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ACTIONS OF MAASS’ OPERATORS ON THE ASYMPTOTIC
EXPANSIONS OF NON-HOLOMORPHIC EISENSTEIN SERIES

MASANORI KATSURADA AND TAKUMI NODA

ABSTRACT. The present article announces the results in our forthcoming paper [KN].
Let k be an arbitrary even integer, and Fx(s; z) denote the non-holomorphic Eisenstein
series (of weight k attached to SL2(Z)) defined by (1.1) below. We show here several
effects of the actions of Maass’ differential operators in (1.4) on non-holomorphic Eisen-
stein series; this first leads us to establish a complete asymptotic expansion of Ex(s;z)
in the descending order of y = Imz as y — +oo (Theorem 1), upon transferring from
the previously obtained asymptotic expansion of Eg(s; z) (due to the first author [KaT7)),
through successive use of Maass’ operators. Theorem 1 yields various consequences on
E\(s;2), including its functional properties (Corollaries 1.1-1.3), its relevant specific
values (Corollaries 1.4-1.7), and its asymptotic aspects as z — 0 (Corollary 1.8). We
shall then apply the non-Euclidian Laplacian Ag x (of weight k attached to the upper
half-plane) to the resulting expansion of Ei(s;z) (Theorem 2) in order to justify the
eigenfunction equation for Ex(s;z), where the justification could be made uniformly in
the whole s-plane. '

1. INTRODUCTION

Throughout the following, s = o + it denotes a complex variable, z = x + iy a complex
parameter in the upper-half plane, and k an arbitrary even integer. The non-holomorphic
Eisenstein series Ex(s; z) (of weight k attached to SLy(Z)) is defined by

o

(1.1) Bil(s;2) = % S (cz+d)Hez+d ™ (Res>1-k/2),
¢, d=—00
(c,d)=1

and its meromorphic continuation over the whole s-plane. It is readily seen when k = 0
that the relation '

(1.2) Eqo(s; 2) = Cza(s; 2)/2¢(23)

holds with the Riemann zeta-function ((s) and the Epstein zeta-function (z2(s; z), defined
by '
o /
Cz2(s;2) = Z |m + nz|™% (Res > 1)
mn=—oo
with its meromorphic continuation over the whole s-plane (cf. [Si, Chap.1]), where (and
in the sequel) primed summation symbols indicate omission of singular terms.
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Let

(1.3) 0 1(3 18)

9_-1(2+13 9 _190 10
0z 2\oz i Oy 8z 2\0r 0y
be (complex) partial differentiations. Then it is in fact possible to transfer from Eq(s; z)
to Ex(s; z) by Maass’ differential operators (cf. [Maa, Chap.4(12)(13)])

1 /0 s 1 /0 s
1. s=r=|ls—+-— s=c—\az — 57 )
(1-4) 6 (3:: + 2iy) and € 27 (BE Zzy)

T 2w
which for instance assert on setting 0, = (—4wy/s)d, and € = (4mwy/s)e, that

) and

o1 Eaj(s — j; 2) =Ejpa(s — 5 — 1;2)

(1.5) ~ o .
€er;E_2j(s+ J;2) =E_g;_2(s + j + 1;2)

for j = 0,1,.... It is further known that fi(s;2) = y*Ex(s; z) satisfies the eigenfunction
equation

(1.6) A rfr(s;z) = s(1 — s — k) fi(s; 2),
where .

o 0 kN 0
1.7 A = =4 (= + =— ) = = (4my)*bkeo,
(1.7) Hk y (az + 2iy)82 (4my)*dreo

by (1.4), denotes the non-Euclidian Laplacian (of weight k) attached to the upper half-
plane. The most direct and standard way of justifying (1.6) is to apply Ag« to each term
(multiplied by ¥*) of the series in (1.1), and this gives

Apr{y®(cz + d)_klcz +d|™*} = s(1 —s—k)y*(cz + d)"klcz +d|™%,

which immediately implies (1.6) by analytic continuation. This method, however, can
not clarify the key ingredients by which the eigenfunction equation (1.6) is to be valid
especially in the region Res < 1 — k/2, where the series representation in (1.1) diverges.

