theorem 3.1. Suppose that o, 3 € Q. Then the numbers f1, f2, f3 are algebraically
independent, and for any integer s > 2

—1)5—
fos = -((‘2*—_)——)“ (Us 1(8)fe — Z( 22J+3 ~j—1(5)%‘)
and
fasy1 = 22s+2(28)' z —1)7(29)!75—5(8)s,

where

1 =16f1(f1 —8f3), w2 =— 3f1(f1”8f3—16f1) Yo=4f1, 1 =16f;—2f,
— 1 90290] 1 . .

_ 1 (298 + Y1) Sy b :
Y= 55T ( o+ 3 Zw] i 1+Zwm ; wzwrm_l_l) (j = 2).

m=1

Theorem 3.2. Suppose that a, § € Q. Then the numbers ga, g, go are algebraically
independent, and for any integer s > 4 the number gss ts written as

1 —1)7(27)
CTE ( - s>gz+2( Caz as—j-msm-),

where

16
01 = —16(g2 +6gs), 2= —(92 + 3094 + 120g¢),

1 992‘70_7 1 . .
j = - 3 ch —i— (.7 2 3 °
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Theorem 3.3. Suppose that a, 3 € Q. Then the numbers g;, g5 are algebraically inde-
pendent, and for any integer s > 2 the number g5, s written as

* L& (=17(2))!
9541 = 225(25)! J_ZO 4 Ts—j(s)()oja

where

o = 497, 901 = —2g] — 1695,

) m-2
1 (p1 — 203)pj-1 & ‘
Y; = = ; -3 YiPj—i—1 — m 1P —f— Z 2).
) ](2]_1)( o w}: jmin1 Zs@ ZsoJm ] G22)

4. RECIPROCAL SUMS OF EVEN TERMS

Let E; denote the Euler numbers Ey = 1, Ep = —1, E, =5 E¢= —61, ..., which
satisfy

1)7 Ey; Y
sec:c—z( (2)3)'2 .

For s > 1 and for p > 1, consider the recxprocal sums of even terms:

=1 =1
hos i = (a—B)7> ) —, L= —,
2. % S
. 3 Y ( 1)'n+1 ( 1 n+1
h‘2s T (a ﬁ) et Uzgi ’ 3;1 ‘/2;:1 )

where {Up,}n>0 and {Vi}n>0 are the sequences given by (1) and (2), respectively. For
these sums we have the following ([5]):

Theorem 4.1. Suppose that o, § € Q. Then the numbers hy, ha, he are algebraically
independent, and for any integer s > 4

(=1)7(25)!
hos = ’(’5‘5—__'7 (Us 1(s)h2 — Z 225+3 a3 Os-i-1(8)(wi — a]-)) ’

where
P11 = %(1 + 240h2 + 1440]14), Y2 = Tég(l —_ 504h2 —_ 15120h4 60480]16),
(3) = 7 - wipj—i-1 (J = 3)-
G- +9) ; 7=

Theorem 4.2. Suppose that a, 3 € Q. Then the numbers hy and hj are algébraically
independent, and for any integer s > 3

~1(9; |
By, = 1 Z( 1)7- (2_] + 1)'0‘5-1-_1(5) (1/}].+1 +

25— 1)! & 22;+3

)
2j +1/°
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where

1 . 1 16,
¢1:_§“8h2, ¢2:—'4—, _E?,—h + 32hj,

(4) »

.= 1 m ¥ j—m—1 23
¥j (2j+1)(j_2)(3w1wjl+3§:ww“+2¢ wa > (723)

Theorem 4.3. Suppose that a, 3 € Q. Then the numbers Iy, lz, I3 are algebraically
independent, and for any integer s > 2

—1)e-1 < (=1)7(2))!
l2s = ((55-—.)—:[-)7 (Gs_l(S)ZQ + Z _‘_27]:_"5"—0-5—]'-1(8)(()01 - bJ)) ’

=1

bt = gz (ms)zl EIRSCICEIOLE Ezj)) ,

where

2¢1
3(1+ 4ly)

1
Yo =144, Y= —(1—-4l1+32l3),

1 6 .
Qi = == ( P2¥5- 1+3Z@z(p] —i— 1) (J 23)’

7(2j —1) ®1 —

o1 = (14 45)(1 — 4l +32l3), @2 = (1 + 41y + 2413 + 3203 + 1613),

1 (R & .
wj— _](2]'— 1) ( 11[)0 - '{"31/1 Zdh% —i— 1+Z'¢}m Z zpz’d)] —m—i— 1) (] > 2)

=1 m=1

Theorem 4.4. Suppose that o, § € Q. Then the numbers I} and 5 are algebraically
independent, and for any integer s > 2

