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Laplace—Mellin transform of the
non-holomorphic Eisenstein series

Takumi Noda #fH I
College of Engineering Nihon University HBAKXZ TLEFE

1 Imtroduction and statement of the results

In this report, we give a Laplace-Mellin transform of the non-holomorphic Eisen-
stein series and the Fourier coefficients of the Eisenstein series respectively. The
main theorem appeared in author’s previous paper [5] (2007). We give a new
proof by means of Mellin-Barnes type integral formulas in section 4.

Let k = 0 be an even integer, Let i be the imaginary unit, s be a complex
number whose real part o and imaginary part ¢. As usual, H is the upper half
plane. The non-holomorphic Eisenstein series for SL;(Z) is defined by

Ex(z,s) =y Y (cz+d)¥cz+d|™%. 1)
{cd}
Here z is a point of H, s is a complex variable and the summation is taken over
(£ %), a complete system of representation of { (&) € SL2(Z)}\SL2(Z). The
right-hand side of (1) converges absolutely and locally uniformly on {(z,s)| z € H,
Re(s) > 1— £}, and Ey(z,5) has a meromorphic continuation to the whole s-plane.
Our main result is as follows:

Theorem 1 (/5] Theorem 1) (I) Assume that k 2 4. Then the Eisenstein series
Ex(z,s) is a C*-modular form of weight k, and of bounded growth for 2 —k <
‘Re(s) < —1 except on the poles. Further, for 1 — % <Re(s) < —1andn € Zy,
1 o
/ / Ex(z,s) exp (—2minz)y*2dydx = 0. ¥))
00

(II) Let Ex(z,5) = Y. a(n;y,s)e*™ be the Fourier expansion of the Eisenstein
n

= —00

series. Then Fourier coefficients of the projection of Ex(z,s) to the space of holo-

morphic cusp forms are zero, namely,

(27n)* (k- 1)~ / a(rsy,s)e” T 2dy = 0 3)
0
for1—k <Re(s) <0andn € Zo.



2 Projection to the space of cusp forms

The C=-automorphic forms of bounded growth are introduced by Sturm in the
study of zeta-functions of Rankin type.
The function F is called a C*-modular form of weight %, if F* satisfies the follow-
ing conditions: ,

(A.1) F is a C™-function from H to C,

(A.2) F((az+b)(cz+d)™") = (cz+d)*F(z) forall (¢5) € SLx(Z).
We denote by I the set of all C*-modular forms of weight k. The function
F € 971 is called of bounded growth if for every € > 0

1 o
//IF(Z)I)fk‘ze—sydydx < oo,
00

Let k be a positive even integer and Sy be the space of cusp forms of weight k on
SLy(Z). For F € 901, and f € Sy, we define the Petersson inner product as usual

(f,F) = / F(F @y 2dxdy.
SL(Z)\H

In 1981, Sturm [7] constructed a certain kernel function by using Poincaré series,
and showed the following theorem:

- Theorem 2 (Sturm 1981) Assume that k > 2. Let F € 9, be of bounded growth
with the Fourier expansion F(z) = Y. a(n,y)e*™"™. Let

n=—oo

c(n) = 2rn)* 0k — 1)"1/a(n,y)e_2””yyk_2dy.
0

Then h(z) = ).3 c(n)e*™z ¢ Sy and
n=1

(8,F)=(g,h)

forall g € 8.

3 Fourier expansion of the Eisenstein series

Next, we recall the Fourier expansion and the growth condition of Ex(z,s). Let
e(u) := exp(2xiu) for u € C. For z € H and Re(s) > 1 — £, Ex(z,s) has an expan-
sion: '

Ei(z,5) =Y +ao(s)y* ™+ —5(,(—):_3-5";001 —k—2s(m)am(y,5)e(mx), (4)

95



96

where
VAP |—k—2s O (k+25—1)T(k+25s—1)
aofs)  =(=1)22m2 Clk+2s) L()(k+s)’
o;(m) = Y d°
dim, d>0
and -
am(y,s) = /e(-—mu)(u+iy)"k|u+iy|"2’du. (5)

We call the first two terms of (4) are the constant term of E(z,s). The integral
(5) is entire function in s and of exponential decay in y|m|. This fact gives the
meromorphical continuation of Ex(z,s) to the whole s-plane, and shows that the
constant terms represent the y-aspect of E(z,s) when y tends to . Namely, there
exist positive constants A; and A; depending oﬁly on k and s such that

|Ek(z,5)| € A1yReE) 4 Ayl "Re()-k (y = ), (6)

except on the poles. Further, the integral (5) is expressed in terms of special

functions: 4
k
1V, (9 p hH25, k4251
(=1) (?zl)c T s)mk €™M (s, k+ 2s; 4Tym) (m>0),
am(y,s) =
O T o s L g
) e Y (k+s,k+2s; 4my|m|) (m<0).