It is the aim of this article to present several effects of the actions of Maass’ differential
operators on non-holomorphic Eisenstein series; this first leads us to establish a com-
plete asymptotic expansion of Ex(s;z) in the descending order of y = Imz as y — +00
(Theorem 1) with the explicit t-estimates for the remainder terms (see (2.8) and (2.9)),
upon transferring from the previously derived asymptotic expansions of Ey(s; z) (due to
the first author [Ka7]) to that of Ej(s;z) through successive use of §; and €. Our main
formula (2.3) can then be applied to justify the eigenfunction equation (1.6) uniformly in
the whole s-plane (Theorem 2 and Corollary 2.1).

Theorem 1 at first implies several known functional properties of non-holomorphic
Eisenstein series (Corollaries 1.1-1.3); the proof of Theorem 1 particularly clarifies the
key ingredients by which the functional equation of E(s; 2) is to be valid (see (2.1), (2.14)
and Corollary 1.3). Our main formula (2.3) naturally reduces when k£ = 0 to the classical
Kronecker limit formula for Ey(s;2) as s — 1, also to its variants for (9/0s)Eo(s; 2) at
s = 0, and further for the particular values of Eq(s;z) at other integer points (Corol-
lary 1.4). Moreover, the cases k = +2 of (2.3) show that E.i,(s;z) have no singularities
on the real line, while the real simple poles of Ex(s;z) appear when |k| >4 at s=n € Z
either with —k+1<n < —k/2—-1ifk >4, orwithl1 <n < -k/2-1ifk < —4
(Corollary 1.1). We can deduce (similarly to the case £ = 0) various explicit formulae
for specific values of Ej(s;z) associated with the cases above (Corollaries 1.5 and 1.7);
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these in particular yield the classical Lambert series expressions of Ex(0;2) (k > 2) with
the base ¢ = €?™* (Corollary 1.6). Furthermore, our main formula (2.3) gives a complete
asymptotic expansion of Ej(s;z) in the ascending order of z as z — 0 (Corollary 1.8),
through the quasi-modularity of Ei(s; z). The proof of Theorem 2 clarifies, on the other
hand, that the key ingredients, by which the eigenfunction equation (1.6) is to be valid,
are the differential relations in [KN, Lemma 4].

It is emphasized that the study of asymptotic aspects of (z2(s; z) and further of Ex(s; z)
when y = Im z becomes small or large is of importance from both theoretical and appli-
cable point of views (cf. [CS1][CS2][Maa]). The first author has established a complete
asymptotic expansion of (zz(s; z) in the descending order of y as y — +oo ([Ka7, Theo-
rem 1]); the method of its proof was further elaborated to show that a similar asymptotic
series still exists for the Laplace-Mellin transform of (z,(s;z) with respect to y ([Ka7,
Theorem 2]), where the crucial roles in the proofs were played by Mellin-Barnes type
integrals. On the other hand, certain bounded growth conditions for Ex(s;z) as y — +0
and y — +o0o have recently been applied to determine the region of s in which E(s; z)
is orthogonal to the space of cusp forms, by the second author ([No2, Theorem 1(I))),
who further proved the related orthogonality (in a local sense) by directly showing that
the projection coefficients of Ei(s; z) to the space of cusp forms vanish identically ([No2,
Theorem 1(II)]). Here the relevant coefficients are expressed by means of Laplace-Mellin
transforms of confluent hypergeometric functions; these transforms were again manipu-
lated with Mellin-Barnes type integrals. It is worth while noting that the integrals of this
type have advantage over heuristic treatments in studying certain asymptotic aspects and
transformation properties of zeta and theta functions (see also [Kal-Ka6)).

As for the results related to Theorem 1, an asymptotic formula for Fy(s;z) when t —
+00 on the line ¢ = 1/2 was studied by the second author [Nol], while Matsumoto [Mat,
(1.6) and (1.7)] obtained asymptotic expansions (with respect to z) of the holomorphic
Eisenstein series F(s;z) defined by F(s;z) = Z':,nz_w(mz + n)~*, where the branch
(of each term) is to be chosen as —7 < arg(mz + n) < m. Note that the results in [Mat]
above can be regarded as counterparts of our asymptotic expansions (2.3) and (2.35).

The next section is devoted to state our main results (Theorems 1, 2 and their corollar-
ies), whose complete proofs will be given in [KN]. We therefore content ourselves only with
the presentation of a formula (in Section 3) which is fundamental in proving Theorem 1.