N 1 s+1 s—1 ;
l25_1=§—2§(—27>——2n als = ) (B — (217 (20)! ),

. (-1)* (1925 +1)! b
e = (2s — 1)! Z 22j+3 s—J~1(3)(<PJ 2j+1)’

where

0
—=1- 8L} 14
po=1-8l;, 1= 6¢0 (‘Po +v5), 2= 120?% (900 + 14pavs + ¥5),

__ __ * (100
'(11)0 =1 4l1v "vbl 2¢0
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-3 74 J—m-3
1 3#91‘79]—1 2 : < .
Y = T N +3/”6§5F‘2 T?’QO '/791”“"—7'—2-" ©m YiPi—m—i—2 (J 23)
J mﬂ)( RSy DRPLDILERETS S pp
, j—2 j—m—2
, 1 208 + )1 | L, S :
UJJ:_](Q_]—I) <( 9 l,/)ol) 1 1+‘5w0 ¢z¢] —i— I+Z’¢’ Z d)d)J m—i—1 (]22)
i=1

For reciprocal sums of evenly even terms and of unevenly even terms, we also obtain
algebraic relations ([5]). For the Fibonacci reciprocal sums

(has + hag) = (o — 5)"25

1 1
X2s - U2.s7 X/gs = (hg‘, - h’2s) = (Oé - —2 Z

n=1

nMg

l\DlP—‘

U4'n 2

we have the following:

Theorem 4.5. Suppose that a, B € Q. Then the numbers x2, Xxa, X¢ are algebraically
independent, and for any integer s > 4

1 — (=1)7(25)! .
XQS = (27——1—)’ Js 1(8 X2 Zl 22]+4 O'S*j—l(s)((ioj - 2(1] - (2] + 1)w]+1) ?
J:
with
2 4 z 11
Y1 = B — 64(x2 + 6x4) — 15> p2 = 189 (—74—2 + 2880(x2 + 6x4) + 12)
= —2 by = il 32(x2 + 6x4) —
1= 6’ 2 = 6 X2 X4 15 )

and ¢;, ¥; (7 > 3) defined by the same recurrence formulas as (3) and (4). Here z is a
number satisfying the cubic equation

2% — (2880(x2 + 6x4) + 12)z — 8064(x2 + 30x4 + 120x6) + 16 = 0.

Theorem 4.6. Suppose that «, [ € Q. Then the numbers x”z, Xﬂ, Xnﬁ are algebraically
independent, and for any integer s > 4

Xbs = (—25%137 (Us 1 Z - ézygj -0s—j-1(s) (s + (27 + 1)¢j+1)) '

with
22 z /22 i "
Y1 = 60 + "“(Xz + 6X4) Y2 = 189 (Z — 576(x3 + 5X4)),
Z Z2 32 g, f
S 2 6
?/)1 6’ w2 ].80 + 5 (X2 + X4)7

and p;, ¥; (j > 3) defined by the same recurrence formulas as (3) and (4). Here z =
2(x5 + 30x5 + 120x5)/ (x5 + 6x4)-
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5. PROOF OoF THEOREM 4.1

Consider the complete elliptic integrals of the first and second kind with the modulus

k # 0,+1 defined by
/ /1- K
\/ 1— t2 — k?) 12

for k2 C\ ({0}u{z]z> 1} The branch of each integrand is chosen so that it tends
tolast— 0. Set

qze—'rrc’ C:K’/K, }(l:};((]ﬁ,I)7 k2+(k_l)2: 1.
Choose ¢ = ¢(8) (or ¢ = ¢(83)) so that ¢ = e™™ = 32, B = —e "%/, By [13, Tables 1(i)]

al |
(5) has = (@~ B)> Y o
v=1 2v

g ~ (2s

(note that o;(s) denotes a;(s) in [13}), where

0o s—1
=27% Z cosech®(vmc) = __—_—1—)—1 Zogs‘j—l(s)Azﬂl(ﬂz)
J:

oo .
n2]+1q2n

Azjr1(q) = Z T

n=1

The g-series Az is generated from the Fourier expansion of ns?z:

(©) (%YHSQ (gﬂ) - g{—(_K;z-—_El + cosec’z — SZ;( 1) Agj 41 ((2;))2]

o s ™

(cf. [13, Tables 1(i)], [8], [12, p- 535]), where ns z = 1/sn z with w = sn z defined by
dw

=), V=@ = )

The power series expansion of ns?z gives the expressions (cf. {11}, [13, Table 1(i)]):
( o2y o 1 _ (2K (3E 2

P(¢?) =1~ 24A,(q) = ( - ) (K 2+k>

2K \4
(7) $ Q(?) =1+ 240A43(q) = (—-) (1= k2 + &%),
2

| R(¢%) =1 - 50445(q) = ( f) “(1+ &) (1 - 2k%)(2 - k?)
with ¢ = e™™¢, ¢ = K'/K. We refer here the theorem of Nesterenko ([10]).

Nesterenko’s Theorem. If p € C with 0 < |p| < 1, then
trans.degg Q(p, P(p), Q(p), R(p)) = 3.

