Laplace-Mellin transform of the non-holomorphic Eisenstein series

Takumi Noda 野田 工
College of Engineering Nihon University 日本大学 工学部

1 Introduction and statement of the results

In this report, we give a Laplace-Mellin transform of the non-holomorphic Eisenstein series and the Fourier coefficients of the Eisenstein series respectively. The main theorem appeared in author's previous paper [5] (2007). We give a new proof by means of Mellin-Barnes type integral formulas in section 4.

Let $k \ge 0$ be an even integer, Let i be the imaginary unit, s be a complex number whose real part σ and imaginary part t. As usual, H is the upper half plane. The non-holomorphic Eisenstein series for $SL_2(\mathbb{Z})$ is defined by

$$E_k(z,s) = y^s \sum_{\{c,d\}} (cz+d)^{-k} |cz+d|^{-2s}.$$
 (1)

Here z is a point of H, s is a complex variable and the summation is taken over $\binom{*\ *}{c\ d}$, a complete system of representation of $\left\{\binom{*\ *}{0\ *}\right\} \in SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{Z})$. The right-hand side of (1) converges absolutely and locally uniformly on $\{(z,s)|z\in H,$ $Re(s)>1-\frac{k}{2}\}$, and $E_k(z,s)$ has a meromorphic continuation to the whole s-plane.

Our main result is as follows:

Theorem 1 ([5] Theorem 1) (I) Assume that $k \ge 4$. Then the Eisenstein series $E_k(z,s)$ is a C^{∞} -modular form of weight k, and of bounded growth for 2-k < Re(s) < -1 except on the poles. Further, for $1 - \frac{k}{2} < \text{Re}(s) < -1$ and $n \in \mathbb{Z}_{>0}$,

$$\int_{0}^{1} \int_{0}^{\infty} E_k(z,s) \exp\left(-2\pi i n \bar{z}\right) y^{k-2} dy dx = 0.$$
 (2)

(II) Let $E_k(z,s) = \sum_{n=-\infty}^{\infty} a(n;y,s)e^{2\pi inx}$ be the Fourier expansion of the Eisenstein series. Then Fourier coefficients of the projection of $E_k(z,s)$ to the space of holomorphic cusp forms are zero, namely,

$$(2\pi n)^{k-1}\Gamma(k-1)^{-1}\int_{0}^{\infty}a(n;y,s)e^{-2\pi ny}y^{k-2}dy=0$$
 (3)

for 1-k < Re(s) < 0 and $n \in \mathbb{Z}_{>0}$.

2 Projection to the space of cusp forms

The C^{∞} -automorphic forms of bounded growth are introduced by Sturm in the study of zeta-functions of Rankin type.

The function F is called a C^{∞} -modular form of weight k, if F satisfies the following conditions:

(A.1) F is a C^{∞} -function from H to \mathbb{C} ,

(A.2)
$$F((az+b)(cz+d)^{-1}) = (cz+d)^k F(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$.

We denote by \mathfrak{M}_k the set of all C^{∞} -modular forms of weight k. The function $F \in \mathfrak{M}_k$ is called of bounded growth if for every $\varepsilon > 0$

$$\int_{0}^{1} \int_{0}^{\infty} |F(z)| y^{k-2} e^{-\varepsilon y} dy dx < \infty.$$

Let k be a positive even integer and S_k be the space of cusp forms of weight k on $SL_2(\mathbb{Z})$. For $F \in \mathfrak{M}_k$ and $f \in S_k$, we define the Petersson inner product as usual

$$(f,F) = \int_{SL_2(\mathbb{Z})\backslash H} f(z)\overline{F(z)}y^{k-2}dxdy.$$

In 1981, Sturm [7] constructed a certain kernel function by using Poincaré series, and showed the following theorem:

Theorem 2 (Sturm 1981) Assume that k > 2. Let $F \in \mathfrak{M}_k$ be of bounded growth with the Fourier expansion $F(z) = \sum_{n=-\infty}^{\infty} a(n,y)e^{2\pi inx}$. Let

$$c(n) = (2\pi n)^{k-1} \Gamma(k-1)^{-1} \int_{0}^{\infty} a(n,y) e^{-2\pi ny} y^{k-2} dy.$$

Then $h(z) = \sum_{n=1}^{\infty} c(n)e^{2\pi i n z} \in S_k$ and

$$(g,F)=(g,h)$$

for all $g \in S_k$.