2. STATEMENT OF RESULTS

We write 0y (l) = 3.4, @ and use the notation e(z) = e*™* hereafter. Then Rama-
nunjan [Ram)] (see also [Be]) first introduced and studied the function

(e o] oo
(2.1) Borsa(e(2)) = > P12e(lilrz) = D 05— (DI7e(l2),
U1,02=1 =1
where the series converges absolutely for all (s;,s;) € C? and defines there an entire
function. Ramanujan’s main concern there was to supply various evaluations of (2.1) in
terms of the holomorphic Eisenstein series Fx(0; z) with k = 2, 4,6 (see also Corollary 1.6
below). Next let I'(s) be the gamma function, (s), = I'(s + n)/I'(s) for any integer
n Pochhammer’s symbol, and write I'(%.7%5™) = [TiZ; I'(es)/ I1;=, I'(B;) for complex
parameters o; and B; (i = 1,...,m; j = 1,...,n). Further, let U(;7; Z) denote the
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confluent hypergeometric function defined by

1 o0
2 U A —wZ,, a-—-1 1 7—a—ld
(2 ) (Cl, e ) - F(Of) /0 € w ( w) w

for Rea > 0 and |arg Z| < /2 (cf. [S], p.5, 1.3(1.3.5)]).

Qur first main result can be stated as

Theorem 1. Let Ey(s;z) be defined by (1.1) with an arbitrary even integer weight k.
Then for any integer N > |k|/2 the formula

23+k—1>§(25+k—1)

2 1-2s-k
s,s+k C(2s + k) (2v)

(2.3)  Ei(s;z) =1+ (—1)’“/227rr(

(_l)k/2(27r)25+k
C(2s + k)I'(s + k)
(—l)k/2(27r)2s+k

C(2s + k)I'(s)
holds in the region —N —k/2 < o < N — k/2+1 except at the complex zeros of ((2s + k)

and at the real poles of Ex(s; z) (described in Corollary 1.1 below). Here Syik/2 are defined
by (3.2), which (in the present case) reduces to ‘

{Snik/2(s,25 + k; z) + Rnirj2(s, 25 + k; 2) }

N+k/2-1

(24) SN.HC/Q(S, 2s + k‘; Z) = Z

n=0

(=1)"(s)n(l —s = k)n
n!

X ¢s+k—-n—-1,—-s—n(e(z))(47ry)_s_n’

N—k/2-1
(2.5) Sn-ka(s+ k25 +k-2) = Y

n=0

X Qs—n—l,—s—k—n(e("z))(47ry) _s—k_n>

both giving the asymptotic series in the descending order of y as y — +o00. Also Rnik/2
are the remainder terms expressed by (3.5), which (in the present case) reduces to

(2.6) Rnik/2(s,25 + k; 2)

(=D™(s+ k)n(l — 8)n
n!

(DN 2(S)Nakso(l — S — K)N4k/2 o= j204k-1
= s ;1
(N +k/2—1)! D> Gt e(hl2)

l1,l2=1

1 .
y / gok/2=N(1 _ e)N+K/2-1]7 (g 4 k/2 + N; 25 + k; dmly by /€)dE,
0

(2.7) RN—k/2(S + k,2s + k; —%)

()N 2(s+ k)Nok/2(l = S)N—k/2 o= j251k- -
= : ' [2+k=lg(_| ]
(N=k/2=1)! > 1 le(—hh3)

11,l2=1

1
X / ERN(1 — )N (s + k/2 + N 25 + k; dmlylay /€) dE,
0
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(the cases N + k/2 = 0 should read without the factor (—1)! and the {-integration),
satisfying the estiamtes

(2.8) Rytk2(8;28 + k; 2) = O{(Jt] + 1) Fhe 2y o N-k/2Y,

(2.9) Ruy_ia(s + k; 25 + k; —2) = O{([t| + 1)2N ke~ 2myy—o-N-k/2}
for any y > yo > 0 in the same region of s above, where the implied O-constants depend

at most on k, N and yp.

Remark 1. Since g, () = O{lm=*Rew0)+e} a5 | — 400 for any € > 0, we see from (2.1)
that

(2.10) ®,, ., (e(2)) = e(2) + O(e™*™) as y — +00.

Hence the terms with the index n on the right sides of (2.4) and (2.5) are of order
=< (|t| + 1)2e 2™y~ (0 < n < N + k/2) and of order < (|t| + 1)*e™?™y o "k
(0 < n < N — k/2) respectively; the presence of the bounds in (2.8) and (2.9) are
therefore reasonable.