This theorem with (7) implies the following:

Lemma 5.1. [fq=e"" € Q with 0 < |q| < 1, then K/m, E/n, and k are algebraically
independent.
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The following lemma is proved by using the fact that u = ns’z satisfies the differential
equation (u')? = 4u(u — 1)(u — k*?).
Lemma 5.2. The coefficients of the ezpansion ns’z = z7% + 3 2 ¢;2% are given by

: 1 1

1 ,
= - "2 = — —_ "2 -4 = — 1 2 1.— "2 — "2
Co 3(1+k ), < 15(1 k*+ k%), c2 15 (1+&%)(1 — 2k%)(2 — k%),

j—2
(G —2)(25+3)c; =3 ciciim1 (52 3).
i=1

Now we are ready to prove Theorem 4.1. It follows from (5) that
ho = A;, 6hy = A3— A, 120he = As —5A3+ 44,
or equivalently,
(8) A, = hy, Asz=hy+6hs, As = hy+ 30hs+ 120hs.
By (7) and Lemma 5.1, the numbers hs, hy, he are algebraically independent. The formula
(6) yields

] 22j+3

(9) @5 = (%)Zﬂzcj =a; — (”U’WA%H (J=1).

Here c; are the coefficients given by Lemma 5.2. In particular,

(10) Y1 = -ilg(l + 240A3), Y2 = I'z—g(l - 504A5),

which together with (8) imply the expressions of ¢; and ¢, in terms of hy, hq and he.
Combining (5) and (9) we get the expression of hy, in terms of {¢;};>1. Multiplying
both sides of the formula in Lemma 5.2 by (2K/7)%*2, and using the relation ¢; =
(2K /m)¥+2c;, we obtain the recurrence relation for ¢; (j = 3).

6. ASYMPTOTIC FORMULAS

Let a, 8 € C satisfy a8 = —1, |8] < 1. Then the reciprocal sums

) 00 1 © (_1)n+l
hzs=(a—6)‘52@;, 955—1=Z—Vz‘z;:11—
n=1 n n=1 n—

(s € N) are holomorphic for |3| < 1. These sums may also be regarded as functions of
the modulus k of Jacobian elliptic functions (see Section 5, also (3], {4], [5]). Asymptotic
expressions these sums as 3 — —1+ 0 (or k — 1 — 0) are presented as follows ([6):

Theorem 6.1. For —1 < # < —1 + 4g, we have
o0
—2 s) 3
(02 — B)%hys = (14 O™ /M) ST Ay,
=0

n:=—log(—f8) = 1+ B)(1+0(1+5), .
where 8 is a sufficiently small positive number. The sum on the right-hand side s a
convergent series in 1, whose coefficients )\5-5) € Q[n] are given by
22‘5—1(_1):;~132‘s 96
(25)! T

A =
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and (i) for s =1, 2,

2 2 8 16 8
W _ m_22,2 o__8 jo_ 2, 8
Al 2. M =gmtg A 3 M T3 g
2 2 4 4 9y 16
)\(1) =0, )\g) = _“135 ‘4" '§7l'2, )\:(’) - ’ 3

(ii) for s > 3,
223 1( l)s 1 23»

2B, 7% + §(25 — 1) Ba, A =0,
T 825 = DBrea)y A

A =0, AY =

Theorem 6.2. For —1 < 3 < —1 + dq, we have

(a+B)¥ g5, = (1+O0(e™ /@) Z“() 2%
7=0

where 39 and n are as in Theorem 1. The sum on the right-hand side is a convergent

series in 1, whose coefficients ,ugs) € Q[r] are given by

(s) __ ("1)S~1E2s~2 2s—1
oo = s —oy +

and (i) for s =1, :
m_ 7 n_ T

1 T o Ha =480
(i1) for s > 2,

o _ (=1)7T@2s—1) o3 2
M1 = ;1 3. (2s — 2)!” (Bos—am® +8(s = 1)(2s — 3)Eas-4),

Degenerate cases of our expressions coincide with Euler’s formulas for {(2s) = > 22, n™2s

and L(2s — 1) = 3. (—1)"*1(2n — 1)~2s=V) respectively. For —1 < § < —1+ Jo and

n=

for n > 1, observing that

an — IBZn n—1 n-—-1 1 n—1
l — )62 — Z aZn—2—2u’82v — Z ﬁ4u~2n+2 — _2_ Z(ﬁ4u—2n+2+ﬁ-(4u~2n+2)) > n,
v=0 vr=0 v=0
we have for s € N
— 1
: 2 2\2s _
ﬁ—l»l—nllw(a = B) has = 21 n2s’

Therefore, letting 3 tend to —1 + 0 in Theorem 6.1, we obtain

_ 225—-1(_1)3-1323 26
C(QS) - (28)' m

For each s € N a similar argument concerning Theorem 6.2 leads us

(s € N).

1)n+1 (—1)*" 1By o
. 25—1 % = " 2ot
ﬂ__l)lirrll+0(a +B8)° 7 gas1 = E : (2n —1)2s-1 - 225(25 — 2)! T
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