3 Fourier expansion of the Eisenstein series

Next, we recall the Fourier expansion and the growth condition of $E_k(z,s)$. Let $e(u) := \exp(2\pi i u)$ for $u \in \mathbb{C}$. For $z \in H$ and $Re(s) > 1 - \frac{k}{2}$, $E_k(z,s)$ has an expansion:

$$E_k(z,s) = y^s + a_0(s)y^{1-k-s} + \frac{y^s}{\zeta(k+2s)} \sum_{m \neq 0} \sigma_{1-k-2s}(m) a_m(y,s) e(mx), \quad (4)$$

where

$$a_0(s) = (-1)^{\frac{k}{2}} 2\pi \cdot 2^{1-k-2s} \frac{\zeta(k+2s-1)}{\zeta(k+2s)} \frac{\Gamma(k+2s-1)}{\Gamma(s)\Gamma(k+s)},$$

$$\sigma_s(m) = \sum_{d|m, d>0} d^s,$$

and

$$a_m(y,s) = \int_{-\infty}^{\infty} e(-mu)(u+iy)^{-k} |u+iy|^{-2s} du.$$
 (5)

We call the first two terms of (4) are the constant term of E(z,s). The integral (5) is entire function in s and of exponential decay in y|m|. This fact gives the meromorphical continuation of $E_k(z,s)$ to the whole s-plane, and shows that the constant terms represent the y-aspect of E(z,s) when y tends to ∞ . Namely, there exist positive constants A_1 and A_2 depending only on k and s such that

$$|E_k(z,s)| \le A_1 y^{\operatorname{Re}(s)} + A_2 y^{1-\operatorname{Re}(s)-k} \qquad (y \to \infty), \tag{6}$$

except on the poles. Further, the integral (5) is expressed in terms of special functions:

$$a_{m}(y,s) = \begin{cases} \frac{(-1)^{\frac{k}{2}}(2\pi)^{k+2s}m^{k+2s-1}}{\Gamma(k+s)}e^{-2\pi ym}\Psi(s,k+2s;4\pi ym) & (m>0),\\ \frac{(-1)^{\frac{k}{2}}(2\pi)^{k+2s}|m|^{k+2s-1}}{\Gamma(s)}e^{-2\pi y|m|}\Psi(k+s,k+2s;4\pi y|m|) & (m<0). \end{cases}$$

$$(7)$$

Here $\Psi(\alpha, \beta; z)$ is the confluent hypergeometric function defined for Re(z) > 0 and $Re(\alpha) > 0$ by the following

$$\Psi(\alpha,\beta;z):=\frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}e^{-zu}u^{\alpha-1}(1+u)^{\beta-\alpha-1}du,$$

(See for example [4] §7.2.) Then we have

Proposition 1 Assume $E_k(z,s)$ is holomorphic at $s \in \mathbb{C}$. Then, there exist positive constants A_1 and A_2 depending only on k and s such that

$$|E_k(x+iy,s)| \le \begin{cases} A_1(y^{-\text{Re}(s)-k} + y^{\text{Re}(s)}) & (\text{Re}(s) > \frac{1-k}{2}) \\ A_2(y^{-1+\text{Re}(s)} + y^{1-\text{Re}(s)-k}) & (\text{Re}(s) \le \frac{1-k}{2}) \end{cases}$$

for every y > 0.

Remark 1. The integral (5) plays a fundamental role in the study of automorphic forms. The initial work is due to Hecke [2]. His approach is explicated in

Schoenberg's book [6] (pp. 63-68). The representation (7) was originally investigated by Maass [3] (pp. 209-211). He used the Whittaker function to express the integral (7).

Remark 2. The estimation (6) is well-known, and Proposition 1 is the consequence of (6) and modularity of $y^{\frac{k}{2}}E_k(z,s)$.

4 Proof of Theorem 1

The orthogonality of $E_k(z,s)$ and cusp forms gives the equation (2) under the convergence of the integral. Here Proposition 1 is used, however, we omit the detail of the proof of Theorem 1 (I) (see [5]). In this section, we give a new proof of Theorem 1 (II) by using the **Mellin-Barnes integral**. The following proposition is crucial to evaluate the integral in (3). (See [1], Section 6.5.)

Proposition 2 (Mellin-Barnes integral) $\Psi(\alpha, \beta; z)$ has an integral representation

$$\Psi(\alpha,\beta;z) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{\Gamma(\alpha+w)\Gamma(-w)\Gamma(1-\beta-w)}{\Gamma(\alpha)\Gamma(\alpha-\beta+1)} z^w dw,$$

where $|\arg(z)| \leq \frac{3}{2}\pi$, $\alpha \notin \mathbb{Z}_{\leq 0}$, $\alpha - \beta + 1 \notin \mathbb{Z}_{\leq 0}$ and the path of integration is indented so as to separate the poles of $\Gamma(\alpha + w)$ and $\Gamma(-w)\Gamma(1 - \beta - w)$.