Remark 2. It is possible to reformulate Theorem 1 with Ex(s + k/2;2), which further
clarifies the symmetry of our main formula; however, the present formulation is rather
convenient for practical applications.

We first mention the location of the singularities of Ei(s; 2).

Corollary 1.1. The real singularities of Ei(s;z) are all simple poles, which are located
on

1 | if k=0;
(2.11) s={ —k+1,-k+2,...,—k/2—1  ifk>4;
1,2,...,—k/2~1 ifk < —4.

Remark. The appearance of this corollary differs from those of the statements, for e.g., in
[Mi, p.286, Chap.7, Corollary 7.2.11] or [Sh, p.64, Chap.9, Theorem 9.7]; this is because
our formulation of the non-holomorphic Eisenstein series contains the extra factor {(2s)
in the denominator.

A slight modification of the proof of Theorem 1 yields the Fourier series expansion of
Ei(s; z) (cf. [Mi, p.284, Chap.7, Theorem 7.2.9}).

Corollary 1.2. Let Ex(s; z) be defined by (1.1) with an arbitrary even integer k. Then
the formula

—1)k/2 2s+k
(C(]él +(z;r11(s) Z e(lx)0-25+k_1(l)e—2nlyU(S; 2s + k, 47rly)

1 k/2 2 2s+k [o )
CE2S -)i- k)(ljzs + k) & Z e lx)az“" 1(De™*™U (s + k; 25 + k; 4rrly)

holds for all s ezcept at the complex zeros of ((2s + k) and at the real poles of Ex(s; 2)
given in (2.11).

+
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We next define the function Ej(s;z) by

23+k-—1)((2$+k—

1) 1-2s—k *
2 ¢ Ef(s; 2),
ss+k ) @R W + Ei(si2)

(2.13)  Ex(s;z) =1+ (—1)"‘”277]“(

and set _
Eu(s;z) =C(2s+ k)Ex(s;z)  and  Ef(s;2) = ((2s + k) E(s; 2).

Then the Mellin-Barnes type integral formula (3.3) below shows that the validity of the
following functional equation of E}(s; z) reduces eventually to the primary symmetry

(2.14) By 13 (€(2)) = By (e(2)):
We can prove
Corollary 1.3. For any real z, y with y > 0 the functional equation
(2.15) (y/m)T(8)Bi(s;2) = (y/m)' " (1 — s — k) ER(1— s — k; 2)
holds, and this with that of ((s) implies

(y/7)°I(s)Ex(s;2) = (y/m)**"*I'(1 — s — k) Ex(1 — s — k; 2).

Remark. The functional equation of Ey(s; z) itself can be found, for e.g., in [Sh, p.64, The-
orem 9.7].

We next proceed to state the explicit formulae for various specific values associated
with Fi(s;z). Let n(z) = e(z/24)[];2,{1 — e(lz)} be the Dedekind eta-function, and
Yo = —I"(1) the Oth Euler constant (cf. [Er, p.34, 1.12(17)]). We write ¢ = e(z) and so
g = e(—2) for brevity. Then the case k = 0 of (2.3) gives
Corollary 1.4. The following formulae hold for Ey(s; z):

i) For any integer m > 2,
2(=1)™*1(2m — 2)!(2m)!I{(2m — 1)

{(m - 1)1}2Bs,

2(~1)™*(2m)! ©= [m — 1

- - 1!
+ {(m - 1)!}2By, z n (m+n—1)
X {Pm—n-1,-m=-n(q) + Prn—n-1,-m-n(@) }(4my) "

(4my)t—2m

(2.16) Eo(m;2) =1+

n=0

il) As for s — 1,

. 3 1
(2.17) y_g}{Eo(s, R 1}

=1+ 7%{70 - %(2) — log(2y) + Do,-1(q) + 4’0,—1@)}

8 [ S 2N s
= 2 d0- L@ - 20gvamEN

iii) Upon the notation E{(s;z) = (8/0s)E(s; 2),

. 1 -
(2.18) E(0;2) = —gmy — 28_1,0(q) — 29-10(7) = 4log|n(2)};
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iv) For any integer m > 1,

(=1)™(m!)?Bam2
22m + 2)1(2m)!I¢(2m + 1)