(7
Here ¥(a, B;z) is the confluent hypergeometric function defined for Re(z) > 0
and Re(a) > 0 by the following

1

¥Y(a,B;z) = I“(a)'/e_z“u"‘_l(l +u)P-214y,
0

(See for example [4] §7.2.) Then we have

Proposition 1 Assume E(z,s) is holomorphic at s € C. Then, there exist positive
constants Ay and A; depending only on k and s such that

A (7 Rek 4 yRe() (Re(s) > 15%)

|Bie(x+ iy, )| £ { Ag(y~1+Re() 4 y1-Re(s)—k) (Re(s) < 154)

for every y > 0.

Remark 1. The integral (5) plays a fundamental role in the study of automor-
phic forms. The initial work is due to Hecke [2]. His approach is explicated in



Schoenberg’s book [6] (pp. 63-68). The representation (7) was originally investi-
gated by Maass [3] (pp. 209-211). He used the Whittaker function to express the
integral (7).

Remark 2. The estimation (6) is well-known, and Proposition 1 is the conse-

quence of (6) and modularity of Y3 E, (z,5).

4 Proof of Theorem 1

The orthogonality of Ei(z,s) and cusp forms gives the equation (2) under the
convergence of the integral. Here Proposition 1 is used, however, we omit the
detail of the proof of Theorem 1 (I) (see [5]). In this section, we give a new
proof of Theorem 1 (II) by using the Mellin-Barnes integral. The following
proposition is crucial to evaluate the integral in (3). (See [1], Section 6.5.)

Proposition 2 (Mellin-Barnes integral) ¥(a,B;z) has an integral representa-
tion

1 Fr(@+wT(=wI(1-B-w),
27 / Nal(a—B+1) 2™

—joo

¥(a,B;:z) =

where |arg(z)| < 37, @ ¢ Z<o, @ — B + 1 ¢ Z<o and the path of integration is
indented so as to separate the poles of T (0t +w) and T'(—w)I'(1 — B —w).

Proof of Theorem 1 (II) By Proposition 2, we have
/ W(s,k+2s; 4nny)e 4 Tryk+s—2 4y,
0

1 oo
- 27l (s)I(1 —k—s) b/l‘[r(s+W)r(_W)r(1 —k—25s—w)

X ( 4 nn)w e—47tnyyw+k+s—2 dwdy

for s ¢ Z. Here the path of integration in w is denoted by L taken from —ieo to
ieo 50O as to separate the poles of I'(s +w) and I'(—w)I"(1 — k — 2s — w). Then the
interchange of the order of integration (11) is justified by Fubini’s theorem in the
region 1 —k < Re(s) < 0.

We also employ Barnes’ lemma:

97

Ia+7)IM(a+8)I(B+7I(B+95)

517;7; /r(a +W)F(B +W)F(}'— W)F(5 - W)dw:

—foo

Noa+p+v+96)
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where the path of integration is taken so as to separate the poles of I'(e +w)T'( +
w) and I'(y — w)['(8§ — w). (See [8] Section 14.52.) By the above lemma, we have

/T(S, k+ 25; 47[n)y)e-47tnyyk+s_2dy

0

B (47Cn)l—k—s N 1
= St [(—s)I'(—1+k+s)-T'(0)
=0,

for 1 -k <Re(s) <Oand s & Z.

If o is zero or a negative integer, ¥(ct, B ; z) is a polynomial in z, which is
called the (generalized) Laguerre polynomial. The Laguerre polynomials L (x)
for n € Zx are defined by

L) =Y <”+a) " ED gt 1sx),

—_ 1 !
m—0 n—m m! n!

which are known as the orthogonal polynomials associated with the scalar product
(p1,92) == / P1(x)P2(x)e"x*dx
0
for a > — 1. Especially, for positive integer n,
(L2,18) = / L2(x)e " dx = 0. ®)
0
By (11), we have for s € Z<,

/ W(s,k+2s; 47tny)e‘4"")'yk+s—2 dy

0 [ ©)

- (_s)!(—I)S/Llitzx_l(47tny)e—47myyk+s—2dy.
0

Applying the relation L&~ (x) = L3(x) — L2_,(x) for (—s — 1)-times, we resolve
(10) into (9) and complete the proof of Theorem 1 (II). )
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