Proof of Theorem 1 (II) By Proposition 2, we have

$$\int_{0}^{\infty} \Psi(s,k+2s;4\pi ny)e^{-4\pi ny}y^{k+s-2}dy$$

$$= \frac{1}{2\pi i\Gamma(s)\Gamma(1-k-s)} \int_{0}^{\infty} \int_{L} \Gamma(s+w)\Gamma(-w)\Gamma(1-k-2s-w)$$

$$\times (4\pi n)^{w}e^{-4\pi ny}y^{w+k+s-2}dwdy$$

for $s \notin \mathbb{Z}$. Here the path of integration in w is denoted by L taken from $-i\infty$ to $i\infty$ so as to separate the poles of $\Gamma(s+w)$ and $\Gamma(-w)\Gamma(1-k-2s-w)$. Then the interchange of the order of integration (11) is justified by Fubini's theorem in the region 1-k < Re(s) < 0.

We also employ Barnes' lemma:

$$\frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \Gamma(\alpha+w)\Gamma(\beta+w)\Gamma(\gamma-w)\Gamma(\delta-w)dw = \frac{\Gamma(\alpha+\gamma)\Gamma(\alpha+\delta)\Gamma(\beta+\gamma)\Gamma(\beta+\delta)}{\Gamma(\alpha+\beta+\gamma+\delta)},$$

where the path of integration is taken so as to separate the poles of $\Gamma(\alpha + w)\Gamma(\beta + w)$ and $\Gamma(\gamma - w)\Gamma(\delta - w)$. (See [8] Section 14.52.) By the above lemma, we have

$$\int_{0}^{\infty} \Psi(s, k+2s; 4\pi ny) e^{-4\pi ny} y^{k+s-2} dy$$

$$= \frac{(4\pi n)^{1-k-s}}{2\pi i} \Gamma(-s) \Gamma(-1+k+s) \cdot \Gamma(0)^{-1}$$

$$= 0,$$

for 1 - k < Re(s) < 0 and $s \notin \mathbb{Z}$.

If α is zero or a negative integer, $\Psi(\alpha, \beta; z)$ is a polynomial in z, which is called the (generalized) Laguerre polynomial. The Laguerre polynomials $L_n^a(x)$ for $n \in \mathbb{Z}_{\geq 0}$ are defined by

$$L_n^a(x) = \sum_{m=0}^n \binom{n+a}{n-m} \frac{(-x)^m}{m!} = \frac{(-1)^n}{n!} \Psi(-n, a+1; x),$$

which are known as the orthogonal polynomials associated with the scalar product

$$(\varphi_1,\varphi_2) := \int\limits_0^\infty \varphi_1(x) \varphi_2(x) e^{-x} x^a dx$$

for a > -1. Especially, for positive integer n,

$$(L_n^a, L_0^a) = \int_0^\infty L_n^a(x)e^{-x}x^a dx = 0.$$
 (8)

By (11), we have for $s \in \mathbb{Z}_{\leq 0}$,

$$\int_{0}^{\infty} \Psi(s, k+2s; 4\pi ny) e^{-4\pi ny} y^{k+s-2} dy$$

$$= (-s)! (-1)^{s} \int_{0}^{\infty} L_{-s}^{k+2s-1} (4\pi ny) e^{-4\pi ny} y^{k+s-2} dy.$$
(9)

Applying the relation $L_n^{a-1}(x) = L_n^a(x) - L_{n-1}^a(x)$ for (-s-1)-times, we resolve (10) into (9) and complete the proof of Theorem 1 (II).

References

[1] A. Erdélyi, et al. Higher Transcendental Functions, McGraw-Hill, New York, 1953.

- [2] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentherie und Arithmetik, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959, pp. 461-486.
- [3] H. Maass, Lectures on Modular Functions of One Complex Variable, Springer-Verlag (Distributed for the Tata Institute of Fundamental Research), revised ed., 1983.
- [4] T. Miyake, Modular Forms, Springer-Verlag, 1989.
- [5] T. Noda, A note on the non-holomorphic Eisenstein series, Ramanujan Journal, 14, 2007, 405-410.
- [6] B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, 1974.
- [7] J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48, No.2, 1981, 327-350.
- [8] E. T. Whittaker and G. N. Watson, *A course of Modern Analysis*, 4th ed., Cambridge University Press, Cambridge, 1927.