1 - m
M (2m)!I¢(2m + 1) ngo (n) (m + n)!
8 {@"m—n—l,m_n(q) + Q—m-n—l,m——n(a)}(‘lﬂ'y)m_n

Let Res,—s, Ex(s; 2) denote the residue of Fi(s;z) at s = so. Then the case k > 2 of
(2.3) further yields

Corollary 1.5. The following formulae hold for Ey(s;z) with any k > 2:
i) For any integer m > 1,
(2.20) - Ex(m; 2)

(219) EO(—-m; Z) =1 -+ (4,/Ty)2m+1

2(=1)™1(2m + k — 2)!(2m + K)I¢(2m + k — 1
(m - 1)'(m + k — 1)!Bgm+k

2(—1)™*1(2m + k)! " k-1
+ (m—-—1{(m+k— 1)!Bzm+k{ Z ( n )

X (m +n — 1)!¢m+k—n-1,—-m—n(Q)(47ry)_m_n

+Z( )(m+k+n—1)!

n=0

) (47ry)1—2m—k

n=0

X Qm—n—l,—-m-—k-n(q) (47ry)_m—k—n } ;

ii) For any integer m with 0 < m < k/2 — 2,

(221) Be(—m; 2) = 1+ 217 (k = 2m)! i (TD

Bk—2m =0
—1)" m—-n
X (k _ TE’L _)n _ 1)'¢-m+k—-n—1,m——n(Q)(47ry) )

iii) As fors=1-k/2,

k/2-1
(2.22) Ei(1-k/2;2)=1— — + (—1)*/224 Z (k/2 - 1)

n=0
1 -
(k52 . )l¢k/2—n,k/2—n—1(q)(47ry)’°/ 2o
iv) As for s = —k/2,
k/2
: 1 k/2— k/2
(2.23) Ex(—k/2;2) =1— skmy + 2(—1)4/2-1 Zg( /
-1\ .
g (k/z(— n)— 1)!¢k/2-ﬂ~1vk/2—n(cJ)(47ry)"/ =
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v) For any integer m with k/2+1<m <k -1,
(2.24) Resee—m Er(s; 2)

_ m!Bom k42
22m - k)2m —k+2)(k—m —1)IC(2m - k + 1)

(=™ — (m (="
T em—RCem—k+1) Z(n)(k—m—n—— 1!

)mn

(4ﬂ,y)2m——k+l

x @_m+k -n—-1m- n(q)(47ry
vi) For any integer m > k,

(—l)mm‘(m — k)!BQm_k+2
22m —k+ 2)!(2m - k)I¢(2m — k + 1)

G IETET T 2 ()

m—k
X P _mik-n-1,m-n(q)(4my)™ " + Z <m ) k)

n
n=0

(225) Ek(-—-m’ z) =1+ (47ry)2m——k+1

x (m 4+ n)!@-m_n-l,m_k_,;(6)(47@)"‘"""}.

Remark. The cases ii) and v) of this corollary become null if £ = 2.

The cases m = 0 of (2.21) and & = 2 of (2.22) further reduce respectively to the
Lambert series expressions of the holomorphic Eisenstein series Fx(0; z) for & > 4 and the
nearly-holomorphic Eisenstein series Fy(s; z).

Corollary 1.6. The following expressions are valid for Ex(0; 2):
(2.26) E,(0; z)—l—é-—244510(q)—1-——3——24z ¢
Y Y 1-— q

and for any k > 4,

2k 2k [k-1gt
(2.27) Ei(0; Z)—l—g—dsk 10(Q)“1—§‘Zl_q

Remark 1. Formulae (2.26) and (2.27) are classic; these can be found for e.g., in [Ran].

We next state explicit formulae for specific values associated with the non—holomorphlc
Eisenstein series with negative weights.

Corollary 1.7. The following formulae hold for E_i(s; z) with any k > 2:
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1) For any integer m > k + 1,

(2.28) E_i(m; 2)
2(=1)™ k1 (2m — k — 2)!(2m — k)I{(2m — k — 1)

=1+ (m—k—1){(m—1)!Bop_x

2(=1)™*+1(2m — k) ("= (m-—k-1
k= Dim = 1)!Bzm_k{ ; ( n )

X (m+n—1)Pp_kn-1,-m-n(q)(dmy)™" "

+m2—:1(m; 1)(m—k+n——1)!

n=0

X ¢m—n—1,—m+k—-n(q)(47ry) —m+k—n} )

ii) For any integer m with k/2 +2 < m <Lk,

‘ 2= em — k)R (k—m
< (—nr(_;nl)—il—)l‘p et men (@) (g

iii) As fors=1+4k/2,

k/2—1

(2.30) E_o(1+k/2;2)=1— — + —1)*/224 Z (k/z - 1)

(kﬁ—Q—l)" I DPij2—nk/2-n-1(7)(47Yy)

iv) As for s = k/2,

k/2
03y Bz =1- gm0 3 (1)

n
(="
(k/2—n

n=0

v) For any integer m with 1 <m < k/2 -1,

(2.32) Resgem E_i(s; 2)
— (k — m)! Bk_2m+2
T 2(k — 2m)!(k — 2m + 2)!(m — 1)I¢(k — 2m + 1)

-k R (k-m
+ (k = 2m)I{(k — 2m + 1) HE;; ( n )
="

X mdsm-ﬁ-l,k—m—n (?j) (47"3/

)k—m—n;

k/2—

88

(47ry)1—2m+k

71-

n—1,
)

i Br/2—n—1,k/2-n (@) (dmy) ¥/

( )k—2m+1
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vi) For any integer m > 0,

(_1)m+k(m + k)!m!B2m+k+2 ( y)2m+k+1
2(2m + k + 2)1(2m + k)¢ (2m + 2k + 1)

+ (2m+k)!(j(12m+lc+l){zm:(:>(m+k+n)!

n=0

(2.33) E_(—m;z) =1+

X Q—m—k—n—l,m—n(q)(élﬂy)m-n
m+k
m+k
!
+ ; ( o )(m +n)!

X Dermmeen(d) <4wy)m+k-"}.

Remark. The cases ii) and v) of this corollary become null if £ = 2.

We next mention that the asymptotic expansion of Ei(s;2) as z — 0 is deducible from
Theorem 1 by applying the quasi-modularity of Ex(s;z). For this it is convenient to set
z = 47 with arg 7| < /2. Then one can see from (1.1) that the relation Ex(s;—1/z) =
2*|2|?° Ei(s; 2) holds, and hence
(2.34) Ey(syir) = (=1)*2|7| 72 Fe* 27 By (s 4/7),
by which Formula (2.3) can be switched to

Corollary 1.8. For any complez T with |argr| < 7/2 and any integer N > |k|/2 the
formula
(_l)k/2e—ikarg7

(2.35) Ei(s;i7) = |7 |25+k
N 2me tkareT (23+k—- 1)g(2s+k— 1)
[T|{2 cos(arg T) }2s+k-1 s,s+k ((2s+ k)

(27T/|T!)23+ke’ik arg T
C(2s+ k)[(s + k)
X {Sn+k/2(8,25 + k;i/T) + Rynsis2(s, 25 + k; i/7)}
(2W/lT|)23+k6_ik arg
C(2s + k)I'(s)
X {Sn-is2(s +k,25 + k;i/T) + Ry_ks2(s + k, 25 + k;1/7T)}
holds in the region —N — k/2 < 0 < N +k/2+ 1 except at the complez zeros of (25 + k)
and the real poles of Ey(s;iT). Here Syik/2 are of the form

N+k/2—-1
_.1 n $)n 1 — 5 — k' "
Snia(s, 25 + kiifm) = > (=1)"(s) Sﬂ )
n=0 .
X ¢s+k—n—1,_s_n(e‘2"/7){|'r|/47r cos(arg 7)}**™,
(2'.36) o |
._1 n k n 1 _ n
Snkp(s+ k25 + k;i/T) = > (=1)™(s +n|) (1-5)
) n=0 :

X @op1,-s—k-n(€2/T){|7|/4m cos(arg T) } "
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respectively, both giving the asymptotic series in the ascending order of 7 as T — 0 through
the sector |arg 7| < 7/2. Also Ryxks2 are czpressed by (2.6) and (2.7) with (y, z) replaced
by (cos(arg)/|7|,1/7) respectively, satisfying the estimates

Ryik/2(8,28 + kii/T) = O(|r|7HN+k/2),
Ry_ik;2(s+ k,2s + k;1/T) = O(J7|o+N+k/2)

as 7 — 0 through the sector |arg 7| < w/2 — § with any small § > 0, where the implied
O-constants depend at most on k, N, s and §.

(2.37)

We lastly proceed to state our second main result.

Theorem 2. For any integer N > |k|/2 the actions of Apk upon Stk and Ryik/z in
(2.3) (multiplied by y°) are explicitly given by

(2.38) A {y°Sn4ks2(s,25 + k; 2) }
= ys{s(l — 5 — k)SNiks2(s,2s + k; 2)

(—1)NHR 27 () Nyisa(l — s — k) Nakse
(N + k/2 1)1

X ¢s+k/2—N,—s-N-k/2+1(e(z))(47ry)~8—N—-k/2+1},

(2.39) A x{y°Bnikj2(s, 25 + k; 2)}

_ o EDT )N ka (L= K = )Nk
y (N +k/2—1)!

X Pyik/2-N,—s—N—-k/2+1(€(2))(47Y)

+ 3(1 -8 - IC)RN+k/2(S, 2s + k;z)},

~s—N—k/2+1

(2.40) A k{y°Sn-kj2(s + k,25 + k; —2)}
— ys{s(l — 8§ — k)SN_k/Q(S -+ k, 25 + k:; —E)

(DN (s 4 B N_kj2(1 — S)N -k
(N—k/2— 1)

X ¢s+k,/2—N'—.9—N._k/2+1 (e(-—?))(zlﬂ—y)"s‘lv—k/Z-*-l } ’

(2.41) AH,k{ysRN_k/z(S + k,2s+ k; —3)}
s (—1)N=52"Y(s + k) n_k/2(1 — S)N—k/2
-V (N—k/2—1)!

X <15s+k/2—N.—s-N-k/2+1(e(—z))(47ry)—s—N—k/2+1

+5(1 — s — k)Rn—k2(s+ k,25 + k; ——E)}
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in the region —N —k/2 <o < N —k/2 + 1 except at the complex zeros of ((2s + k) and
the real poles of Ei(s; z).

It is observed upon combining (2.38) with (2.39), and also (2.40) with (2.41) that the
common factor s(1—s—k)y® can be extracted from these two combinations; this together
with the fact that Ay ,y* = w(l — w — k)y* shows

Corollary 2.1. Formula (2.3) with the relations (2.38)—(2.41) justifies the eigenfunction
equation (1.6) throughout the s-plane.
3. A FUNDAMENTAL FORMULA

The aim of this section is to prepare the formula which is fundamental in proving

. Theorem 1. E _
" Let N be an arbitrary nonnegative integer, and (s1; s2) in the region

(3.1) Res; =0, > —N and Resy =09 <01+ N + 1.

In order to reformulate our previous results on (z:(s; z) (in [Ka7, Theorem 1]) to Eq(s; 2),
we introduce

N-1
: —-1)*(s S1 — 8o+ 1 .
(3'2) SN(SI782;Z) = Z ( ) ( l)n( ’1 2 )
n=0 n:
X Poymsyon-t,—es-n(e(2)) (479) T
(33) R (.S s'z)—-___l_/ F(Sl+w;—w,1—$é—w)
| AR ZE (e) 81,81 —S2 + 1

X Dy _14ww(€(2))(dry)¥dw,
where ¢y = cny(01,02) is a constant satisfying
(3.4) —01 — N < ¢y <min(—o; — N +1,0,1 — g7),

and (cn) denotes the vertical straight line from cy — 200 to cy + too. Note that the
parameter z may be replaced by —% (with y = Im 2z = Im(—%)) in (3.2) and (3.3). Here
the conditions (3.1) and (3.4) ensure that the,path (cy) separates the poles of the integrand
at w= —s; —n{n=NN+1,...) from those at w = —s; —n (n =0,1,... ,N — 1)
and at w =n, 1 —-s,+n (n=0,1,...); the integral in (3.3) converges uniformly on
any compact set in the region (3.1), and defines there a holomorphic function of (sy, s2),
since the integrand is of order O{| Im w|Ce~3™1™%l/2} as Imw — oo with some constant
C = C(Im z,Rew, g1, 02) (see (2.10) and [Iv, p.492, A.7(A.34)]. It is in fact possible to
transform the Mellin-Barnes type integral in (3.3) as

oo

-1V -
@5)  Rulswsys) = SRS I 3 el
: l1,l2=1

S|
x/o £ N1 — NIU(sy + N s9; 4mlyloy /€)dE.

Then Formula (2.5) with (2.6) and (4.4) in [Ka7] readily yields (upon splitting the as-
ymptotic expansion into the parts corresponding to z and —%)
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Proposition 1. Let Ey(s; z) be defined by (1.1) with k = 0. Then for any integer N > 0
the formula

Eo(s;z) =1+ 27rl“(23$; 1)—6—%5—2—;—)1—)(2@1‘25
2s
+ F—é:—;rc)—(ig)-{SN(s, 2s;z) + Rn(s,2s; 2)
+ Sn(s,2s; %) + Rn(s,2s; —%)}

holds in the region —N < o < N + 1 except at s = 1 and the complez zeros of ((2s).

REFERENCES

[Be] B. Berndt, Ramanujan’s theory of theta-functions, in ” Theta Functions: from the classical to the
modern,” M. Ram Murty (ed.), CRM Proceedings & Lecture Notes, Vol. 1, A.M.S., Providence,
Rhode Island, pp. 1-63, 1992.

[CS1] S. Chowla and A. Selberg, On Epstein’s zeta-function (I), Proc. Nat. Acad. Sci. USA 35 (1949),
371-374.

[CSs2?] , On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967), 86-110.

[Erx} A. Erdélyi (ed.), W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions
Vol. I, McGraw-Hill, New York, Toronto, London, 1953.

[Iv] A. Ivié, The Riemann Zeta-Function, Dover, New York, 2003.

[Kal] M. Katsurada, Power series with the Riemann zeta-function in the coefficients, Proc. Japan
Acad. Ser. A 72 (1996), 61-63.

[Ka2) , An application of Mellin-Barnes’ type integrals to the mean square of Lerch zeta-
functions, Collect. Math. 48 (1997), 137-153.

[Ka3] , Rapidly convergent series representations for ¢(2n+1) and their x-analogue, Acta Arith.
90 (1999), 79-89.

(Kad] , On an asymptotic formula of Ramanujan for a certain theta type series, Acta Arith. 97
(2001), 157-172.

[Ka5] , Asymptotic expansions of certain g-series and a formula of Ramanujan for specific values
of the Riemann zeta-function, Acta Arith. 107 (2003), 269-298.

[Ka6) , An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-functions
II, Collect. Math. 56 (2005), 57-83.

[Ka7] , Complete asymptotic ezpansions associated with Epstein zeta-functions, Ramanujan J.

14 (2007), 249-275.

[KN] M. Katsurada and T. Noda, Differential actions on the asymptotic expansions of non-holomorphic
FEisenstein series, Int. J. Number Theory, (to appear).

[Maa] H. Maass, Lectures on Modular Functions of One Complez Variable, Tata Institute of Funda-
mental Research, Bombay, 1964.

[Mat] K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and
FEisenstein series, Nagoya Math. J. 172 (2003), 59-102.

[Mi] T. Miyake, Modular Forms, Springer, Berlin, Heidelberg, New York, 1989

[Nol] T. Noda, Asymptotic expansions of the non-holomorphic Eisenstein series, in” R.I.M.S. Kokyi-
roku,” No. 1319, 2003, pp. 29-32.

[No2) , A note on the non-holomorohic Eisenstein series, Ramanujan J. 14 (2007), 405-410.

[Ram] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916),
159-184.

[Ran] R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.

[Sh] G. Shimura, Elementary Dirichlet Series end Modular Forms, Springer, New York, 2007.

[Si) C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bom-
bay, 1950.

[S)) L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, 1960.




93

KATSURADA AND NODA

(Katsurada) DEPARTMENT OF MATHEMATICS, HivosHi Campus, KE10 UNIVERSITY, 4-1-1
HivyosHl, KOUHOKU-KU, YOKOHAMA 223-8521, JAPAN

Current address: Westfalisch Wilhelms-Universitit Miinster, Mathematisches Institut, Einsteinstr. 62,
48149 Miinster, Germany

E-mail address: katsurad@hc.cc.keio.ac. jp; katsurad@z3.keio.jp

(Noda) DEPARTMENT OF MATHEMATICS, COLLEGE OF ENGINEERING, NIHON UNIVERSITY,
KORIYAMA, FUKUSHIMA 963—-8642, JAPAN
FE-mail address: takumi®@ge.ce.nihon-u.ac. jp



